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Mo11mPm.tttpoBaJIHaJ1 N = 2 cyrrepCHMMeTpHll H 'IJ!eHbl <Jlaiie-H.r111onyJioca 

1-fayqmoTCll oco6eHHOCTH peamnauun N = 2 cynepCHMMeTpHH a N = 2 a6eJieBOH KaJIH6pOBO'IHOH 
Teop,m C IIBYMll rnnaMH F/-'IJ!eHOB, :meKTpH'leCKIIM II MarIIIITHblM, B JIBHO cynepCIIMMeTpH'IHblX 
cpopMaJIH3Max C npenOTCHUHaJIOM MeJIIH'leCKY II rapMOHH'leCKO-aHaJIHTll'leCKIIM npenOTeHU!faJIOM. 
TToJiyqeHa «MarIIHT!IaJI», )lyaJibHO-npeo6paJOBaHHaJI cyrrepnoJieBaJI cj>opMa N = 2 MaKCBeJIJIOBCKOro 3cjJ­
cj>eKTIIBHOfO fOJIOMOpcj>Horo )leHCTBIIJI co CTaJ1)1apTHblM :meKTpH'leCKIIM F/-'IJ!eHOM II IlOKaJaHO, '!TO 
B 3TOH CIICTeMe Bile MaCCOBOH IlOBepXHOCTII N = 2 cyrrepCIIMMeTpHll peaJill3YeTCll B He06bl'IHOH IUJl)I­
CTOYHOBCKOH MO)le, COOTBeTCTBYJOU.teii '!aCTl!'IHOMY CilOHTaHHOMY Hapymenm:o )10 N = I. Ha MaCCOBOH 
IlOBepxHOCTH B03HHKaeT CTatt)lapn,oe IlOJIHOe 11apymei111e. B CHCTeMe C /IBYMll nmaMH F/-'IJ!eHOB 
BHeMaCCOBaJI N = 2 cynepCHMMeTpllll peaJill3yeTCll a '!aCTl!'IHO HapyrneHHOH MO)le a :meKTpll'leCKOM 
11 ManrnTHOM npe)ICTaBJleHHJIX. 3TOT pelKIIM coxpai!lleTCJI Ha MaCCOBOH IlOBepXHOCTH 6Jiaro11apl1 Me­
XaHll3MY AHTOHHa)ll!Ca-TTapTyilla-T3iiJiopa. TToKaJaHO, '!TO anre6pa N = 2 cynepCIIMMeTpl!H B qac­
Tll'IHO napymemrnii peaJI1!3a!IIIII MO)lllcjJHUHpyeTCll na KaJIH6pOBO'IHO-npeo6pa3YJOlllHXCll IlOTeHJ.tllaJiax 
H npenoTeHUHaJiax. 3aMb1KaHHe CilHHOpHblX 3apll/lOB BKJIIO'laeT HeKOTOpble KaJI116pOBO'IHble npeo6pa30-
BaHHJI HeJaBHCHMO OT KaKOH-JIH60 cjJHKCai.tHII KaJitt6pOBKI!. 

Pa6orn BbIIlOJIHeHa B Jia6opaTOpHH TeopeTH'leCKOH cj>H311KH HM.H.H.6oroJII060Ba 01Ull1. 
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We study peculiarities of realization of N = 2 supersymmetry in N = 2 abelian gauge theory with two 
sorts of Fl terms, electric and magnetic ones, within manifestly supersymmetric formulations via 
the Mezincescu and harmonic-analytic prepotentials. We obtain a «magnetic», duality-transformed 
superfield form of the N = 2 Maxwell effective holomorphic action with standard electric Fl term 
and demonstrate that in such a system off-shell N = 2 supersymmetry is inevitably realized in an unusual 
Goldstone mode corresponding to the partial spontaneous breaking down to N = 1. On shell, the standard 
total breaking occurs. In a system with the two sorts of Fl terms, off-shell N = 2 supersymmetry is 
realized in the partial breaking mode both in the electric and magnetic representations. This regime is 
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1 Introduction 

A celebrated mechanism of spontaneous breakdown of rigid N = 2 supersymmetry 

consists in adding a Fayet-Iliopoulos (FI) term to the action of N = 2 gauge theory. Re­

cently, Antoniadis, Partouche and Taylor (APT) [1] have found that the dual formulation 

of N = 2 abelian gauge theory (inspired by Seiberg-Witten duality conjecture) provides 

a more general framework for such a spontaneous breaking due to the possibility to de­

fine two kinds of the FI terms (see also [21). One of them ('electric') is standard, while 

another ('magnetic') is related to a dual U(l) gauge supermultiplet. APT show that a 

partial spontaneous breakdown of N = 2 supersymmetry to N = 1 becomes possible, if 

one starts with an effective N = 2 Maxwell action (with some holomorphic function of 

N = 2 superfield strength Was a superfield Lagrangian) and simultaneously includes two 

such FI terms. 

In this paper we study N = 2 Maxwell action with the two types of FI-terms and 

its invariance properties in the framework of manifestly off-shell supersymmetric N = 2 

superfield formalism, using both the formulation via the Mezincescu prepotential [3] and 

the harmonic superspace formulation [4]. Our basic observation is· that' after duality 

transformation of a system with even one sort of the FI term, the electric one, off-shell 

N = 2 supersymmetry is inevitably modified, it starts to be realized in a mode with 

partial spontaneous breaking. The dual N = 2 superfield covariant strength acquires an 

unavc;iidable inhomogeneous term in its supersymmetry transformation and it can natu­

rally be called N = 2 Goldstone - Maxwell super.field (by analogy with N = 1 Goldstone 

- Maxwell superfield introduced in [5, 6] in the nonlinear realizations approach). One 

of the dual gaugino is the relevant off-shell Goldstone fermion. On shell such a system 

is_ equivalent to the original system with the standard 'electric' form of the FI term, so 

after passing on shell the total breaking of N = 2 supersymmetry occurs (under some 

restrictions on the holomorphic Lagrangian function). The situation is radically changed 

after including both types of the FI terms. We show that in this case off-shell N = 2 

supersymmetry is realized in a p_artial breaking fashion in both duality-related formu­

lations, 'eledric' and 'magnetic' ones, with the electric and magnetic N = 2 superfield 

strengths as the relevant Goldstone-Maxwell superfields. This partial breaking regime is 

preserved on shell due to the APT mechanism. We demonstrate how. simple the latter 

is when using a manifestly N = 2 supersymmetric formalism. We study the realization 

of modified N = 2 supersymmetry transformations on the gauge-variant objects (N = 2 

harmonic-analytic prepotential and N = 1 gauge prepotential) and find that the N = 2 

supersymmetry algebra itself is also necessarily modified in this case. Namely, the closure 

of N = 2 supercharges contains, besides translations, some special gauge transformations 

before any gauge-fixing. 



In Sect. 2 we give a brief account of the standard N = 2 superfield formulation cf 

abelian N = 2 gauge theory with the electric FI term, where off-shell N = 2 super­

symmetry is realized in a customary way. In Sect. 3 we present a duality-transformed 

'magnetic' superfield form of the action of such a theory and demonstrate that N = 2 

supersymmetry in this representation is necessarily realized off-shell in a partial breaking 

mode. In Sect. 4 we discuss a general situation with the two sorts of the FI terms added 

and show that the regime of off-shell partial breaking of N = 2 supersymmetry in this case 

is stable against duality transformation and is preserved on shell. In Sect. _ 5 we briefly 

discuss how our observations look in the N = 1 superfield ·formulation. Iµ Sect.· 6 we 

pass to the formulation via the harmonic-analytic N = 2 prepotential V++ and study the 

modified N = 2 supersymmetry transformations and their closure on this fundamental 

object of N = 2 gauge theory. We discuss difficulties of constructing minimalcotiplings 

of v++ to the matter q+ hypermultiplets in the framework of such a modified N = 2 

supersymmetry. 

2 N = 2 'gauge theory in ordin~ry_J\{·,~·2 superspace 
. ' ' ~ ' 

Superfield constraints of N ~ 2, D = 4 supersymmetric"gauge theory were given for 

the fir~t time in ref.[7]. For the abelian case they read·' 
: '?.,, 

Fkl =DkAI +DIAk=it:klc: W· af3 . a f3 : f3 a · . af3 

Fkl. = [J~,41. + [Jl.;H = -ic:klc:./3· W a/3 a f3 f3 a a 
;;Fk1·_,DkA-,., ·,n-1r.4k - . klA ·:•:.:..:o· .. · 

· a/J - a /J + /J a it: a/3 - • 
:.I 

(2.1) 

(2.2) 

(2.3) 

Here.AM = (A~, A;.;,· A
0

i3) are gauge supe_rfield potentials in the_real N = 2 superspace 

with the coordinates z11 = ( x"\ 0f, 8°.i). They, a~e usually ~sumed to possess the SU(2)­

cov.ariant standard-off-shell N = 2 supersymmetry transformation laws 

· · a k .:.a'-k 
J.AM = z(t:kQa + t:kQa)AM. (2.4) 

The constraints (2.1) - (2.3) can be 1solved either in terms ofunconstrained real prepo-­

tential Vik of dimension 2 (the Mezincescu prepotential [3i) 'o~ in terms or' dimensionless 

analytic harmonic prepotential v++' in the framework" 'of the harmonic superspace ap­

proach [4]. We p~stpone a discussion of the harmonic-supei~pace formulation fo Se~t. 6, 

and will firstly deal with the formulation ·via Vik:. 

· As a consequence of the above constraints and Bianchi identities the gauge invariant 

N = 2 superfield strength· W is chiral 

D;0 W=O (2.5) 
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and satisfies the additional constraint 

Dikw - [Jikw = o, (2.6) 

where the standard notation for bilinear combinations of the spinor derivatives D~ and 

D;0 is used, Dik = Di°' D! and [Jik = DilJka_ The constraint (2.6) is the reality c~ndition 

implying the auxiliary component of N = .2 Maxwell multiplet, 

xik = -iDikWlo' (2.7) 

to be real 

(Xik)t =. f;1fkmx1m = X;k (2.8) 

(the symbol lo means restriction to the lowest, 0, 0 -independent component of N. = 2 

superfield). 

Both these constraints on W can be solved through the Mezincescu prepotential [3] 

Wv = (D)4D;kVik. (2.9) 

• It should be emphasized that N = 2 gauge theory can be fully specified by the covariant 

strength superfield W subjected to the constraints (2.5), (2.6) (or a generalization of the 

latter, see next Sections). So we can deal entir~ly.with Wand Vik as the basic objects of 

the theory and not care about their geometric. origin. 
. ~ ' . ~ 

A holomorphic effe,ctive action for the abelian ( electric) prepoten~ial Vik has the fol-

lowing form. 

S(V) ~ f j d4xd40;(Wv) + c.c .. (2.10) 

Here, F(W,:,) is some holomorphic function and d40 = (D) 4 • The
0

prepotential Vik ~an be 

also used to const~uct a gauge-invariant FI term whi~h breal<s the SU(2)-~uthomorphism 

symmetry and •is capable to induce a spclntau,eous :breakdown of N ~ 2 supersymmetry. 

SFl(V) =/ d12zE;kVik, S(V) ➔ SE(V) = S(V)'+ SFl(V). (2.11) 

Here, Eik = i E (Jr is a SU(2) triplet of constants satisfying the same reality condition 

(2.8) as the auxiliary field Xik: 

(Eik)t _ Et _ Eln ·_ E· = ik - €;/€kn - ,k , or 
➔t ➔ 
E=E 

Note that for any real vector E-:/- 0 the matrix Eik is non-degenerate 

'k ➔2 
DetE' ~E-:/- 0. 
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(2.12) 

(2.13) 



The superfield equation of motion following from the action S8 (V) by varying Vik 
reads 

Dk1.rw(Wv)- C.C. = [r(Wv)Dk1Wv + r'(Wv)Dk"WvD~Wv] -c.c. = 4iEkl, (2.14) 

where .rw = a.r / {}W and the standard notation for the effective coupling constant· and 

its derivative is used 
{}2.r . 

r(W) = {}W2 = T1 + ir2 (r2 > 0) , 
{}3.r 

r'(W) = 8W3. (2.15) 

Hereafter, it is assumed that the SU(2) indices in the c.c. pieces are put in a proper 

position with the help of skew-symmetric tensors, e.g. 

Xik = €ijllXJ1 . 

A possibility of spontaneou~ breakdown of N = 2 supersymmetry by the FI term is 

related to the possibility to have a non-zero vacuum solution for the auxiliary component 
Xik in this case 

< xik >= xik ~ Eik . (2.16) 

Provided that such a solution exists and corresponds to a stable classical vacuum, there 

appears an inhomogeneous term in the on-shell supersymmetric transformation law of the 

N = 2 gaugino doublet >.ia 
J>.i<> ~ E',.Eik, (2.17) 

Ek being the transformation parameter. Thus there are Goldstone fermions in the theory, 

which is a standard signal of spontaneous breaking of N = 2 supersyinmetry. 

It is easy to see that for any non-degenerate matrix Eik both >.10, >. 20 are shifted by 

independent parameters, and so they both a~e Goldstone fermions in this case. Thus, 

with the standard FI term, only total spontaneous breaking ofN ,'7 2 supersymmetry 

can occ11r. Recall that the inhomogeneous pieces in the transfom1ation laws of )..<>i appear 

as a result of solving the equation of motion for Xik, so it is natural to assign the term 
. t:, ' . _, ,,,· '! 

'on-shell Goldstone fermions' to these fermionic fields. 

In order to get a feeling in which cases the FI. term indeed.generates a spontaneous 

breaking of N = 2 supersymmetry, let us examine whether a non-trivial vacuum back­

ground solution with constant values of the auxiliary component < Xik >= xik and the 

scalar field <<I>>=< Wv >lo= a exists. So, we choose the ansatz 

< Wv >o= a+ (O;O,.) xik , (2.18) 

where (O;Ok) = c:.,f30f0f, and substitute it into the equation of motion (2.14). Using the 

identity Dik(O;Oi) = -2(J}Jf + JjJj) we get two independent equations 

xik r2(a) = -½Eik ' 

r'(a) xikXik = r'(a) lxl2 = 0 
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(2.19) 

(2.20) 

', 

(the second one most directly follows from the equation (D)4.rw ~ □Fw which can be 

obtained by applying D,.1 to eq. (2.14)). 

A constant solution xik ~ Eik to eqs. (2.19): (2.20) evidently exists only if r' = 0, 

that corresponds to the quadratic Lagrange fu~ction .r(Wv) ~ wi, i.e. to the free N = 2 

Maxwell theory. Thus for non-trivial functions .r in the action S(W) + Sn, the coupled 

set of equations of motion for physical and auxiliary bosonic fields admits no constant 

regular solutions which could trigger a spontaneous breaking of N = 2 supersymmetry. 

This fact was firstly noticed in ref. [8]. In.the same reference, it was also shown tha! a 

stable vacuum with a constant nonvanishing Xik and, hence, spontaneously broken N = 2 

supersymmetry exists in a system of at least two N = 2, U(l) gauge superfields with the 

FI term for one of them. As is discussed in the next Section, a spontaneous breakdown 

with a non-trivial function.rand yet one gil:uge superfield becomes possible whep._ choosing 

a more general N = 2 Maxwell action with two diff(!rent sorts of FI terms, 'electric' and 

'magnetic' [1, 2]. Moreover, in this case a partial breaking of N = 2 supersymmet~r down 

to N = 1 can occur. 

3 Dual form of FI term and modification of N 

supersymmetry 

2 

Now we turn to discussing the spontaneous breakdown of N = 2 supersymmetry within 

dual formulations of the N = 2 Maxwell effective action. In constructing such formulations 

we follow the lines of refs. [1, 9, 10]. 

The passing to the dual description goes through some intermediate 'master' action 

wi_th an enlarged set of superfields. It involves a chiral and otherwise unconstrained 

'electric' superfield strength W and some constrained 'magnetic' superfield.strength . 

Both the original and dual formulations follow from this 'master' action upon varying it 

with respect to proper superfields. 

To get the 'master' action, let. us add the constraint (2.6) to the action (2.10) with 

the help of an unconstrained N = 2 superfield Lagrange multiplier L;k 

S(V)-+ S(W, L) = S(W) + ~ J d12 zL;,.(lJikw - DikW) = S(W) +SL, (3.1) 

where S(W) is obtained via the substitution Wv-+ Win (2.10). Thusithe action S(W, L) 

includes an unconstrained real superfield L;k and a chiral superfield W that is otherwise 

arbitrary. 

Varying Lik yields the constraint (2.6) and hence leads us back to the 'electric' action 

(2.10) written in terms of Wv, eq. (2.9). On the other hand, one can rewrite (3.1) as an 

5 



integral over the chiral subspace [1, 10] 

S(W, L) = ¼ J d4xd40[.r(W) - WWL] + c.c. , 

WL = (D)4D;kLik. 

(3.2) 

(3.3) 

The newly introduced chiral object WL by construction satisfies the same constraint (2.6) 

as Wv, i.e. 

DikwL - lJikwL = o, (3.4) 

and is expressed via Lik just in the same fashion as Wv via the Mezincescu prepotential 

Vik_ Therefore it is natural to think of WL as the dual or 'magnetic' N = 2 Maxwell 

superfield strength, and the Lagrange multiplier £ik as the dual or 'magnetic' prepotential. 

In order to obtain a 'magnetic' representation of the N = 2· Maxwell action, one 

should eliminate W from the 'master' action (3.1) by varyirig the latter with respect to 

this superfield. As a result one gets an algebraic equation 

.rw=WL 

that allows one to express'W in terms of WL' 

W= W(WL), 

aw;awL = rawdaw1-1 = (T(W)t1 = -f-(WL)., 

After this one arrives at th~ magnetic representation of the N ~ 2 Maxwell action 

(3.5) 

(3.6) 

(3.7) 

i J 4 4 A S(L) ~. 4 d xd 0.r(WL) + c.c., (3.8) 

with the new dual holomorphic Lagrangian function 

i(W J = .r[W(WL)] - WL W(WL) . (3.9) 

The 'magnetic' equation of motion has the following simple form: 

Dik,f:, (•nikw + .,Dk"W D' w) o . .r - C.C. = T L T L a L - C.C. = . (3.10) 

Thus, the functional S(W, L) (3.1) defines the duality transformation between the 

'electric' and 'magnetic' forms of the N = 2 gauge theory action 

S(V) t-t S(W, L) t-t S( L) . (3.11) 

How to get the dual form of the FI-term (2.11)? Recall that in the origin.al 'electric' 

representation it is constructed using the prepotential V;k, the object which ~ppears as 

6 

/I 

the solution to the constraint (2.6) and which is certainly lacking in the formalism with 

the chiral and otherwise unconstrained superfield W and the dual superfield strength WL. 

To answer this question, let us come back to the 'master' action (3.1) and extend it 

by the term 

S, = -~ J d4xd40Ei\0;0k)W +c.c., S(W,L) ➔ SE(W,L) = S(W,L)+S,. (3.12) 

Note that the constants Eik in S., without 'loss of generality, can be chosen real; their 

possible imaginary parts can always be absorbed into a redefinition of WL or Lik without 

affecting the n;ality properties of these superfields. The term S, becomes just (2.11) after 

the substitution W ➔ Wv, i.e. after passing to the 'electric' representation, and hence it 

can be regarded as a 'disguised' form of the standard electric FI term. Its dual 'magnetic' 

form can now be obtained by passing to the 'magnetic' representation of the extended 

action SE(W, L) by eliininating.W from it, like this was done for the action S(W, L). 

However, at this step one encounters a trouble. We observe that S, is not invariant 

under the standard N = 2 supersymmetry transformations unless W is subjected to the 

constraint (2.6). The invariance of the full action can be restored (before imposing (2.6), 

i.e., varying with respect to Lik) by means of the following redefinition of the off-shell 

transformation law of the dual superfield strength 

o,wL = i(Ek01)Ek1 + i(tQ + tQ)WL, (3.13) 

where Q~, Q~ are standard N = 2 supersymmetry generators. Note that the appearance 

of the SU(2)-breaking·shift in eq.(3.13) is still compatible with the constraint (3.4) for 

WL, thanks to the relation Dii(tk01) = 0. 

This modified transformation law still has the space-time translations as the off­

shell closure, but implies a Goldstone-type transformation for the fermionic component 

D"iWL = >.~i (i.e., the 'magnetic' photino) 

o>.~i ~ ilf Eik. (3.14) 

This inhomogeneous transformation is valid off-shell, before using ,the equ~tion~ of motion, 

therefore >.~i can be called off-shell Goldstone f~rmions. 

With the definitio~ (3.13), inhomogeneous pieces are present in both supersymmetry 

· transformations, so at first sight we are facing the ph~iiomenon of total off-shell ~ponta­

neous breaking of N = 2 supersymmetry in this case. It is not so, however. Namely, let 

us show that by a proper shift of the real auxiliary field of WL '. 

- 1 , ik 
WL ➔ WL = WL + 2(0;0k)C ' (3.15) 
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one can restore a homogeneous transformation law with respect to one of two N = I 

supersymmetries present in N = 2 supersymmetry (it is easy to find the appropriate 

_redefinition of Lik). The newly defined object WL transforms as follows 

o.wL = (lkBi)(ck1 + iEk1
) + i(lQ + t"Q)wL. (3.16) 

One can always choose Cik so that 

det (C + iE) = 0 . (3.17) 

Indeed, this condition amounts to requiring cik to be orthogonal to Eik and to h'ave the 

same norm 

(a) Eikcik = 0, (b) IEI = ICI · (3.18) 

It is easy to find a general solution to these equations. E.g., for the two different choices 

of the SU(2) frame: 
' ' ' .-. " 

(i) E 12 # 0, E" =·E22 = 0; (ii) E 12 = 0, E" = E 22 (3.19) 

we have 

(il C'2 = o, c 11 c 22 = IE12 12
; (ii) c 12 = o, C" = ±iE", c 22 = =FiE" (3.20) 

Note that in the second case we have fixed the residual U(l) 
0

freedom up to a reflection. 

Eq.(3.17) means that Cik + iEik .is a degenerate symmetric 2 x_.2 matrix, so it can be 

brought to the form .with only one non-zero entry (ii). As a result, WL is actually shifted 

under the action of only one linear combination of the modified- N = 2 supersymmetry 

generators (n•2
, while under the orthogonal combinatio_n it is transformed homogeneously. 

The same is true of course for the physical fermionic component_s: 
7
only one their combi­

nation is the genuine off-shell Goldstone fermion. All these opt_ions are related by some 

SU(2) transformations (they can be continuous or discrete). For instance, in the case (ii) 

in eq. (3.20) the l 2 or l 1 supersymmetries are broken for the first or second choices of 

the sign, respectively. 

Thus we arrive at th~ important conclusi~n: in the dual, '~ag~et'ic' representation of 

N = 2 Maxwell theory with FI term ,r-= 2 supersymmetry is realized off-shell in a mode 

with partial spontaneous breaking, so that some N = I supersymmetry remain.s u~broken. 

It should b~ specially pointed out that, contrary to the original, electric representation 

of the FI term, in the dual representation the phenomenon of spontaneous breaking of 

N = 2 supersymmetry occurs alieady off ~hell, irrespective of the form of the holomorphic 

Lagrangian function F(WL). This situation resembles the nonlinear realization approach 

[11, 12, 5, 6] where onefotroduces from the very beginning, according to some prescription, 

8 

inhomogeneously transforming Goldstone fields or superfields which express in a most pure 

way an effect of off-shell spontaneous breaking of some symmetry or supersymmetry. 

Partial spontaneous breaking of N = 2 supersymmetry in the framework of the non­

linear realizations approach, with the relevant Coldstone fermion placed into chiral or 

vector N = I multiplets,was considered in ref. [12, 5, 6]. Using the terminology of [5_, 6] 

and taking into account that WL contains Goldstone fermion components, it is natural to 

call this inhomogeneously transforming superfield the N = 2 Goldstone-Maxwell (GM) 

superfield. In what follows we will deal with tliis superfield, keeping in mind that one can 

always pass to WL·, eq. (3:16), in terms of which the phenomenon of the off-shell partial 

N = 2 supersymmetry breaking becomes·manifest. 

One can go a step further and wonder how the modified transformations are realized on 

the gauge-variant objects: gauge potentials and prepotentials. In Sect. 5 we will present 

the modified supersymmetry transformation of the N = I GM_prepotential V. In Sect. 

6, we will also give how the modified N = 2 supersymmetry is realized on the harmonic 

prepotential and study a modified supersymmetry algebra in this realization. As we will 

see, the GM mechani~m of spontaneous breaking implies an essential modification of the 

algebra of N = 2 supersymmetry transformations on gauge superfields~ Note that the 

transformation properties of the magnetic gauge connections AM are also appropriately 

modified by inhomogeneous terms containing Eik, so as to preserve the covaria~ce of the 

magnetic analogs of the, cons~raints (2.4). 

As was already mentioned, after passing to the 'electric' representation of S E(W, L) 

by varying it with respect to £ik one gets the action (2.10) accompanied by the standard 

FI term (2.11), both being written in terms of the 'electric' prepotential Vik_ This 

prepotential and its covariant chiral strength Wv possess standard N = 2 supersymmetry 

transformation properties, so the modification of N = 2 supersymmetry in the !l-ction 

SE(W, L) is to some extent an artifact _related to the insertion of the· constraint (2.6) 

into the action and the appearance of additional superfield Lik there. However, this 

modified N = 2 supersymmetry is retained after putting S E(W, L) into the pure 'magnetic' 

representation by eliminating the·superfield W. Thus it is a characteristic unavoidable 

feature of the dual ('magnetic') off-shell formulation of N = 2 Maxwell action with the 

FI term. 

To get the precise form of such a dual action, let us combine the Lik (or WL) piece SL 

in the action SE(W, L), eq. (3:12), together with Se into the follo~ing mixed term 

A i14•4 A SL= SL+ S. = - 4 d xd 0WWL + c.c., (3.21) 

where a shifted GM-superfield WL with a homogeneous N = 2 supersymmetry transfor-
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mation law was introduced 

WL = -(i/2)((h0,)Ekl + WL , 

5,WL = i(t:Q + Eq)WL. 

(3.22) 

(3.23) 

The net difference between WL and WL is that the auxiliary scalar field component of the 

former, 
frik = _.!..nikw 1 . - 4 LO, 

contains a constant imaginary part proportional . to Eik, while the auxiliary component 

yik of WL is real by construction (eq. (3.3)). One has 

ykl = ykl _ (i/2)Ekl . 

By its definition, the quantity WL obeys the modified constraint , 

.1/1wL -c.c. = 4iEk1, 

demonstrating the presen~e of the imaginary constant part ju~t mention~d. 

(3.24) 

(3.25) 

Clearly, passing to WL does n~t redefine the 'magneti~' gaugini and do~s not affect the 

interpretation ~f their one combination as a Goldstone fermion with ii:n inhomogeneous 

piece in the off-sheli' t;an~formation law. 

It is ea:sy to get a purely 'magnetic' form of the modified ''master' adion SE(W, L), 

eq. (3.12). V~rying W now yields the modified equatio; ' 
. . 

a;=- • 
aw = wL , (3.26) 

which leads to the following 0-dependent modification of the magnetic action (3.8) 

S(L) = f Id4x~0F(WL) + c.c.; 

with F defined by eq. (3.9). 

(3.27) 

Thus in the dual 'magnetic' formulation the whole effect of the original 'electric'!' I 

term (2.11) is the appearance of 0-dependent terms in the action, with coefficients p7o­

portional to the SU(2) breaking constants Eik. Despite this explicit 0 dependence, the 

action is still N = 2 super-invariant due to the _modification (3.13) of the transformation 
law of WL. 

The appropriate equation of motion follows from (3.10) by substituting there WL -+ 

WL and taking account of the modified constraint (3.25). Analyzing this equation, it is 

straightforward to show that the dual action (3.27) leads to the same vacuum structure as 

the original 'electric' action with the FI term (2.11). In particular, a Poincare-invariant 
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vacuum with spontaneously broken N = 2 supersymmetry exists only for f' = 0, i.e. for 

a free theory, like in the electric representation (this restriction is equaivalent to r' = 0, 

of course). 

Thus on shell in the 'magnetic' representation we again face the total spontaneous 

breaking of N = 2 supersymmetry, despite the fact that off-shell N = 2 supersymmetry 

is realized in the mode with partial spontaneous breaking. 

To summarize, in the 'magnetic' representation of N = 2 Maxwell theory with a single 

FI term there occurs a partial spontaneous breaking of N = _2 supersymmetry off shell 

which goes over into the total one after passing on shell. Thus, a crucial difference from the 

original, 'electric' representation of the same theory is that in the 'magnetic' case the effect 

of spontaneous supersymmetry'breaking has an unavoidable 'inborn' off-shell constituent 

corresponding to the partial breaking mode. This new phenomenon is· related to the 

modification of off-shell realization of N = 2 supersymmetry after performing a duality 

transform of the· 'ele~tric' FI term. Passing on shell changes the type of spontaneous 

breakdown, promoting it to the total one (simultaneously imposing a severe constraint on 

the admissible form of the holomorphic Lagrangian). 

In the next;Section we will:see that adding of some different kind of the Fl:term 

radically changes this interplay between th_e off-shell and on-shell constituents of sponta­

neous N = 2 supersymetry breaking; Namely, there appears a stable vacuum ens~ring 

the phenomenon of partial supersymmetry breaking to retain on shell, too .. 
': 1 ' . ' ~ ' • .-

4 N = 2. supersymmetry in the presence of electric 

and magr{etic' FI te~ms 

New possibilities come out if we simultaneou:siy incltide two alternative mechanisms of 

tlie spontaneous supersyrrifnetry breaking, the previously discussed one and a new one 

discovered in [1]. ff consists in extending the intermediate a~tion S E(W,L) (3.12) by a 

superfield 'magnetic' FI-term •'·' · · 

Sm=}! d4 xd40Mk1(fh01)WL + c.c. = -! d12z~k/Lk1, ( 4.1) 

with Mik being another triplet of real constants. The Wcforrn ~f Sm. is invariant under 

the Goldstone-type transformation (3.13) since·J d40(0)3 =: 0 (a contribution from the 

shift of explicit Os in (4.1) disappears by rewriting WL thro~gh Lik, restoring the full 

integration measure and integrating by parts). One ca~ show that the inhomogeneous 

piece in the transformation of L;k does not contain terms higher than those of 7th order 
'. ' ,., 

in the spin or coordinates, so the invariance of the second representaton of Sm in ( 4.1) is 

also guaranteed, J d805,L;k = 0. 
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I . 

As in the previous consideration, one can pass from this modified intermediate action 

to its either 'electric' or 'magnetic' representations, varying it with respect to £ik or W, 
respectively. 

When one descends to the 'electric' representation (by varying £ik), the only effect 

of magnetic FI term is the modification of the constraint (2.6) on W. The modified 
constraint reads 

Dikw - iJikw = 4iMik . (4.2) 

It suggests the redefinition 
i "k W = Wv - 2(0;0k)M' , (4.3) 

with Wv sat1stying eq. (2.6) and hence given by eq. (2.9) 1, and means the appearance 

of the constant imaginary part -(i/2)Mik in the auxiliary field of W, 

J{ik ~ ...:¼nikWlo = xik - ~Mik , ·' xik ~ -¼ DikWvlo,. 

The inclusion of magnetic FI term cannot change the transformation properties of 

W under N = 2 supersymmetry which are standard. Then the relation ( 4.3) requires 

modifying the transformation law of Wv, and, respectively, Vik on the pattern of eq. 
(3.13) 

o,Wv = i(fk01)Mkl + i((Q + E°Q)Wv (4.4) 

(we do not give how the transform~tion l~w of yik is ch~nged/it is ~a,;y to'find this 

modification). In other words, N = 2 supersymmetry is now realized in a Goldstone­

type fashion in the 'electric' representation as" well, but with Mik, instead of Eik as the 

'structure' constants. Thus we see that the a?ding of magneti~ Ji'! te~m modifies N = 
2 supersymmetry in the electric representation quite similarly to wh.at happens in the 

magnetic representation after adding the standar~ 'electric' FI term._ . So, when both 

FI terms are present, N = 2 supersymmetry is. re_alized in the Gol~stone mode in both 

representations, 'electric' and 'magnetic', ~d there. is no ;nay. to r~store the standard 

N = 2 supersymmetry off shell. In particular, N = 2 transformations_ of the standard 

'electric' gauge connections in,troduced by eqs. (2.1) - (2.4) acquire inhomogeneous SU(2) 

breaking terms proportional to Mik (note that in the ~.h.s. of the constr~ints (2.1) -(2.2), 

by definition, just the covariant strength Wv appears). The same arguments as in the 
1
Note that the SU(2)-noninvariant constraint (4.2) with an arbitrary Mik (equally as its 'magnetic' 

analog (3.25)) is consistent with_ the constraint of ref. (1] which can be written in the following form: 

DikD;kW=DikiJ;kW~ □W. 

With using this constraint (or its magnetic analog), the constants Mik or Eik appear as integration 

constants, while in the approach we keep to both these sets are present in the action from the beginning 
as some moduli of the theory. 
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previous Section show that N = 2 supersymmetry in both representations is realized off 

shell in the partial breaking mode. 

An effect of the magnetic FI term in the magnetic representation is a further modifi­

cation of the equation of motion for WL: the term 4iMik appears in its r.h.s. Of course, 

this is related to the fact that the reality constraint for Wv is the equation of motion for 

the dual superfield strength, and vice versa. 

The issue of on-shell spontaneous breaking of N = 2 supersymmetry in the presence 

of ele.ctric and magnetic FI terms can be analyzed both in the electric and magnetic 

versions of the full intermediate action 

s(E,M) = SE(W,L) +Sm, . (4.5) 

with' the ·same final conclusions. In order to be closer to the original paper (1], we prefer to 

do this in the electric representation, with the prepotential Vik and its covariant strength 
' . .. . ' ~ -

Wv as the basic entities. 

A general electric effective action of the abelian gauge model with the (E, M)- mecli­
/ 

anism of the spontaneous breaking can be obtained by substituting the expression for W, 
( 

eq.(4.3), into the action (2.10) and supplying the latter with the electric FI term (2.11): 

s(E,M) = [ f / a'xd40.r(W) + c.c.J + / d12zE;kVik, w = Wv-(~/2)(0;0k)Mik. (4.6) 

The superfield equ?tion,of motion in the electric representation of the (E, M)-model 

reads 

(rDk1W + r'Dkawn~W] - c.c. = 4iEkl. 

The corresponding equation for the auxiliary component is as follows: 

2r2(a)Xkl = r1(a)Mkl - Eki. 

(4.7) 

(4.8) 

Th~n we take for < Wv > the ansatz (2.18) and substitute it into (4.7) with taking 

account of the relation (4.3}: Besides the expression for the vacuum value of auxiliary 

field xk1 =< Xk1 > 
xkl _· 1 

- 2r
2
(a) (r1(a)Mk1 _ Ek') , (4.9) 

one gets, from vanishing of the coefficient before ( 0;0k), the f~llowing generalization of eq. 

(2.20) 

r' xikXjk = 0 , xik =< _xik >= xik - (i/2)Mik . (4.10) 

A crucial new point compared to (2.20) is that the vector £ik = xik -(i/2)Mik is complex, 

so the vanishing of its square does not imply it to vanish. As a result, besides the trivial 

solution r' = O, eq. (4.10) possesses the nontrivial one 

r'-:/ 0 , xikXik = 0 (or det x = 0) . ( 4.11) 
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This solution, after substitution of the expression ( 4.9), amounts to the following relations 

between T1 ,2 (a) and the SU ( 2) breaking parameters Eik, Mik 

➔➔ 

T1(a) = EM 
➔ 2 ' 

✓➔2 ➔ 2 ➔➔ ➔ ➔ 

I ( )I - EM -(EM)2 -~Ml 
T2 a - ➔ 2 - ➔ 2 (4.12) 

M M M 

This is just the vacuum solution that was found in [l) by minimazing the scalar field 

potential in the component version of the action (4.6). It triggers a partial spontaneous 

breaking of N = 2 supersymmetry down to N = 1. 

Let us show in two equivalent ways that at this point of moduli space the half of 

supersymmetry indeed continues to be unbroken on shell. 

It follows already from the nilpotency of the_ complex matrix 5:ik (eq. (4.11)) that by 

a proper rotation it can<be brought into the f~rm,with only one nonva~ishing element. 
: , .~ , > .' ,, 

As a result, only one linear combination of the inhomogeneously transforming Goldstone 

fermions 

o>.ai = fkXik 

retains an inhomogeneous piece in its transformation. 

To be more explicit, let us choose the SU(2) frame so as to leave in Ei\ Mik only 

three independent components, e.g. ' 
M'2 E12 = 0, 'M11 = M22 = m; Re E 11 = -e, Im E 11 = ( * 

T1 
e 1(1 
-, IT2I= -I I · m • · m 

(4.13) 

In this frame 

5:12 = 0, x" - _j__ (e -mill) 
- 2T2 1ml ' £22 = _ _j__ (e + mill) 

. 2T2 1ml (4.14) 

One observes th_at either x11 or 5:
22 is zero, depending on the relative sign ofmoduli m, (. 

Choosing, for definiteness, m > 0, ( > 0, one finds 

5:12 = x" = 0, 5:22 = -im . (4.15) 

As a result, only )."'2 contains an inh~mogeneous term~ m ·f~ in its transformation, and 

it is the only genuine on-shell goldstino. So, the c~ supersymmetry is broken, while the 

t:1 one is not. 

An equivalent way to reach the same conclusions is to study the action of the modified 

N = 2 supersymmetry generators Q~ on the vacuum superfield 

< Wv >=a+ (0;0k)xik. (4.16) 
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In accord with eqs. (4.4), (4.3) one gets 

... i i ii i Q., < Wv >= Q., < Wv > +0.,,M = Q., < W > , (4.17) 

where 

< W >=a+ (0;(h)xik . (4.18) 

Substituting the entries ( 4.15) (we are always at freedom to choose this special SU(2) 

frame) into the last relati~n in the chain (4.17), one observes that < W > depends only 

on eg. As a result 

Q~ < Wv >= 0, Q! < Wv >=/= 0 , (4.19) 

1.e. the generator Q~ annihilates the vacuum, while Q~ does not. Hence, N = 1 super­

symmetry generated by Q~ is unbroken, and we indeed deal with the partial breaking 

N = 2 -+ N = I in this case, both off and on shell. 

In this connection, let us i:ecall that the partial breaking nature of the off-shell N = 2 

supersym~etry Goldstone-type tr~sformation ofWv (4.4) can be revealed (prior to any 

on-shell analysjs)_by_shif\i_ng the real auxiliary field Xik of Wv by~ constant triplet ~ik 

such that the m_atrix cik -(i/2) Mik is deg(!nerate (in a full analogy with the discussion 

after,eq. (3.i5)). It wiHbe nat~ral to choose cik-; (i/2) Mik = x~\ so as _to have a one­

to-one correspondence between the off- and on-shell partial bre,aking regimes. In terms of 

superfields this amounts to the special choice of Vik = V,ik and Wv: = W., such tha:i the 

vacuum value of x;k vanishes: 

W = W8 + xi\0;0k) , 

o,Ws = -2(t:k01)xkl + i(t:Q + tQ)W,. 

( 4.20) 

( 4.21) 

Finally, we note that the transformation properties-of the (E, M)-model equations of 

motion under the duality group SL(2, Z) become transparent in terms of the dual pair of 

superfields w and WL = :Fw 

nk'wL - i)k'w L = 4iEk' , 

nk1w -1Jk1w = 4iMk1. 

(4.22) 

(4.23) 

This pair of equations is covariant under the duality group, provided that the latter 

properly rotates Ek/, Mk/ through each other. 

5 Passing to N = l superfields 

The properties of the (E, M)-mechanism of the N _= 2 supersymmetry spontaneous 

breaking were studied in [lj basically in the N = I s_uperfield formalism. For completeness, 
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we will briefly discuss how the above consideration can be translated to this language, 

with focusing on the realizations of N = 2 supersymmetry. 

One can pass to the N = 1 superfield description, expanding N = 2 superfields 

in powers of the coordinate 02 • The coordin:ate 0, is assumed to parametrize N = 1 

superspace: the ~encrators CJ~: Q,:h = G: forming the appropriate N = 1 subalgebra of 

N = 2 supersymmetry. 
. We wiJ.l use for W the natural decomposition (4.20). The N = 1 superfield expansion 

of W r!'!ads 
W = cp(x,0,) + i0;W0 (x,01 ) + (02 )

2A(x,01 ). 

Then the N = 1 superfield form of the relation (4.20) is given by 

cp = "'· + £11 (0,)2 
, 

W0 = W 0 
- 2ix120° a . 1 , ~·-

A= (1/4)(i>,) 2 rp, + £22 
, 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

where tlie N = 1 chiral superfield cp, and the N = 1 Maxwell· chir.;_l superfield strength 

w: with a real auxiliary component are coefficients in the N = 1 ·superfield expansion 

of W,. The superfield w: satisfies the standard Bianchi identity that can be solved in 

ter~s of the real N ;,,, 1 prepotential V. 

W,"' = (l>,)2Da'V.. (5.5) 

Integrating over 0;, 0l, in the N = 2 superfield action of the ( E, M)-model, one arrives 

at the N = 1 superfield action of ref.[1). The analysis of vacuum solutions of the relevant 

equations of motion has been already made in ref. [1), so we will limit ourselves to 

discussing transformation properties of the involved N = 1 superfields under the modified 

· N = 2 supersymmetry in the electric representation. 

The N = 1 superfield components of W possess the standard homogeneous supersym-

metry transformation law 

8cp = -if;w0 +i(t:,Q' +t'Q,)cp, 8Wa = 2it:cr,A+2e3200 pcp+i(t:,Q1 +t'Q,)Wcr. (5.6) 

These transformations produce Goldstone-type transformations of the N = 1 superfields 

cp, and W,"' 

8cp, = -2(x"t:~ + i:12 t:;)001 - it:;W'° + i(t:1Q1 + t'Q,)cp, (5.7) 

8W; = 2i(x22 t:; + x12 t:~) + (i/2)t:~[(l>,)2 rp,) + 2tP•o0 pcp, + i(t:,Q' + t'Q,)iy: . (5.8). 

' The transformation of the Goldstone scalar superfield cp, and the GM superfield w: 
contains inhomogeneous terms which. correspond to the constant translations of spinor 
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fields. To be convinced in this language that just the partial breaking is realized off 

shell, let us choose the SU(2) frame ( 4.13). It is easy to observe that in this frame, with 

i;22 ,f. O , i:12 = i:" = O , only W,0 undergoes an inhomogeneous shift with the parameter t; 
while N = 1 supersymmetry is realized on cp, and w: linearly and homogeneously. Thus 

w: is the Goldstone N = 1 superfield associated with the partial spontaneous breaking 

N = 2 -+ N = 1. This off-shell modification of N = 2 supersymmetry in the N = 1 

superfield formalis~ ~f the APT model Wfl,~ previously noticed: in [5]. Our c~nsideration 

in the previous Sections shows that this phenomenon arises already after dualization of 

one of FI terms (this time, the magnetic one) and actually does not require, on its own 

range, the addition of another type of such a term. 

Note that the equally admissible choice :z:12 = x22 =: 0 , :z:" ,f. 0 leads to the vanishing 

of inhomogeneous terms in the supersymmetry transformation of W,°.and the appearance 

of such term ~ l~ in the transformation of cp,. This means that with this choice the l~ 

N = 1 supersymmetry is br~ken, while the t; one is not. But this does not mean that 

cp, can be treated as the corresponding Goldstone superfield in the spirit of ref. [12]. In 

order to reveal which kind of N = 1 Goldstone superfield is actually relevant to one or 

another pattern of the partial breaking N = 2 -+N = 1 in the APT model, one should 

always decompose N = 2 superfields over those N = 1 superfields associated with the 

unbroken N = 1 supersymmetry. For instance, in the case of the just mentioned choice 

of 5:ik a natural decomposition would be one with respect to the coordinates 0" 0', so 

that the corresponding N = 1 superfields live on the N = 1 superspace (x,02 ,02
). Once 

again, it is the appropriate N = 1 gauge superfield which plays the role of N = 1 GM 

superfield in this case. The same is true for any other choice ~f xik. Thus, the model 

under consideration is a kind of 'non-minimal' variant of the nonlinear realization of the 

partial breakin{with N = 1 Maxwell superfield as the .Goldstone superfield [5]. Another 

version of such a nonlinear realization, with chiral N = 1 superfield as the Goldstone one 

[12], seems to bear no direct relation to the present model despite the presence of chiral 

N = I superfield cp, in N = 2 GM supermultiplet (actually, cp, is massive at the points 

of moduli space corresponding t~·the partial breakin:g). 

· A modification of N = 2 supersymmetiy can be studied on the N = I prepotential 

V,. For the choice (4.15), N = 2 transformation of V. is as follows 

8, V. = m(0' )20~t:a2 + (i/2)0~t:02rp, + c.c + i( t,Q' + t'Q,)V. . (5.9) 

The Lie bracket of these Goldstone supersymmetry transformations contains pure gauge 

terms with.(0,)2 and (0')2, similarly to the transformation ofthe vector field in ref.. [2]. 

We will discuss the modification of N = 2 supersymmetry algebra in more detail in the 

next Section. 
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It would be interesting to study the relation of this approach to the formalism of 

nonlinear realization [6, 5, 12]. Orie can expect that both approaches are related by an 

N = 2 analog of the nonlinear transformation constructed in [13] for the case of N = l 

supersymmetry. 

6 . Consideration in harmonic superspace 

Harmonic superspace was introduced in ref. [4] for off-shell description of the gauge, 

supergravity and matter N = 2 supermultiplets. In ref. [8] this approach was applied for 

analysis of spontaneous breaking of N = 2 supersymmetry in a general abelian N = 2 

gauge theory. We will show that it is also helpful for studying dual formulations of 

N = 2 gauge theory and partial N = 2 supersymmetry breaking. We use the SU(2)/U(l) 

harmonics uf and t:he notation of refs.[4, 14] for the harmonic and spinor derivatives in 

the harmonic superspace, for instance 

Here 

+• -u ui 

m XA 

fl++= 0++ - 2i0"+"i}/J+<>A. + 0a+a+ + "jj/J+[Jt . . ua{J a· {3' 

· . n+ = o/80"- = o+ [Jt = 0/80{3- = a+ 
DI - DI? {J ,- fJ' 

n- = -0/00"+ + 2i0/J-0A· 
(X et./3 ,' 

lJ-:;,;, -o/00fi+ - 2i0°-0A . . {3 .. c,{3 

1 o++ = u+i__!!__, 0±a = 0'"u± o±a = "jjiau± 
' au-t ? t ' l , 

m ·0k m0-1( + - + -) ,;,A _ <>ji) a/3 X -;-Z a ukul +u,uk' uc,/J-U _XA. 

· The harmonic-superspace 'solutio·n of the constraint (2.9) is given by [4, 15] 

W =; W(V++) = (lJ+.)2 J du V++(z, ui) = J du(lJ-) 2 V++(z u) 
v - . . i ( U+u[)2 - ' . ' 

where a harmonic Green function [14] is used. The superfield 

v++(z,u) = v++(x7,0+0 ,0+"',u±i) = v++((,u) 

is the abelian analytic prepotential, 

n+v++ = lJ+v++ = o 
" {3 ' 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

a fundamental geometric object of N = 2 gauge theory. It contains N = 2 vector multiplet 

and an infinite tower of pure gauge harmonic components. The· gauge freed~m of v++ is 

·given by the transformations 

v++ __, v++ + n++ A , (6.8) 
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A = A((,u) being an arbitrary analytic gauge function. Both v++ and A, as well as 

the analytic subspace ((M,u) = (xAaa,0+0 ,iJ+"',uf) are real with respect to some gen­

eralized conjugation [4] (it becomes the ordinary complex conjugation when applied to 

conventional N = 2 superfields). 

All the properties of W, eqs. (2.6), (2.7), follow in the harmonic-superspace approach 

from the analyticity of V++. The harmonic superspace form of (2.6) is as follows 

(D+) 2 Wv - (lJ+)2w V = 0 . 

The fact that W does not depend on harmonics is expressed as the condition 

n++w = o. 

The prepotential v++ is related to the Mezincescu prepotential as 

v++ == (D+)2(lJ+)2[u;-u;;vik + pure' gauge terms] . 

(6.9) 

(6.10) 

Various. representations of the N. = 2 Maxwell action with and without FI terms 

discussed in the previous Sections can be re-formulated in terms .of harmonic superfields. 

One can define two sorts of the analytic prepotentials, 'electric' v++ and 'magnetic'£++, 

the latter naturally arising as an analytic Lagrange multiplier for the constraint (6.9) in 

an analog of the inte_rmediate 'master' action introduced in Sect. 3. Below we present. a 

brief account of the harmonic-superspace version of the APT model considered in Sect. 
' ,, , • • ' ! ' 

4. 

The basic, holomorphic part of the 'master' action has the previous form (2.11 ), with 

Wv being replaced by an arbitrary chi~al stiperfield W. To appropriately rewrite the 

Lagrange multiplierJerm SL in (3.1), (3.2) we define the dual magnetic chiral superfield 

strength WL on the pattern of eq. (6.6) · ··. ' ·f,' 

WL = (lJ+)2 j du 1 ~:+}~f;~) = f ~lu(D-)2
LH(z,u). (6.11) 

Then this term in the harmonic formalism can be written as 

SL = -(i/4) J d4xd40du W(b-)2 £++ + c.c. 

= (i/4) f d(Hldu £++ [(lJ+)2W - (D+) 2W] , . (6.12) 

where 

d((-4ldu = d4x(D-)2(lJ-)2du 
" . 

is the measure of integration over the analytic subspace ( (M ,uf ). Note that the expression 

in the square brackets in the second line of (6.12) is analytic in virtue of the property 

(D+)3 = 0 and chirality of W. Varying £++ as an unconstrained analytic superfeild 
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immdeiately yields the condition (6.9) which, together with the chirality of W, imply the 

representation (6.6). 

The 'electric' FI term in the electric representation (2.11) can also be written as an 

integral over the analytic subspace 

Sn(V) = J d(<-4>du E++v++ , (6.13) 

where E++ = Eikutut. Its 'disguised' form pertinent to the master action and defined in 

eq. (3.12) becomes just (6.13) after using (6.6) and decomposing the explicit 0s in (3.12) 

in their ± harmonic projections. The equation of motion of the abelian model with such 

a term is equivalent to the following analytic equation of motion: 

(D+)2.rw(Wv) - c.c. = HD+)2Wv + r'D+0 wvD!Wv] - c.c. = 4iE++ (6.14) 

It can be obtained by varying the sum of actions (2.10) (with Wv given by (6.6)) and 

(6.13) with respect to V++ (one should beforehand rewrite the whole action as an integral 

over the analytic subspace). 

The constraint (6.9) is modified if we add to the master action the harmonic version 

of the magnetic FI-term [4] 

Sm=-! d({-4ldu AfH£++ , Af++ = Miku:f-u+ 
, I k ' 

(6.15) 

which is an analog of the term ( 4.1) ( and goes into it after making ·use of the magnetic 

counterpart of the relation (6.10)). The modified form of the constraint contains the 

SU(2)-breaking constant term (cf. eq.(4.2)) 

(D+J2w - (b+) 2w = 4iM++ . (6.16) 

At last, the modified magnetic chiral superfield strength Wi defined by eq. (3.22) and 

dual to W obeys the following harmonic-superspace form of the constraint (3.25) 

(D+) 2Wi - (1J+) 2WL = 4iE++ (6.17) 

(it amounts to eq. (6.14) because of the relation Wi = .rw(W) that follows from the 

master action by varying it with respect to W). In the rest of this Section we consider 

how the magnetic-FI term induced modification of N = 2 supersymmetry in the electric 

representation affects the transformation properties of v++. This modification was already 

discussed in Sect. 4 in terms of ordinary N = 2 superfields and in Sect. 5 in terms of 

N = l superfields. 

Like in Sect. 5, it will be convenient to use the decomposition (4.20) to single out 

the superfield strength Wv su~jected to the standard constraint (6.9) from the_object W 

satisfying the Af++-modified constraint (6.16) 

W = W, + ( 0k0i)xkl . 

20 

(6.18) 

The first term is expressed according to eq.(6.6) through the real analytic prepotential V.++ 

with a zero vacuum expectation value, while the·second term contains the constant vacuum 

auxiliary field £kl defined by eqs. (4.9) - (4.12). By the modified N == 2 supersymmetry 

transformation ( 4.21) of W, we can restore, modulo the analytic gauge transformations 

(6.8), the modified transformation of V.++. As is expected, it is of the Goldstone type 

O, v.++ = -Xkl<:0t(iJ+)2u1 + C.C. + i(EQ + tQ)V.++ . (6.19) 

For the choice of SU(2) frame as in ( 4.15), the inhomogeneous term of this transformation 

is reduced to 

im [ f;0t(iJ+)2u;- - ti2 iJt(0+)2u;-] . (6.20) 

It does not contain the parameters of the first supersymmetry f 1 and t"', reflecting the 

fact that the latter is unbroken under this choice. 

It is straightforward to calculate the ~ie bracket of the modified supersymmetry trans­

formations (6.19) 

[
£ O ]v++ _ r,tanv++ + rmodv++ 
071, < • - 0(11,<) • _ - 0(11,<) a . • (6.21) 

Besides ordinary x-translations and central charge transformations a,~~,'jV.++, it contains 

an extra term which is a special case of the analytic gauge transformation (6.8) 

rmodv++ · [ a ( )](0-+)2 + - + 2' [ a-=02 ( - )]0+0-+ + -0(11,,) • = im f 2 T/ai - T/ H f U2 U2 im T/, f - T/ H f a .; U2 U2 

+ 2im[r,;ti• - (r, H E)]0!iJtutu;- + c.c .. (6.22) 

Definingthe appropriate di~ension 1 gauge generators 

G V++ :_ · (0-+)2 + - G · v++ - 2· 0 0 ( ·+- - . + -) 
8 = tm U2 U2 , a& a = tm a (l' U2 u2 - ul ul , 

G00 v,++ ·= 2im 00 80utu;- , (6.23) 

one can write the modification of N = 2 superalgebra·on v,++ as follows (omitting the 

standard piec~s with the 4-translation and central charges generators) 

{Q2 Q'}mod _ G {Q2 Q-. }mod_ G . {Q2 Q-. }mod_{; . 
a, (3 - €a(3 , a, {32 - a/3 , al {31 - a{J • (6.24) 

Having found the explicit form of the modified generators Q, Q, one can deduce the full 

modified N = 2 superalgebra: commuting the dimension 1_ generators_ with Q, Q produces 

gauge generators of dimension 1/2, etc. In this way one can single out t~e whole finite 

set of the mutually (anti)commuting gauge generators which tog~ther ~ith Q, Q form 

a closed superalgebra; We do not quote it here explicitly, limiting ourselves to a few 

remarks concerning its structure. 
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(i) The standard Poincare or super-Poincare algebras form a semi-direct product with the 

corresponding gauge groups treated, in the spirit of ref. (16], as groups with an infinite 

number of generators of the type (6.23). In the present case some of these generators 

appear on the r.h.s. of the basic anticommutators of N = 2 superalgebra, indicating 

that we are dealing with a non-trivial unification of N = 2 supersymmetry and N = 2 

gauge group. The existence of such an extended algebraic structure does not contradict 

the famous Coleman-Mandula theorem (or any its supersymmetric generalization), since 

the two important assumptions of this theorem, manifest Lorentz invariance and positive 

definiteness of the metric in the space of states, cannot be simultaneously satisfied for 

gauge theories. 

(ii) The above modification should be distinguished from the well-known modification of 

N = 2 current algebra by a constant 'central charge' in the case of partial spontaneous 

breaking (17]. The latter modification takes place in the APT model too (2, 18], and it 

does not influence transformation properties of the involved N = 2 superfields, irrespec­

tive of whether they are gauge-invariant 'o'r not'.. 

(iii) Gauge transformations in the r.h.s. of the anticommutator of spinor charges appear 

also in the standard supersymmetric gauge theories (without FI terms) as the result of 

fixing a gauge: In our case such transformati~ns are present before any gauge-fixing. 

(iv) Let us emphasize that the modification of N = 2 transformation law (6.19) and, cor­

respondingly, the modification of N ':; 2 supersymmetry alg~bra (6'.24) are unavoidable, 

they cannot be. removed by any redefinition of the G Mcprepotential V,++. · However, using 

the freedom of adding some special gauge transformations to the 'minimal' transformation 

law (6.19), one can change the structure of the anticommutators (6.24) by gaining some 

additional dimension 1 gauge generators in their r.h.s. 

(v) In the modified N = 2 superalgebra the automorphism SU(2) symmetry is explicitly 

broken down to some U(l) due to the presence of the SU(2)-breaking parameters Mik 

(or Eik in the· magnetic representation) as structure constants. 

(vi) Due to a non-zero vacuum value of Wlo = a at the minimum of the scalar potential 

corresponding to the partial breaking of N = 2 supersymmetry in the APT model, mod­

ified N = 2 superalgebra necessarily contains, in the anticommutator { Q:,, Q11} and its 

conjugate, a central charge proportional to the global U(l) generator of the gauge group. 

It still commutes with all gauge generators, is vanishing on v++ itself, but possesses a 
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non-trivial action on aiiY charged matter multiplet. 

(vii) Obviously, the above modification of N = 2 superalgebra, in analogy with the 

central charge deformation just mentioned, should manifests {tself on any charged matter 

hypermultiplet. This entails problems with constructing invariant minimal couplings of 

v++ to the analytic q+ hypermultiplets. The standard gauge invariant q+ Lagrangian 

<t'(D++ + iV,++)q+ (6.25) 

is not invariant under the modified transformations (6.19) and we do not know how to 

modify the N = 2 transformation properties of q+ (and/or the coupling (6.25)) in order 

to achieve such an invariance. Difficulties with coupling of the APT modelto an extra 

charged matter were earlier noticed in (19] at the component level. . It is an interesting 

open problem how to couple q+ to V,++, and a careful analysis of the representations of 

the modified N = 2 superalg~bra should be made in order to solve it. ' 

Finally, we would like to. point out that a consistent interpretation of the partial 

supersymmetry breaking in the APT model along the lines of the nonlinear realization 

approach of refs: (5], (12] will require constructing such a realizatio'n for the modified 

N = 2 superalgebra. One can hope that on this way some unsolved questions raised 

in ref. [5] can be answered .. It seems interesting to seek any other realization of such . . \ , ·. . - ,_ . . ~ - -

supersymmetry-gauge algebras and to reveal their possible stringy origin. 
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