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1 Introductlon
: Accordlng to’ the modern standpornt spacetlme theory is the one that
- possessesa mathematical representation-whose: elements:are-a smooth

- - four-dimensional manifold M. and geometrical objects defined on' M. 'The

-system of real local coordinates on M is defined as a topological mapping
of an open region U C M onto the Eiclidean 4-dimensional space Ej.
Thus, the Euclidean 4-dimensional space Fy is a fundamental structure
element of the mathematlcal apparatus ‘of contemporary phys1cs How-
“ever, it can be ‘shown that E4 has underlylng structure that is exh1b1ted
in'the existence of a group of transformatxons that does not. c01nc1de w1th
the SO(4) group. Consider In physical space Ej and for’ comparison on
physical plane E; consider the groups. of rotations and dilatations with
generators : : .
D = :1:5;‘+ y3_y+z$’ M1—Za—y— V3, ‘
and, respectively,
0 o .. 0 0
R T , | _yaz_» “oy’ e
Denote these groups as D ® SO(3) and D ® SO(2). One can show that an
element of the first group can be parametrized by real numbers a, b, c;d
which is suitable to consider as a quaternion ¢ = ai + bj + ck + d and
for the second one we have two real parameters w = u +iv. It is easy to
verify. one- to-one correspondence between the algebra of quaternions and
complex numbers and groups D®S0(3) and D® SO(2). Transformatlons:‘
of the groups D ® SO(3) and D® S’O(2) in E3 and E; can be represented
as follows
. R-qRq r—wrw,, :
" where R'= i +yj + zk in thé first’ case and r = z + zy ‘in’ the second
“When we consider groups D®S’O( 3) and D®S’O( ) as linear - spaces, then
it i is not difficult to see with the help of the well known algebra that the 4d
space of quatermons Q4 and 2d space of complex numbers Q2 glve spinor
representatxons of the groups in questlon wh1ch are deﬁned as follows ,

cul=qu, 2 =wz. Lo (D)
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A remarkable property of these transformations_is that there is only one
point ¢ = 0, (2 = 0) that is stable under the transformations (1). When
we fix any other point, the -transformations are reduced to the identical
transformation. Another important feature of transformations (1) is that
the Euclidean scalar products in Q4 and Q-

. '(q1q)=‘a2+b‘2+cz_+Ad2a (w,w)=u2+t)2

are 1nvar1ant w1th respect to transformatlons (1) under the conditions
g7 =1, ww =1. But this does not mean that Q4 and @, are really the
Euchdean spaces because (1) takes place. It should be noted that there i is
s1mple mappmg from Q3 to E2 of the followmg form ‘

r=2z%
This mapping is known as Bohlin transformation.[1]. But one can show
that there is no mapping from Q4 to the 4d Euclidean space. Thus, what
we usually call the 4d Euclidean space by the analogy with the 3d physical
space in reality is Q)4. The absence of such a mapping follows from the fact
that there is no real Dirac matrix y; with the properties defined as follows

W % =285, 5,7 =1,2,3,4..
However, there is mapping from Q4 to E3 which can be defined as follows

- R = qig.
This mapping is known as the Hopf one. So, components of the vector ¢
are observable not in a direct way, but only through some expressions built
up from these components. In a certain sense, this situation is similar to
the case with a wave functlon of quantum mechanics. It is ev1dent that a
3d sphere in Q4 ‘
a —{-b2+c2+d2 =p’

/inherits the properties of the enveloping space. In view of unusual proper-
ties of a 4d space and, respectively, three-dimensional sphere s2, cons1der
t’he mvestlgatlons connected with the last object. '

From the geometrical point of view a 3d sphere is a space of con-
stant p031t1ve curvature. The Kepler-Coulomb problem in this space
has a long history and was first investigated by Schrodinger’ [2]. The
: Schrodmger equation for the Kepler-Coulomb problem in S® was recently
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analyzed by Pogosyan and. Sissakian [3]. Path Integral Formulation of
the Smorodinsky-Winternitz Potentials on the 3d sphere was presented in
[4]. On the other hand, $® is the configuration space for the Top. The
quantum-mechanical problem for free motion of a Top was investigated
shortly after creation of quantum mechanics in its modern form (see for
example [5]). The solution of general quantum-mechanical problem of a
non-symmetric Top were expounded by Smorodinsky and Lukdé [6]. It
is evident that the connection between these two directions of investiga-
tion is very important. Moreover; in.the 30’s it has been emphasized by
Casimir [7] that from a physical point of view the notion of a rigid bogy
is as fundamental as the notion of ‘a material point. At last we would
like to empha31ze that QCD is conceptually a simple theory and its struc-
ture is solely determined by the symmetry pr1nc1ples However, there is no
connection between such important phenomena as confinement and quark
lepton symmetry, on the one hand, and the first pr1nc1ples QCD, on the
other hand. Despite. prolonged and compllcated experiments, free quarks
have not been observed though it is commonly accepted that quarks are
true elementary particles like electrons. Experimentalists gradually came

~ to the conclusion that the matter is not in the details of experiments but

rather in the fundamental properties of the matter, search for which was

‘made under many different assumptions. For instance, it is hypothesized

that the quark confinement can be explained by topological methods that

" have recently found still a wider use in physics. Nevertheless, the most

natural and reliable approach to the problem of confinement should be
looked for in the possibility to modify the Dirac equation in view of un-
usual quark properties.

Summarizing all the facts considered above we put forward the conjec-
ture that the configuration space of quarks is a three-dimensional space
of constant positive curvature. In the framework of this conjecture we
shall derive below the corresponding basic wave equation for a quark and
cons1der some its properties. :

2 Wave equation

'Here we will define a homogeneous spacetime manifold that differs from
the Minkowski spacetime by geometrical and topological properties and

show that a spacetime manifold of that kind obeys all the required condi-
tions and is of definite interest for the physics of quarks.



In the. ﬁve—dunensxonal Minkowski spacetime M3, 4 with Cartesian co-
ordinates z# (indices denoted by capital letters run over five values
0,1,2,3,4) we will consider the one-sheet hyperboloid H*

mapate® = (2 = (@ - (& - @ - @ ==, ()

where a is the radius of H 4, and prove that it is a homogeneous spacetime.
We will use the scalar product (X,Y) = n,pU4V® for any vector fields
X =UA94 and Y = V434 on M7 ,. The vector fields

Pa=830c, Map = (z465 — z563)dc,

where z4 = 74pzP, are generators of the Poincare group of the five-
dimensional Minkowski spacetlme All vector fields M4p are orthogonal
to the radius-vector R = z%0;, whereas for vector fields P4 this is not the
case. Expandlng P, in the direction of the radius-vector R and the one
orthogonal to it, we obtain the vector fields

My = aPa+ S(R, Po)R = (a65 + 12420,
' a a

f;ingent to H4, ‘sihce‘froni (2) it follows that (R,‘MA) = 0 at every point
of H%. The vector fields M4 and .Myp are generators of the group of
conformal transformations of H* because

[Ma, Mé]:‘—MAB, [Ma, Mpc] = napMc —nacMp. = (3)

Let us now introduce the vector fields

Do = My, Dl M14+M23, Dy = M+ Mz, D;3= M34+M12 (4)

with components

) .
Dy = (a + iQ, zgz! zz? zqz? oz )
a

a ! 2 a ? PERA
D] = (0, —T4, —3, T, fﬂ!l),'
D;=(0, z3, —z4, —7T1, Zq,

-D3 = (07 -T2, T1, —ZI4, -'1:3)-

It 1s not difficult to 'see ‘that the vector fields Dd, Dy, Drz,‘ D3 are'
continuous and do not vanish at any point of H%. As (Da,Db) = 0 for.

a#b, _ab-0123and

(Do, Do) = —(D1,D1)= —(D2,D2)= —(Ds,D3)= a’+z,

the vector fields Do, Dy, D,, Djs are linearly independent at every
point of H%. From (3) it follows that

(Do, Di] =0, [D;,D;] =2ei;4D%, 1t,5,k=1,2,3,

where e is the completely antisymmetric Levi-Civita symbol with e;53 =
1. In this way, we have proved that the one-sheet hyperboloid (2) admits
a simply transitive group of transformations [8] with the generators (4)
having only the following nonzero structure constants

f213=f321=f132=2- ‘ " ()
Hence H? is really homogeneous manifold.

~ In accordance with the Dirac equation we write the wave equation in
the homogeneous spacetime in the form

7P = pip, (6)

where

7a7b + 767‘1 — _277ab,

iqa 1

he A _'Z‘fC: fC“‘fac’

q is the charge of a particle and A, are components of the vector potential

P.=D.+

Qf the electromagnetic field in the basis D,,. Besides, in H 4

__mca
B h .

For the present, we do not concretize the values of structure constants of

a simply transitive group of transformations of the spacetime H*. As in

general [D,, Dy] = f&,D,, we have

1qa

—Fy,
o et

[Paan]_ bP +

where



F,=D,A, — D,,A — faAe (7)

are’ components of the strength tensor of the electromagnetic field in the

basis D,. When the wave equation is established, it is not difficult to write

equations of the electromagnetic field. The Jacobi identity [P, [Py, Pe]] +
(B[P, Po)l + [Pe[Pa, Ps]] = O results in the first four Maxwell equations

DFbc+Dcha+DFab+f FCd+be ad+fcand—0 (8)

By analogy, from (8) it follows that the remamrng Maxwell equatrons are
: of the form

47ra b

D Fab+faFab+ fngad T] ’ - (9)

where jb are components of the current vector in the basis D,.
Now we will write the Maxwell equatlons in the three-dimensional
vector form. As: usual we put- B ‘

]a = (vaj‘)v Aa = (‘Pa _'K)7

E;=Fy, H;= -;—e,-ijjk, i,j,k=1,2,3.
Then from (5) and (7) we obtain.
E=-VoA-Vp, H=roth =V xA 24, (10)

~ where

V=(Vi, Vi Vi), Vo=Dg, Vi=D;, i=1,2,3

Considering that divA = E w1 Vi A,, we can write the Maxwell equa-
“tions (8) and (9) in the familiar vector form.

~VoH = rotE, divH = 0,

: Making use of the commutation relations Vi, Vil =2ei4 Vi, i,4,k=
- 1,2,3, it is not difficult to verify the identities v

L - 47an . o
rotH=VoE+—%Ej, divE = 4map. (11)

. Besides,

divrot =0, rotgrad =0.

divgrad = A,
where A is the Laplacian on a three-dirnensional sphere. Torsion, i.e.
non-Abelian character of a s1rnply transitive group of transformations of
H* manifests itself not only in the definition of the operator rot, but also’
in the identities ‘
rot + 1)2 —_—A +1+ grad d1v

Since the space. sectlon of H*is‘a three-drmensronal sphere 1t is 1nter~.
esting to show that the Dirac equation is connected with the Schrédinger

‘equation for the spherical Top.  To: verify: this, we will derive eigenvalues

E of the Dirac Hamiltonian in question when there is no electromagnetlc_
field, i.e. F,; = 0. Squaring equatlon (6) and using (5), we obtain the’
followmg equatron for E : »

. 2h2 VV
By=midy-ST(@+PW, (12

where - ; -
P =3%,Vi+ X,V + 33V

and ¥;'= —e,,k'y ink. The operator. P has propertles analogous to those of
the operator rot. In partlcular R

(P+1P=-A+1. _ (13)
Since A + P = —P(P + 1), then '

2h2

E? = m?ct + p(p + 1)7

where p is an eigenvalue of the operator P.

To determine eigenvalues of the operator P, consider Hermitean oper-
ators acting in the space of solutions to the wave equation (6). Generators
of the group mutual to the simply transitive group of transformatlons of
the spacetlme H? are of the form



EO = DO, El - Ml4 - M23, E2 = M24 - M31, E3 = M34 - M12,

which gives the three Hermitean operators

:
= ——F;
N; 3

analogous to the momentum operators. The other three operators

M; = —E(V.' -X)= —E(D; - %) . (14)

are analogs of operators of the angular momentum of an electron. From
(14) it follows that the spin of a particle in question equals /2. We have

§x M= if, NxN=il
and, besides, '

3 3 3

2 2y _ Jdy2 9
2(M +N)—(P+2) 7

Hence, we have the operator equation
3
2(M? + N?) + 1= 4(M?* — N?)2,

Since M%2 = [(I+ 1) and N? = k(k + 1), then from the operator equation
we derive the equation for [ and k : '

21+ 1) + k(k+1)] + § =41 +1) = k(k + 1))

This equation has two solutions: | = k4 3 Land k=1 + . Then, it follows
that p = 2{I(I4+1)— k(k+1)] -3 = -2k — 3 Since S3 has a metric invariant
with respect to the isometric reﬂectlon then p = 2k + 3 is eigenvalue too.
Thus, for the energy we have the following expresswn

2 2 2

| i | X
" E*=m’c4nn+ 1) =mic (1 + n(n + 1) =), (16)

whefein‘= 2,3,...and X = fi/mc. If formula (16) gives the quan‘tu‘n‘l-r
" mechanical value of the energy of the relativistic spherical Top, then at
large a the moment of inertia I = ma? is also large and the angular velocity

g

2(M* - N*) =P+ 5 (15) -

is small. “So, the nonrelativistic limit can be found from the condition
a>> A. In the limit of large a it follows from (16) that

2

L
E =md +§7,

where L? = n(n + 1)4? is the angular momentum of the spherical top

and I is its moment of inertia. The latter relation is consistent with the
classical formula b

L2
21 :
for the energy of a Top. Thus, formula (16) gives the energy of rotation.
Now consider the Coulomb law. Asitis known, the Coulomb potential
can be derived as a solution of the equations of electrostatics invariant un-
der the group of Euclidean motions including rotations and translations.
We will look for the Coulomb potential in the considered case in an anal-
ogous manner. From (10) and (11) it follows that for a constant electric
field divE = 4rap, E= -V, and consequently, ¢ obeys the equation

E=—

Dp = —47rq2p. : >(17)

An invariant of the group of rotations O(4) on a three-dimensional
sphere is either the arc length or the angle between radius-vectors,

X=(z,2% %%, Y=("y"v"y"

, L

cosf = —2(:1:1_1/1 + 22y + 2%y% + zy?).
a

Since

i _ LM'-J. cosf = (:1; —_ le%) cosf = :(xiyj _ xjyf),

settlng in(17) p=0, ¢ = ¢(z), where z = cos , we obtain the following
equation for ¢(z) : , .

d? (,0 ‘-d(p
1—23)-—*% = Q.
( ) 3zd2 0

The general solution to this equatlon is of the form

4 c2 = ¢ cot 0 + ¢,

o) =a =%



where c¢; and c; are arbitrary constants. ‘If one particle has the coordinates
(0,0,0,a), then from the last formula we obtain the well-known expression
[3]. A more interesting result follows from the mapping .S onto Ej.

Introduce the frame of reference with respect to which one of the
charged quarks is at rest and has coordinates (0,0,0,—a). In this sys-
tem consider a stereographic projection of the three-dimensional sphere
(z1)2+ (22)2+ (2%)2 + (z*)* = a? from point (0,0, 0, a) onto the hyperplane
x4 = 0 with Cartesian coordinates z,y,z.-We have :

1 ’ 2a2 2 2a2
r=r——7p, T =Y-— )
r2 4 g2 r?2 + a?
2 2 2
3 2(1 | 4 r-—a

=, T =a—47,
T‘2+_0.2 .T'2+0.2

where r2 = z? + y? + 22. It may be verified that in the coordinates z,y, z
) y

a r
th = — — —
e 2r  2a '
and, consequently, the Coulomb potential can be written in the form
1 r?2 1
= —_———— ), 18
)= (=) (18)

where ¢ is the charge. As the potential (18) does coincide with the known

Cornel potential [9], we can conclude that our consideration should be de-
veloped so as to explain a successful appl1cat10n of the latter for describing
the charmonium [10]. )

3 Conclusion

As the basic wave equation describing the dynamics of quarks, we have
suggested the modified Dirac equation (6) written here in homogeneous
coordinates.. The conclusion that quarks are described by the wave equa-

tion different from the conventional wave equation for electrons is quite

natural. In fact, it would be strange if the description of such different
particles were based on the same equation.

The physical meaning of the phenomenon called the confinement con-
sists in that quarks possess properties of a quantum-mechanical spherical
Top. This means, in particular, that the Cornel potential expresses the
fundamental physical law.

10

At large a, when a — oo from the theory of quarks we derive the theory
of electrons but with electrons evidently deconfined, because in this case
the region of confinement is the Euclidean space. Thus, the symmetry
between quakrs and leptons has a natural explanation.

As the kinematics of quarks differ from the kinematics of electrons
there are possible such decays of hadrons and nuclei in which the energy
conservation law is fulﬁlled but the momentum is not conserved.
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