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1 Introduction 

:According- to the .modern standpoint~ spacetime theory is: the one ,that 
possesses" a mathematical representation· whose. elements>are a smooth 
four-dimensional manifold M and geometrical objects defined on· M.:Th~ 
system of real local. coordinates on _M is defi_ned as a topological mapping 
of an open region U C M onto the Euclidean 4~dimensional space E4 • 

Thus, the Euclidean 4~dimensional space E4 is a. fundamental strnctu~e 
el¢m~ht"of the _mathematical' app~ritus :~f ~ontimporary physics. ,·H6w'~ 
ever·; it c·an be shown that E4 has 'underlying structure that is exhibited 
in 'the e;ist~nce of a group of t~ansformation.~ .that ,does p.ot coincid~,-~ip~ 
the SO( 4) group. Consider In physicai' space E3 and' for· corr{pa'ri~~~· on 
physical plane E 2 consider the groups .. of rotations and dilatations with 
generators 

a a · a 
D = x~ + y!l' + z~, · ux uy uz 

M2 = -zl_ + xi_, ax oz. 
and, respectively, 

· a a · a a 
D = x~ + y~, M = y- - x-. ux uy .. · ax 8y 

Denote these groups as D ® S0(3) and D ®· S0(2). One can show that an 
element of the first group can be paranietrized by real numbers a, b, c; d 
which is suitable to consider as a quaternion q = ai + bj + ck+ d and 
for the second one _we h~ve two real pa~ameters w = u +iv. It is easy to 
v~rify_on~-to-one corre~pondence between. the algebra of quaternions ~i:id 
complex numbers and groups D®S0(3) and D®S0(2) .. Transformations 
of the groups D ® S0(3) and D ® S0(2) in E3 and E 2 can he represented· 
as follows · .· · · 

R' = qRij r' = wrw, 

where R·= xi,+ 'yj + zk in the first case and r = X + iy"iri'tµe second. 
When we consider groups D®S0(3) and D_®S0(2) asHn~ar_spaces, .then 
it is not difficult to see with the help of the well known algebra that the 4d 
sp~_ce of quaternions Q4 and 2d space of co~plex nu~b~rs Q2 ·give ~pinor 
repr~sentations of the groups in· question, which are defined as follows 

> •• ,., - > ~ 

' . ' · u -.= qu, z = wz. 



A remarkable property of these transformations is that there is only one 
point q = 0, (z = 0) that is stable under the transformations (1). When 
we fix any other point, the transformations are reduced to the identical 
transformation. Another important feature of transformations (1) is that 
the Euclidean scalar products in Q4 and Q2 

(q,q)=a2 +b2 +c2 +d2
, (w,w)=u2 +v2 

are invariant with respect to transformations (1) under the conditions 
qij ~ 1, _ ww = 1. But this does not mean that Q4 and Q2 are really the 
Euclidean spaces be~ause (1) takes plac~. It should be noted that there is 
simple: m~pping. fr~m Q2 to E2 of the following form . - . . . 

r = z2
• 

This mapping is known as Bohlin transformation [1]. But one can show 
that there is no mapping from Q4 to the 4d Euclidean space. Thus, what 
we usually call the 4d Euclidean space by the analogy with the 3d physical 
space in reality is Q4 • The absence of such a mapping follows from the fact 
that there is no real Dirac matrix 7; with the properties defined as follows 

'Yi'Yi + 'Yi'Yi = 28;;, i,j = 1, 2, 3, 4. 

However, there is mapping from Q4 to E3 which can be defined as follows 

R = qiij. 

This mapping is known as the Hopf one. So, components of the vector q 

are observable not in a direct way, but only through some expressions built 
up from these components. In a certain sense, this situation is similar to 
the case with a wave function of quant_um mechanics. It is evident that a 
3d sphere in Q 4 

a2 + b2 + c2 + d2 = p2 

inherits the properties of the enveloping space. In view of unusual proper­
ties of a 4d space and, respectively, three-dimensional sphere S3 ,. consider 
the investigations connected with the last object. · 

From the geometrical point of view a 3d sphere is a space of con­
stant positive curvature. The Kepler-Coulomb problem in this space 
has a long history and was first investigated by Schiodinger · [2]. The 
Schrodinger equation for the Kepler-Coulomb problem in S3 was recently 
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analyzed by Pogosyan and_ Sissakian [3]. Path Integral Formulation of 
the Smorodinsky-Winternitz Potentials on the 3d sphere was presented in 
[4]. On the other hand, S3 is the configuration space for the Top. rhe 
quantum-mechanical problem for free motion of a J'op was investigated 
shortly after creation of quantum mechanics in its modern form (see for 
example [5]). The solution of general quantum-mechanical problem of a 
non-symmetric Top were expounded by Smorodinsky and Lukac [6]. It 
is evident that the connection between these two directions of investiga­
tion is very important. Moreover; in,the 30's it has been emphasized by 
Casimir [7] that from a physical point of view the notion of a rigid bogy 
is as fundamental as the notion of·a material point. At last we would 
like to emphasize that QCD is conceptually a simple theory and its struc­
ture is solely determined by the symmetry principles. However, there is no 
connection between such important phenomena as confinement and quark­
lepton symmetry, on the one hand, arid the first principles QCD, ori th~ 
other hand_- Des.pite prolonged and complicated experiments, free quarks 
have not been observed though it is commo~ly accepted that quarks' are 
true elementary particles like electrons. Experimentalists gradually came 
to the conclusion that the matter is not in the details of experiments but 
rather in the fundamental properties of the matter, search for which was 
made under many different assumptions. For instance, it is hypothesized 
that the quark confinement can be explained by topological methods that 
have recently found still a wider use in physics. Nevertheless, the most 
natural and reliable approach to the problem of confinement should be 
looked for in the possibility to modify the Dirac equation in view of un­
usual quark properties. 

Summarizing all the facts considered above we put forward the conjec­
ture that the configuration space of quarks is a three-dimensional space 
of constant positive curvature. In the framework of this conjecture we 
shall derive below the corresponding basic wave equation for a quark and 
consider some its properties. 

2 Wave equation 

' Here we will define a homogeneous spacetime manifold that differs from 
the Minkowski spacetime by geometrical and topological properties and 
show that a spacetime manifold of that kind obeys all the required condi~ 
tions and is of definite interest for the physics of quarks. 
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In the five-dimensional Minko\vski spacetime Mf 4 with Cartesian co­
ordinates xA (indices denoted by capital letters _fun over ,five values 
0,1,2,3,4) we will consider the one-sheet hyperboloid H4 

1/ABXAXB = (xo)2 - (x1)2 - (x2)2 - (x3)2 - (x4)2 = -a\ (2) 

where a is the radius of H4, and prove that it is a homogeneous spacetime. 
We will use the scalar product (X, Y) = 1/ABUAVB for any vector fields 

X = uAaA and Y = yAaA on Mf 4· The vector fields 
' 

PA= 8~8c, MAB= (xA8~ - xB8~)8c, 

where XA = 1/ABXB, are generators of the Poincare group of the five­
dimensional Minkowski spacetime. All vector fields MAB are orthogonal 
to the radius-vect~r R = xcac, whereas for vector fields PA this is not the 
case. Expanding PA in the direction of the radius-vector R and the one 
orthog~nal to it, we ob_tain th~ vector fields . 

l( C l C MA= aPA + - R,PA)R = (a8A + -xAx )8c, 
a a 

. ' . 
tangent to H4, since from (2) it follows that (R, MA) = 0 at every point 
of H 4

• The vector fields MA and .. MAB are generators of the group of 
conformal transformations of H 4 because 

[MA,MB]-= -MAB, [MA,MBc] = 1/ABMc -1/AcMB, 

Let us now introduce the vector fields 

(3) 

Do= Mo, D1 = M14+M23, D2 = M24+M31, D3 = M34+M12 (4) 

with components 

x2 xoxl xox2 xox3 Do= (a+=:-, a ' a ' a ' D1 = (0, -x4, -X3, X2, · x1), 
D2 = (0, X3, -X4, -xi, X2, 
D3 = (0, -x2, Xi, -x4, X3). 

It is not difficult to see that the vector fields D0 , 

continuous and do not vanish at any point of H 4 • 

a =I- b, a, b = 0, l, 2~ 3 and · 

4 

xqx4 ) 
a ' 

D1, D2, D3 are 
As .(Da, Db) = 0 for. 

.) 

i 

i \ 

\ I 
'} 

(Do,Do)= -(D1,D1) = -(D2,D2) = -(D3,D3) = 2 2 a +xo, 

the vector fields Do, D1, D2 , D3 are linearly independent at every 
point of H4

• From (3) it follows that 
. 

[Do,Di] = 0, [D;,D;] = 2e;;kDk, i,j,k = 1,2,3, 

where e;;k is the completely antisymmetric Levi-Civita symbol with e123 = 
1. In this way, we have proved that the one-sheet hyperboloid (2) adr'n.its 
a simply transitive group of transformations [8] with the generators ( 4) 
having only the following nonze~o structure constants 

li3 = fl1 = !!2 = 2. (5) 

Hence H4 is really homogeneous manifold. 
In accordance with the Dirac equation we write the wave equation in 

the homogeneous spacetime in the form 

-{Pc'ljJ = µ'ljJ, (6) 

where 

''/°'-/ + •·/-y° = -21/ab, 

iqa 1 a 
Pc= De+ ~Ac - ;;Jc, fc = fac, 

q is the charge of a particle and Ac are components of the vector potential 
of the electromagnetic field in the basis Da. Besides, in H4 

mca 
µ=T· 

For the present, we do not coni::retize the values of structure constants of 
a simply transitive group of transformations of the spacetime H4 • As in 
general [Da, Db] = JibDc, we have 

[Pa, A] = f~bpc + zx: Fab, 

,where 
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1. 

Fab = DaAb - DbAa - JibAc (7) 

are components of the strength tensor of the electromagnetic field in the 
basis Da. When the wave equation is established, it is not difficult to,write 
equations of the electromagnetic field .. The Jacobi ,identity [Pa[A, Pc]]+ 
'[A[Pc, Pall+ [Pc[Pa, All= 0 results 1n the fir~t four Maxwell equations · 

. · d . d d 
DaAc + DbFca + DcFab + fabFcd + fbcFad + fcaAd = 0. (8) 

By analogy, ·from (8) it follows that the re~'aining M~~well equations are 
ofth~ form . . . ' 

',, .. 

D 'r1.b · , Fab !1,b Fad ~ . 41ra ·b (9) a + J a + 2 ad C J , 

~here/ are components of the c~rrerit vector in the basis Da• 
Now we will write the Maxwell equations in the three-dimensional 

vector ,form. As usual, we put• 

ja = (cp,J), Aa = (<p, -A), 

E; = Fo;, H . - !e··kFik ; 1· k - 1 2 3 
I-. 2 lJ , "' ' - ' 7 • 

Then from (5) and (7) we obtain 

E = -'voA - 'v<p, ii= rotA = 'v x A - 2A, 
where 

'v = ('vi, 'v2, '\13), 'vo = Do, 'v; = D;, i = 1, 2, 3. 

(10) 

Considering that div A= I:f=1 'v;A;, ·we can write the Maxwell equa­
tions (8) and (9) in the familiar vector form 

- 'voH = rotE, divH = 0, 
.... .... 41ra .... 

rotH = 'voE+-j, 
C 

divE = 41rap. (11) 

Making use of the commutation relations ['v;, 'v;] = 2e;jk v\, i,j, k = 
1, 2, 3, it is not difficult to verify the identities 

6 

1\ 
.) 

I 
I 

/~ 
\!/ 

div rot = 0, rot grad = 0. 

Besides, 

' divgrad = 6, 

where 6 is the Laplacian on a t~ree-dirriensional sphere. Torsion, i.e. 
non-Abelian character of a simply transitive group of transformations of 
H 4 manife;ts· itself not only in the definition of the operator rot, but also 
in the identities 

(rot+ 1)2 = ~6 + 1 + grad div. 
,,·,, . '. ,- '" • '< : .•• 

Since the space .section-of H4: isf a three-dimensional sphere, it is inter-. 
esting to show that the Dirac equation is connected with the Schrodinger 
equation for the spheri~al Trip.· T6 verify this, we will derive eigenvalues 
E of the Dirac Hamiltonian in question when there is no electromagnetic 
field, i.e. Fab = 0. Squaring equation (6) and using (5), we obtain the· 
follp»1ing equation for .,!E 

: • '. ' 

. 2Ji2 · 
2 2 4 . C E ?jJ = m c ?jJ - -'-(6 + P)?jJ, a2 

· (12), 

where 
P = E1 'v 1 + E2 'v 2 + E3 'v 3 

and E;' == ½eiik/'i'Yk. The operator P has properties analogous to those of 
the operator rot. In particular, 

(P + 1)2 = -6 + 1. 

Since 6 + P = -P(P + 1), then 

. c2/i2 

E 2 = m 2c4 + p(p + 1)-, a2 

where p is an eigenvalue of the operator P. 

(13) 

To determine eigenvalues of the operator P, consider Hermitean oper­
ators acting in the space of solutions to the wave equation (6). Generators 
of the group mutual to the simply transitive group of tra~sformations of 
the spacetim.e H 4 ar~ of the fo~m , 

.. ; , ' . 
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Ea= Do, Et= Mt4 - M2a, E2 = M24 - Mat, Ea= Ma4 - Mt2, 

which gives the three Hermitean operators 

i 
Ni= --E; 

2 
analog~ms to the momentum operators. The other three operators 

. . 
i i 

Mi= --(v'; - ~i) = --(Di - ~i) 
2 2 

(14) 

are analogs of operators of the angular momentum of an electron. From 
(14) it follows that the spin of a particle in question equals n/2. We have 

M X M = iM, N X N = iN 
and, besides, 

2(M2 + N 2) = (P + ¾)2 - !, 2(M
2 -N2

) = P + ¾· (15) 

Hence, we have the operator equation 

2(M2 + N 2) + !.= 4(M
2 

- N 2
)
2
. 

Since M 2 = l(l + 1) and N2 = k(k + 1), then from_ the operator equation 
we derive the equation for l and k 

2[l(l + 1) + k(k + 1)] + ! = 4[/(l + 1) - k(k + 1)]2. 

This equation has two solutions: l = k + ½ and k == l + ½. Then, it fallows 
that p = 2[/(l+l)-k(k+l)]- ~ = -2k-3. Since sa has a metric invariant 
with respect to the isometric reflection, then p = 2k + 3 is eigenvalue too. 
Thus, for the energy we have the following expression 

c21i2 . ,\2 
E 2 = m2c4 + n(n + 1)~ = m2c4(1 + n(n + 1) a2 ), (16) 

where n = 2, 3, ... and ,\ = Ti/me. If formula (16) gives the· quantum­
mechanical value of the energy of the relativistic spherical Top, then at 
large a the moment of inertia J = ma2 is also large and the angular velocity 

8 

is small. So, the nonrelativistic limit can be found 'from the condition 
a~ ,\. In the limit of large a it follows from (16) that 

L2 
E=mc2+-2I' 

w~ere L2 = n(n + 1)1i2 is the angular momentum of the spherical top 
and J is its moment of inertia. The latter relation is consistent with the 
classical formula 

L2 
E= 21 

for the energy of a Top. Thus, formula (16) gives the energy of rotation. 
Now consider the Coulomb law. As it is known, the Coulomb potential 

can be derived as a solution of the equations of electrostatics invariant. un­
der the group of Euclidean motions including rotations and translations. 
We will look for the Coulomb potential in the considered case in an anal­
ogous manner. From (10) and (11) it follows that for a constant electric 
field div E = 41rap, E = -v' cp, and consequently, cp obeys the equation 

6.cp = -41ra2 p. (17) 

An invariant of the group of rotations 0( 4) on a .three-dimensional 
sphere is either the arc length or the angle between radius-vectors, 

Since 

X ( t 2 a 4) y ( t 2 a 4) = X ,x ,x ,x' = y ,Y ,Y ,Y 
1 

cos 0 = -(xtyt + x2y2 + xaya + x4y4). 
a2 

. a . a 1 . . . . 
M;;cos0 = (x'-a. - x3-

8 
.)cos0 = -(x'y3 - x3y'), 

· xJ · x• a2 . 

setting in (17) p = 0, cp = cp(z), where z = cos 0, we obtain the following 
equation for cp(z) 

2 d2cp dcp 
(1 - z )- - 3z- = 0. 

dz2 dz 
The general solution to this equation is of the form 

cp(z)=ct z + v'f"=z2 C2 = Ct cot0 + C2, 
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where c1 and c2 are arbitrary constants. If one particle has the coordinates 
(0, 0, 0, a), then from the last formula we obtain the well-known expression 
[3]. A more interesting result follows from the mapping S3 onto E3 • 

Introduce the frame of reference with respect to which one of the 
charged quarks -is at rest and has coordinates (0, 0, 0, -a). In this sys­
tem consider a stereographic projection of the three-dimensional sphere 
(x1

) 2 +(x 2
)

2 +(x3)2+(x4
)

2 = a2 from point (0,0,0,a) onto the hyperplane 
x4 = 0 with Cartesian coordinates x, y, z. ,We have 

2a2 
1 

X = X-2-- 2' 
r +a 

2a2 

2 -- 2' x = Y r2 + a 

2a2 r 2 
- a2 

3 --- 4 x=z2 2' x=a2 2' r +a r +a 

where r 2 = x 2 + y2 + z 2. It may be verified that in the coordinates x, y, z 

a r 
cot0 = - - -

2r 2a 
and, consequently, the Coulomb potential can be written in the form 

1 r 2 1 
(-----) 
2r 2a a ' 

cp(r) = q (18) 

where q is the charge. As the potential (18) does coincide with the known 
Corne! potential [9], we can conclude that our consideration should be de­
veloped so as to explain a successful application of the latter for describing 
the charmonium [10]. 

3 Conclusion 

As the bask wave equation describing the dynamics of quarks, we have 
suggested the modified Dirac equation (6) written here in homogeneous 
coordinates. The conclusion that quarks are described by the wave equa­
tion different from the conventional wave equation for electrons is quite 
natural. In fact, it would be strange if the description of such different 
particles were based on the same equation. 

The physical meaning of the phenomenon called the confinement con­
sists in that quarks possess properties of a quantum-mechanical spherical 
Top. This means, in particular, that the Cornel potential expresses the 
fundamental physical law. 

10 

At large a, when a --+ oo from the theory of quarks we derive the theory 
of electrons but with electrons evidently deconfined, because in this case 
the region of confinement is the Euclidean space. Thus, the symmetry 
between quakrs and leptons has a natural explanation. 

As the kinematics of quarks differ from the kinematics of electrons, 
there are possible such decays of hadrons and nuclei in which the energy 
conservation law is fulfilled but the momentum is not conserved. 
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