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Monuduunposannas N =2 cynepcuMMeTpus H wiensl Maiie-Hnnonynoca

Hsyqatotcs ocobennocTH peanusaunn N =2 cynepcHMMeTpHH B N =2 abenepoii xanubpoBouHol
TEOpHH C NIBYMS THNaMH F/-WIEHOB, WIEKTPHYECKHM H MATHHTHBIM, B SBHO CYNEPCHMMETPHYHBIX
copManu3Max ¢ mpenoTeHUHanoM Me3HHYeCKY M TapMOHHYECKO-AHATHTHYECKHM MPENOTEHIHAIOM.
TMonyueHa «MarHHTHAd», TyATbHO-MpeobpazoBatHas cynepnonesas opma N =2 MaKCBE/LTOBCKOTO 3¢-
deKTHBHOIO roioMopthHOro ACHCTBHS CO CTAHNAPTHHIM IEKTPHYECKHM Fl-wieHOM M MOKa3aHoO, YTO
B 9TOH CHCTEME BHe MAacCOBO# NMOBEPXHOCTH N =2 CyMepcHMMMETPHA peanHsyercd B HeoOblyHOH roni-
CTOYHOBCKOM MOJIE, COOTBETCTBYIOUIEH YaCTUYHOMY CIIOHTAHHOMY HapyuieHuio 1o N = 1. Ha maccopoii
MOBEPXHOCTH BO3MHKAaeT CTAHJIAPTHOe MONHOe Hapylefime. B cucTeMe ¢ aByma THnamu FI-wieHoB
BHeMaccoBass N =2 CymepCHMMETpPHS pealu3yeTCi B YaCTHYHO HapyIUEHHOH MoOJe B MEKTPHYECKOM
H MarHUTHOM NpeICTAaRIeHHsX. DTOT peXHM COXpaHsSeTcs Ha MaccoBOH MNOBepXHOCTH Onaromaps Me-
xauusMy AntoHMamMca—ITlapryma—Taitnopa. INoxasano, uto anrefpa N =2 cynepCUMMETDHH B Yac-
THYHO HAPYILEHHON peanH3alMH MOIH(HUUpPYETCS Ha KannOpoBOYHO-NpPeo6palylomHXca HOTEHIHANAX
H NpenoTeHIHANaX. 3aMpIKaHHe CIHHODHBIX 3apA10B BKJIIOYaeT HEKOTOPble KATHOPOBOUHEIE Npeobpaso-
BaHMs HE3aBHCHUMO OT KaKOii-T60 GUKCcalHH KanHOpOBKH.

Pa6oTa seinonuena B Jlaboparopuu teoperndeckoit usnku uM.H.H.Boromo6osa OUAH.
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We study peculiarities of realization of N = 2 supersymmetry in N = 2 abelian gauge theory with two
sorts of FI terms, electric and magnetic ones, within manifestly supersymmetric formulations via
the Mezincescu and harmonic-analytic prepotentials. We obtain a «magnetic», duality-transformed
superfield form of the N=2 Maxwell effective holomorphic action with standard electric FI term
and demonstrate that in such a system off-shell N =2 supersymmetry is inevitably realized in an unusual
Goldstone mode corresponding to the partial spontaneous breaking down to N = 1. On shell, the standard
total breaking occurs. In a system with the two sorts of FI terms, off-shell N=2 supersymmetry is
realized in the partial breaking mode both in the electric and magnetic representations. This regime is
retained on shell due to thé Antoniadis—Partouche—Taylor mechanism. We show that the off-shell
algebra of N =2 supersymmetry in the partial breaking realization is modified on gauge-variant objects
like potentials and prepotentials. The closure of spinor charges involves some special . gauge
transformations before any gauge-fixing.
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1 Introduction

A celebrated mechanism of spontaneous breakdown of rigid N = 2 supersymmetry
consists in-adding-a Fayet-Iliopoulos (FI) term to the action of N = 2 gauge theory. Re-
cently, Antoniadis, Partouche and Taylor (APT) [1] have found that the dual formulation
of N.= 2 abelian gauge theory (inspired by Seiberg-Witten duality conjecture) prov1des
a more general framework for such a spontancous breaking due to the possibility to de-
fine two kinds of the FI terms (see also [2]). One of them (‘electric’) is standard, while
another (‘magnetic’) is related to a dual U(1) gauge supermultiplet. APT show that a
partial spontaneous breakdown of N = 2 supersymmetry to N = 1 becomes possible, if
one starts with an effective N .= 2 Maxwell action (with some holomorphic function of
N = 2 superfield strength W as a superfield La.gra.ngia.n) and simultaneously includes two
such F1 terms. . :

In this paper we study N = 2 Ma.xwell action with the two types of FI terms and
its invariance properties in the framework of manifestly off-shell supersymmetric N =2
superfield formalism, using both the formulation via the Mezincescu prepotential [3] and
the harmonic superspace formulation [4] Our basic observation is that after duality
transformation of a system with even one sort of the FI term, the electric one, off-shell
N = 2 supersymmetry is inevitably modified, it starts to be realized in a mode with
partial spontaneous breaking. The dual N = 2 superfield covariant strength acquires an
unavoidable inhomogeneous term in its supersymmetry transformation and it can natu-
rally be called N = 2 Goldstone - Mazwell superfield (by analogy with N = 1" Goldstone
- Maxwell superfield introduced in [5, 6] in the nonlinear realizations approach). One
of the dual gaugino is the relevant off-shell Goldstone fermion. On shell such a system
is equivalent to the original system with the standard ‘electric’ form of the FI term, so
after’ passing on' shell the total -breaking-of N = 2 supersymmetry occurs (under-some
restrictions on the holomorphic Lagrangian function). The situation is radically changed
after including both types of the F'I terms. We show that in this case off-shell N =2
supersymmetry is realized in a partial breaking fashion in both duality-related formu-
lations, ‘electric’ and ‘magnetic’ ones, with the electric and magnetic N = 2 superfield
sgréngths as the relevant Gbldstone—Ma.xwell superfields. This partial breaking regime is
preserved on shell due to the APT mechanism. We demonstrate how.simple the latter
is when using a manifestly N = 2 supersymmetric formalism. We study the realization
of modified N =2 supersymmefry transformations on the gauge-variant objects (N = 2
harmonic-analytic prepotential and ¥ = 1 gauge prepotential) and find that the N = 2
supersymmetry algebra itself is also necessarily modified in this case. Namely, the closure
of N = 2 supercharges contains, besides translations, some special gauge transformations

before any gauge-fixing.
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In Sect. 2 we give a brief account of the standard N = 2 superfield formulation of

abelian N = 2 gauge theory with the electric FI term, where off-shell N = 2 super-
symmetry is realized in a customary way. In Sect. 3 we present a duality-transformed
‘magnetic’ superfield form of the action of such a theory and demonstrate that N = 2
supersymmetry in this representation is necessarily realized off-shell in a partial breaking
mode. In Sect. 4 we discuss a general situation with the two sorts of the F'[ terms added
and show that the regime of off-shell partial breaking of N = 2 supersymmetry in this case
is stable against duality transformation and is preserved on shell. In Sect. 5 we briefly
discuss how our observations look in the N = 1 superfield formulation. In Sect. 6 we
pass-to the formulation via the harmonic-analytic N'= 2 prepotential V** and study the
modified N = 2 supersymmetry transformations and their closure on this fundamental

object of N =2 gauge theory. We discuss difficulties of constructing minimal couplings

of V*t to the matter ¢* hypermultlplets in the framework of such a modified N = 2

supersymmetry.

2 N= 2“fga_ugef theory i?n 'Ordinary"]\[ = 2 superspace
- Superfield constraints of N = 2,D =4 supersymrnetrrc gauge theory were g1ven for

the first time in ref. [7] For the abehan case they read
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Faﬁ— D"Aﬁ +DﬁA" i€ eagW S - (2.0)

coo i o FH = DRAL + DEAY = —iet teaﬁW SRR (2:2)
F"‘ D"A‘ +D‘A" zs"’A [,—o R (2:3)

Y . oy ’ i : A 1
Here A, = (A%, A,a, A ) are; gauge superﬁeld potentrals in.the real N = 2 superspace
with the coordinates 2= (z™, 0¢ 0‘") They, are usually assumed to possess-the SU(2)-

covariant standard. off-shell N 2 supersymmetry transformation laws
Sean RS SR S U A B EN S .
bAw=iGQE+EDAN. (29

The constraints (2.1) - (2. .3) can be solved either in terms of unconstramed réal prepo-
tential V#* of dimension 2 (the Mezrncescu prepotential [3]) of in terms of drrnenslonless
analytic harmonic’ prepotentlal V*++in thé framework of the harmonic superspace ap-
proach [4]. We postpone a discussion of the ha.rrnonlc-superspace formulation’ to Sect. 6
and will ﬁrstly deal with the formulation via V#*:' : -

As a consequence of the above constraints and Bianchi identities the gauge invariant
N = 2 superfield strength W is chiral - :

DuW =0 L (2.5)
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and satisfies the additional constraint
D*W - D*W =0, (2.6)

where the standard notation for bilinear combinations of the spinor derivatives D}, and
D;s is used, D™ = D" Dk and D* = D} D*¢. The constraint (2.6) is the reality condition
implying the auxiliary component of N = 2 Maxwell multiplet,

. 1 .
X = ——ZD"‘WIO , (2.7)
to be real
(/\’ik)T = e;zcka”" = Ak (2.8)

(the symbol o means restriction to the lowest, 6, § -independent component. of N =2
superfield). . . , R
Both these constraints on VV can be solved through the Mezincescu prepotentlal [3]

WV_(D)“Dkv’k | o (29)

It should be ernphasrzed that N.= 2 gauge theory can be fully specrﬁed by the covariant
strength superfield W subjected to the constraints (2.5), (2.6) (or a generalization of the
latter, see next Sections). So we can deal entirely.with W and V?* as the basic objects of
the theory and not care about their geornetrrc origin. . e .

A holomorphrc effectlve action for the abelian (electrrc) prepotentlal V"‘ has the fol—

lowing form

S(V) / d4:cd“9.7-'(Wv)+cc TS

Here, F(Wy) is some holornorphrc function and d*0 = (D)*. The prepotentral Vik éan be
also used to construct a gauge-mvarlant FI term which breaks the S U (2) authomorphlsm

symmetry and 1s capable to induce a spontaneous breakdown of N =2 supersymrnetry

.s,p,(v): /’d”zE;kV"‘, S(V)—)SE(V) S(V)+SF,(V) (2‘11)

Here, E* = E (a)"‘ is'a SU(2) triplet of constants satisfying the same reahty condition
(2.8) as the auxiliary field X ik,

(E*)' = E}, = E:IEImEI =Eyx, oo E=E . (2.12)
Note that for any real vector E;é 0 the matrix E”‘ is non-degenerate

. 2
Det B ~E #0. (2.13)



The superfield equation of motion following from the action Sz(V) by varying V¥
reads ) ‘

DHFo(Wy) — cc. = [r(WV) DWW, + 7'(Wo) D** W, DLW,] — cc. = 4iEM | (2.14)
where F,, = 0F [0W and the standard notation for the effective coupling constant' and

its derivative is used

2
(W) = 0*F . PF

Wz =N +ir, (2>0), 7’(W)= TR

Hereafter, it is assumed that the SU(2) indices in the c.c. pieces are put in a proper

(2.15)

position with the help of skew-symmetric tensors, e.g.
X = i,

A possibility of spontaneous breakdown of N = 2 supersymmetry by the F I term is
related to the possibility to have a non-zero vacuum solutlon for the auxnhary component
X* in this case -

N X"‘ >=z*~ B, (2.16)
Prov1ded that such a solution exists and corresponds to a stable classical vacuum, there
appears an inhomogeneous term in the on-shell supersymmetrlc transformatlon law of the
N = 2 gaugino doublet A™ ' ’ .

S)ie ~'c°E"‘ e (2.17)

& being the transformation parameter. Thus there are Goldstone fermlons in the theory, -

which is a standard sigial of spontaneous breaking of N =2 supersymmetry.

It is easy to see that for any non-degenerate matrix E* both X', X2 are shifted by
independent parameters, and so they both are Goldstone fermions in this case. Thus,
with the standard FI term, only fotal spontaneous brea.kmg of N = 2 supersymmetry
can occur. Recall that the mhomogeneous pieces in the tra.nsformatlon laws of A° appear
as a result of solvmg the equatlon of motion for X "‘, so it is natural to assign the term

‘on-shell Goldstone fermions’ to these fermionic fields.

In order to get a feeling in which cases the FI term indeed’ generates a spontaneous
breaking of N = 2 supersymmetry, let us examine whether a non-trivial vacuum back-
ground solution with constant values of the auxiliary component < X% >= 2% and the
scalar field < ® >=< W, > |g = a exists. So, we choose the ansatz . ;

<W, >=a+ (0;01;) I“c , (2.18)

where (8:0:) = 450262, and substitute it into the equation of motion (2.14). Using the
 identity D™ (6;6;) = —2(8i8} + 68}) we get two independent equations

z* rp(a) = —1E* | (2.19)

: m(a) 2%z = 7'(a) 2|2 =0 (2.20)
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(the second one most directly follows from the equation (D)*F, ~ OF, which can be
obtained by applying Dy to eq. (2.14)).

A constant solution z* ~ E* to egs. (2.19), (2.20) evidently exists only if 7/ = 0,
that corresponds to the quadratic Lagrange function F(Wy) ~ W2, i.e. to the free N =2
Maxwell theory. Thus for non-trivial functions F in the action S(W) + Sy, the coupled
set of equations of motion for physical and auxiliary bosonic fields admits no constant
regular solutions which could trigger a spontaneous breaking of N = 2 supersymmetry.
This fact was firstly noticed in ref. [8]. In the same reference, it was also shown that a
stable vacuum with a constant nonvanishing X** and, hence, spontaneously broken N = 2
supersymmetry exists in a system of at least two N-= 2, U(1) gauge superfields with the -
FI term for one of them. As is discussed in the next Section, a spontaneous brcakdown
with a non-trivial function F and yet one gauge superfield becomes possible when choosing
a more general N = 2 Maxwell action with two different sorts of FI terms, electrlc and
‘magnetic’ [1, 2]. Moreover in thls case a partial breaking of N =2 supersymmetry down

to N =1 can occur.

3 Dual form of FI term and modification of N =2

supersymmetry

Now we turn to discussing the spontaneous breakdown of N = 2 supersymmetry within
dual formulations of the N = 2 Maxwell effective action. In constructing such formulations
we follow the lines of refs. 11, 9, 10].

The passing to the dual description goes through some intermediate ‘master’ action
with an enlarged set of superfields. It involves a chiral and otherwise unconstrained
‘electric’ superfield strength W and ‘some constrained ‘magnetic’ superfield.strength .
Both the original and dual formulations follow from this ‘master’ action upon varying it
with respect to proper superfields. ‘ 5

To get the ‘master’ action, let, us add the constraint (2.6) to the action (2.10) with
the help of an unconstrained N = 2 superfield La.gra.nge multiplier L;x

S(V) = S(W,L) = S(W)+ /d”zL i D*W — D"‘W) S(W)+SL, ’(3.1)

where S(W) is obtained via the substitution W, — W in (2.10). Thus, the action S(W, L)
includes an unconstrained real superfield L,k and a chlra.l superfield W that is otherwise
arbitrary.

Varying L* yields the constraint (2.6) and hence lea.ds us back to the ‘electric’ action
(2.10) written in terms of Wy, eq. (2.9). On the other hand, one can rewrite (3.1) as an



integral over the chiral subspace [1, 10]

I

S(W, L) / iz d40[.7-'(W) WW+cc, (3.2)
W, = (D)“ID;,‘L”‘. R (3.3)

The newly introduced chiral object W by construction satisfies the same constraint (2.6)
as Wy, i.e. . . _ .
D*W, — D*W, =0, - , ‘ (3.4)
and is expressed via L* just in the same fashion as W, via the Mezincescu prepotential
Vi, Therefore it is natural to think of W, as the dual or ‘magnetic’ N'= 2 Maxwell
superfield strength, and the Lagrange multipliér L* as the dual or ‘magnetic’ prepotential.

In order to obtain a ‘magnetic’ representation of the N- ="2-Maxwell action, one
should eliminate W from the ‘master’ action (3.1) by varying the latter w1th respect to

this superfield. As a result one gets an algebraic equation

Fw=W, (3.5)

that allows one to express W in terms of W, -~ ' - ° Sk TAL N TR
W=WwW.), s Lt L (3.6)
IW/[OW, = [OW,[OW]! = (+(W))™", =-T(W.)., . 3.7

After this one arrives at the magnetic representati‘on of the N : 2 Mlagwell Aétion
S(L /d4 d40.7-'(WL)+cc JEh s (3.8)
Vt’lth the new dual holomorphlc Lagranglan function ) V
FW.) = FWW.)] - W, W(W) D)
The ‘magnetic’ equatlon of motion has the followmg s1mple form: °
D”‘]—" —cc = (TD"‘W + -F’D""WLD WL) —cc.=0. | (3.10)

Thus the functlonal S(W L) (3.1) defines the duality transformatlon between the

‘electric’ and ¢ magnetic’ forms of the N =2 gauge theory action *--
S(V) o SW, L) & S(L). (3.11)

"How to get the dual form of the FI-term (2.11)? Recall that in the orlgmal ‘electric’

representatlon it is constructed usmg the prepotential Vi, the object which appears as

the solution to the constraint (2.6) and which is certainly lacking in the formalism with
the chiral and otherwise unconstrained superfield W-and the dual superfield strength W;.
To answer this question, let us come back to the ‘master’ action (3.1) and extend it

by the term-
S. = -% / d2dOE*O00)W + cc., S(W,L) = Se(W,L) = S(W,L)+S.. (3.12)

Note that the constants E* in ., without loss of generality, can be chosen real; their
possible imaginary parts can always be absorbed into a redefinition of W, or L* without
affecting the Vre‘ality.properties of these superfields. The term S, becomes just (2.11) after
the substitution W — Wy, i.e. after passing to the ‘electric’ representation, and hence it
can be regarded as a ‘disguised’ form of the standard electric F'I term. Its dual ‘magnetic’
form can now be obtained by passing to the ‘magnetic’ representation of the extended
action Sz(W, L) by eli:miﬁating;W from it, like this was done for the action S(W, L).
However, at this step one encounters a trouble. We observe that S, is not invariant
under the standard N = 2 supersymmetry transformations unless W is subjected to the
constraint (2.6). The invariance of the full action can be restored (before imposing (2.6),

i.e., varying with respect to ’L'.") by means of the following redefinition of the off-shell

‘transformation law of the dual superfield strength

W, = i(;ka,)E*‘ +i(eQ + EQ)W, , , (3.13)

where Q*, Q% are standard N =2 supersymmetry generators. Note that the appearance
of the SU(2)-breaking shift in eq.(3.13) is still compatible with the constraint (3.4) for
W,, thanks to the relation D% (e;6;) = 0.

‘This modified’ transformation law still has the space-time translations as the off-
shell closure, but implies a Goldstone-type transformation for the fermionic component
D‘"WL = A% (i.e.; the magnetlc photino) - ‘

5/\‘"~zc"E"‘ : [ (3.14)

This mhomogeneous tra.nsformatlon is valid off-shell, before usmg the equatlons of motlon,
therefore /\‘,f‘ can be called off-shell Goldstone fermlons (

With the deﬁnltlon (3 13), 1nhomogeneous pleces a.re present in both supersymmetry

’transformatlons $0 at first s1ght we are facing the phenomenon of total off- shell sponta.—

neous breakmg of N = 2 supersymmetry in this case. It is not s0, however. Namely, let

us show that by a proper shift of the real auxnhary field of W,,

W, W, =W, + 5(a,-(;vk)ci“, e ' (3.15)



one can restore a homogeneous transformation law with respect to one of two N =1
supersymmetries present in N =-2 supersymmetry (it is easy to find the appropriate

redefinition of L*). The newly defined object W, transforms as follows

S W, = (eko,)(c"’ + zE“) +i(eQ + eQ)W,_ : “ (3.16)

" One can always choose C"‘ SO that
det (C +iE)=0. (3.17)

Indeed, this condition amounts to requiring C** to be orthogonal to E* and to have the

‘same norm-’

(a) E*Cu=0, (b) 1B] = et S (3.18)

It is easy to ﬁnd a general solutlon to these equatlons E.g., for the two dlfferent ch01ces
of the SU(2) frame:

(i) E#0, E" =E* =0 ; (i) E**=0, E" = E* ’ (3.19)
w’e have ' k '

(i) C* =0, C"C™ = |[E"[*; (i) C" =0, C" = +iB", C* = F=E" .  (3.20)

Note that in the second case we have ﬁxed the residual U(1 ) freedom up to a reflection.
Eq.(3.17) means that Ci* + iE”‘.is’a degenerate symmetric 2 x 2 matrix, so it can be
brought to the form with only one non-zero entry (ii). As a result, ;W,_ is actbually shifted
under the action of only one linear combination of the modiﬁed‘KN = 2 supersymmetry
generators @)%, while under the orthogonal combination it is transformed homogeneously.
The same is true of course for the physical fermionic components: .only one their combi-
nation is the genuine off-shell Goldstone fermion. All these’opt'ion:s;,are related by some
SU(2) transformations (they can be continuous or discrete). For instance, in the case (ii)
in eq. (3.20) the € or €f supersymmetries are broken for the first or second choices of
the sign, respectlvely
" Thus we arrive at the lmportant conclusron in the dual, magnetlc representatron of
N =2 Maxwell theory with F'I term N = 2 supersymmetry is realized oﬂ' shellin a mode
with partial spontaneous breakmg, so that some N =1 supersymmetry remains unbroken
It should be speclally pointed out that, contrary to the orlgma.l electric representa.tlon
of the FI term, in the dual representatlon the phenomenon of spontaneous breakmg of
N = 2 supersymmetry occurs already off shell, irrespective of the form of the holomorphlc
‘Lagrangran function F (W.). This situation resembles the nonlinear realization approach

[11, 12, 5, 6] where one introduces from the very beginning, according to some prescription,
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inhomogeneously transforming Goldstone fields or -superﬁelds which express in a most pnre
way an effect of off-shell spontaneous breaking of some symmetry or supersymmetry.

Partial spontaneous breaking of N = 2 supersymmetry in the framework of the non-
linear realizations approach, with the relevant Coldstone fermion placed into chiral or
vector N = 1 multiplets, was considered i in ref. [12, 5, 6]. Using the terminology of [5, 6]
and ta.klng into account that W, conta.ms Goldstone fermion components, it is natural to
call this inhomogeneously transformmg superﬁeld the N = 2 Goldstone-Mazwell (GM)
superfield. In what follows we will deal with this superﬁeld keeping in mind that one can
always pass to W,_, eq. (3:16), in terms of which' the phenomenon of the oﬂ' shell partial
N =2 supersymmetry breaking becomes manifest.
 Onecan go a step further and wonder how the modified transformations are realized ¢ on
the gauge-variant objects: gauge potentia.lé and prepotentials. In Sect. 5 we will present
the modified supersymmetry transformation of the N =1 GM ‘prepotl;entia.l V. In Sect.
6, we will also give how the modified N = 2 supersymmetry is realized on the harmonic
prepotential and study a modified supersymmetry a'.lgebra. in this realization. As we will
see, the GM mechanism of spontaneous brea.kmg implies an essential modification of the
algebra of N = 2 supersymmetry transformatrons on gauge superﬁelds Note that the
tra.nsforma.tlon propertles of the magnetic gauge connectrons A M are a.lso a.pproprla.tely
modified by mhomogeneous terms containing E"‘, so as to preserve the cova.rla.nce of the
ma.gnetlc a.na.logs of the constraints (2.4).

As was already mentloned after passing to the ‘electric’ representa.tlon of Sg(W, L)
by varying it with respect to L* one gets the action (2 10) accompanied by the standard
FI term (2.11), both being written in terms of the ‘electric’ prepotential V**. This
prepotential and its covariant chiral strength W, possess standard N = 2 supersymmetry -
transformation properties, so the modification of N = 2 supersymmetry in the action
Se(W, L) is to some extent an artifact related to the insertion of the:constraint (2.6)
into the action and the appearance of Fa.dditiona.l superfield L** there. However, this
modified N = 2 supersymmetry is retained after putting Sp(W, L) into the pure ‘magnetic’
representation by eliminating the'superfield W. Thus it is a characteristic unavoidable
feature of the dual (‘magnetlc’) off-shell formula.tlon of N=2 Ma.xwell action with the
FI term. o

To get the precise form of such a dual action, let us combine the L* (or W,) piece S,
in the action Sg(W, L), eq. (3:12), together with S, into the following mixed term

S.=S8.+8. = _i / dzd OWW, + c.c., ' (3.21)

where a shifted GM-superfield W, with a homogeneous N = 2 supersymmetry transfor-



mation law was introduced

—(@/2)(OO)E" + W, (3.22)

- W, =
W, = i(Q+EQW.. L , (3.23)

The net difference between W,_ and W, is tha.t the a.uxrlra.ry scalar field component of the
former, . C

yi = _ZD;kV‘VLIO ’,
contains a constant imaginary part proportional to E*, while the auxiliary component

Y of W, is real by construction (eq. (3.3)). One has

- B L (i/2)E" . (32
By its definition, the qua.ntlty W, obeys the modified constraint
DHWL —c.c.=4iE" . 4 , (3.25)

demonstratmg the presence of the 1mag1nary constant part _]llSt mentloned
Clea.rly, pa.ssrng to W, does not redefine the ¢ magnetlc gaugml and does not affect the

mterpreta.tlon of their one comblna.tlon as a Goldstone fermlon w1th an mhomogeneous

piece in the off-shell transformation law. ‘
. It is easy to get a purely ‘magnetic’ form of the modlﬁed ma.ster a.ctlon SE(I/V L),

eq (3. 12) Varylng W now yrelds the modlﬁed equatlon

oF . A .
ow =W, ‘ (3:26)

which leads to the followmg 6-dependent modification of the magnetlc action (3.8).
(L) = / d":cd“ﬂf(WL) Yee, @

with F defined by eq. (3.9). ,

Thus in the dual ‘magnetic’ formulatlon the whole effect of the orlglnal electrlc F[
term (2 11) is the appearance of 0- dependent terms in the a.ctlon, with coefficients pro—
portional to the SU(2) breaking constants E"‘ Despite this exphcrt 6 dependence, the
action is still N = 2 super-invariant due to the modification (3 13) of the transformatlon
law of W,.

‘The appropriate equation of motion follows from (3.10) by substituting there W, —
W, and taking account of the modified constraint (3.25). Analyzing this equation, it is
straightforward to show that the dual action (3.27) leads to the same vacuum structure as

the original ‘electric’ action with the FI term (2.11). In particular, a Poincaré-invariant
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vacuum with spontaneously broken N = 2 supersymmethy exists only for 7/ = 0, i.e. for
a free theory, like in the electric representation (this restriction is equaivalent to 7' = 0,
of course).

Thus on shell in the ‘magnetic’ representation we again face the total spontaneous
breaking of N = 2 supersymmetry, despite the fact that off-shell N = 2 supersymmetry
is realized in the mode with partial spontaneous breaking.

To summarize, in the ‘magnetic’ representation of N = 2 Maxwell theory with a single
F1I term there occurs a partial spontaneous breaking of N = 2 supersymmetry off shell
which goes ovér into the total one after passing on shell. Thus, a crucial difference from the
original, ‘electric’ representation of the same theory is that in the ‘magnetic’ case the effect
of spontaneotis supersyminetry breaking has an unavoidable ‘inborn’ off-shiell constituent
corresponding to the partial breaking mode. This new phenomenon is related to the
modification of off-shell realrzatlon of N=2 supersymmetry’ after performing a duality
transform of the ‘electric’ FI term. Passing on shell cha.nges the type of spontaneous
breakdown, promoting it to the total one (simultaneously i 1mposmg a severe constraint on
the admissible form of the holomorphic Lagrangian). S

In the next.Section’we will;see that adding of some different kind of the FI:term
radically changes this interplay between the off-shell and on-shell constituents of sponta-
neous N = 2 supérsymetry breaking; Naxnely, there appears a stable vacuum ensdring

the phenomenon of partial supersymmetry breaking to retain on shell, too..

4 N = 2 supersymmetry in the presence of electrlc
- and magnetlc FI terms o S

" New possibilities come out if wé simultaneously include twd alternative mechanisms of
the spontaneous supersymmetry breéking, the ‘previously discussed one and a new one
discovered in [1}..It' consists’in extendmg the mtermedrate a.ctlon S E(W L) (3 12) ’oy a

superﬁeld magnetlc FIterm '
/ d“a:d" M’*'(oko,)WL +cec = / d?zM¥ Ly , (4.1) -

with M being another trlplet of real constants. The W,_ form of S is invariant under
the Goldstone-type transformation (3.13) since” [ d*6(6)® = 0 (a'contribution from ‘the
shift of explicit s in (4.1) disappears by rewriting W, through L¥* restoring the full
integration measure and integrating by parts).  One can show that the inhomogeneous
piece in the transformation of L;; does not contam terms higher than those of 7th order
in the spinor coordinates, so the invariance of the second representaton of S, in (4.1) is
also guaranteed, [ d®08. L = 0. i

11



As in the previous consideration, one can pass from this modified intermediate action
to its either ‘electric’ or ‘magnetic’ representations, varying it with respect to L% or W,
respectively. )

When one descends to the ‘electric’ representation (by varying L), the only effect
of magnetic FI term is the modification of the constraint (2.6) on W. The modified
constraint reads
D*W ~ D'*W = 4iM"‘ . \ (4.2)
It suggests the redefinition . '

1 ; .
W=Ww,— —(9,-0,:)M"° , T (4.3)

108 nN

with W, satisfying eq. (2.6) and hence given by eq. (2.9) !, and ‘means the appearance
of the constant imaginary part —(:/2)M* in the auxiliary field of W,
(S k _ yik 13 kL k
¥ = iptwlo= x4 Iak ) x = Lo
The inclusion of magnetic FI term cannot change the transformation properties of
W under N = 2 supersymmetry which are standard. Then the relation (4. 3) requires

modifying the tra.nsforma.txon law of W, ,: a.nd respectrvely, V"‘ on"the pattern of eq.
(3 13) L . EE

sWy = i(eka,)M"‘ +i(eQ+ EQ)WV~ e (4.4)

(we do not give how the transformation law of Vik i cha'ngéd,jv:it' is ea.sy to find this’

modification). In other words, N = 2 supersymmetry is now realized in a Goldstone-

type ‘fashion in the ‘electric’ representation as well, but 'with M* instead of E* as the

‘structure’ constants. Thus we see that the .adding of magnetic I term modifies N =
2 supersymmetry-in the electric representation quite s:mlla.rly to what happens in the
magnetic representation after adding the .standard ‘electric’. FI term. So, when both
FI terms are present, N = 2 supersymmetry is.realized in the Goldstone mode in both
representations, ‘electric’. a.nd ‘magnetic’, and there i Jis no way to restore the standard
N = 2 supersymmetry off shell. In particular, N = 2 transformations of the standard
‘electric’ gauge connections introduced by egs. (2.1) - (2 4) acquire mhomogeneous SU(2)
breaking terms proportional to M (note that in the r.h.s. of the’ constra.mts (2.1)-(2.2),

by definition, just the cova.rla.nt strength W, appears). The same arguments as in the

1Note that the SU(2)-noninvariant constraint (4.2) with an arbitrary M** (equally as its ‘magnetic’
analog (3:25)) is consistent with the constraint of ref. [1] which can be wrltten in the following form:

D"‘D~,,W = D"‘D-,,W ow .

With using this constraint (or its magnetic analog), the constants M** or E** appear as mtegratlon'v

constants, while in the approach we keep to both these sets are present in the action from the beginning
as some moduli of the theery.
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previous Section show that N = 2 supersymmetry in both representations is realized off
shell in the partial breaking mode. _

An effect of the magnetic FI term in the magnetic representation is a further modifi-
cation of the equation of motion for W,: the term 4iM** appears in its r.h.s. Of course,
this is related to the fact that the reality constraint for W, is the equation of motion for
the dual superfield strength, and vice versa.

The issue of on-shell spontaneous breaking of N = 2 supersymmetry in the presence
of electric and magnetic FI terms can be analyzed both in the electric and magnetic

versions of the full intermediate action
Semy = Se(W, L) + Sm : .(4.5)

with the same ﬁna.l conclusrons In order to be closer to the original paper [1], we prefer to
do thls in the electric representatron wrth the prepotentlal V"‘ and its covariant strength
W, as the basrc entities. )

A genera.l electric effective action of the abelian gauge model with the (E, M)- mech-
anism of the spontaneous breaking can be obtained by substituting the expression for W,
eq.(4. 3), into the actlon (2. 10) and supplying the latter with the electric F'I term (2. 11)

Seoan = [Z / (i'*zumr(W)‘Jr c.c.]+ / &z V", w; Wv—(i/z)_(a.-a,;)M"é. (4.6)

The superfield equation, of motion in the electric representation of the (E, M)-model
reads
[rDHW + 7' D*WD! W] — c.c. = 4E¥ . (4.7
The corresponding equation for the auxiliary compeneht is as follows:

2n(a) X" =7 (a)M“ —EM. . (4.8)

Then we take for < Wy > the ansatz (2.18) a.nd substrtute it into (4 7) with taking
a.ccount of the relation (4.3). Besides the expression for the vacuum value of auxrhary

field zM =< XM >

M = 7 ( (@) (ri(a)M™ — EH) (4.9)

one gets, from vanishing of the coefficient befere (0:0%), the following generalization of eq.
(2.20) , .

%2, =0, =< X*>=z*_(i/2)M* . (4.10)
A crucial new point compared to (2.20) is that the vector &% = 2% (i/2)M* is complez,
so the vanishing of its square does not imply it to vanish. As a result, besides the trivial

solution 7' = 0, eq. (4.10) possesses the nontrivial one .
T £0, %3, =0 (or detz=0). ' (4.11)
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This solution, after substitution of the expression (4.9), amounts to the following relations
between 7, 5(a) and the SU(2) breaking parameters E¥*, M*

Bt B M —(BMy _|Bx |
- X
mi(a) = 7 0 [r2(a)] = 53 32 i (4.12)
M M M

This is just the vacuum solution that was found in [1] by minimazing the scalar field
potential in the component version of the action (4.6). It triggers a partial spontaneous
breaking of N = 2 supersymmetry down to N = 1. ’ : .

Let us show in two equivalent ways that at this point of moduli space the half of
supersymmetry indeed continues to be unbroken on shell.
- (4.11)) that by

a proper rotation it can be ‘brought into the form w1th only one nonvanlshmg element

It follows already from the nilpotency of the complex matrix :c * (eq

As a result, only one linear combination of the inhomogeneously transformrng Goldstone
fermions ( o
5»“ it
retains an inhomogeneous piece.in its transformatron PRFTN . . o
To be more explicit, let us choose the SU( ) frame so as to leave in L“" M"‘ only
three 1ndependent components e.g. v S
M2 = E¥=0, 'M'=M?=m, ReE'"=—-e, ImE"=¢=
e - [4
N o= = = 5L 4.13

In this frame

LoAl2 Al __ l l§| 222 _ lgl

One observes that e1ther :c“ or :::22 is zero, dependrng on the relative s1gn of modull m, .f

Choosing, for deﬁnlteness m > 0,6 > 0, one finds
r=gt=0, P=—im. (4.15)

As a result, only A°2 contains an inhomogeneous term ~'m‘;er‘; in its transformation, and
it is the only genuine on-shell goldstino. So, the ¢ supersymmetry is broken, while the
6;11 one is not. ‘

An equivalent way to reach the same conclusions is to study the action of the modified

N = 2 supersymmetry generators Q; on the vacuum superfield

< W, >=a+ (0:0,)% . : (4.16)
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In accord with eqs. (4.4), (4.3) one gets
QL < Wy >=QL < Wy > +H0uMY = QL < W >, (4.17)

where- [
<W>—a+(0 k)*"‘ , , . (4a8)

Substituting the entries (4 15) (we are always at freedom to choose this special SU(2)
frame) into the last relation in the chain (4.17), one observes that < W > depends only
on 8. As-a result e

QL <Wy>=0, QL<W,>#0, (4.19)

i.e. the generator Ql annihilates the vacuum, while Q2 does not. ‘Hence, N'="1 super-
symmetry generated by Q‘ is unbroken, and we 1ndeed deal with the partral breaking
N 2 — N =1 in this case, both off and on shell.

" In this connectlon let us recall that the partlal breaklng nature of the off-shell N =2
supersymmetry Goldstone-type transformation of Wy (4 4) can be revealed (prior to any
on-shell analysrs) by shlftlng the real auxiliary field X ik of Wy by a constant trrplet c"‘
such that the matrlx c* ( /2) M¥* | is degenerate (in a full analogy with the dlscussmn
after eq (3 15)) It will be natural to choose e i[2) M* = :c‘.", s0 as to have a one-
to-one correspondence between the off- and on-shell partla.l breakrng reglmes In terms of
superfields this amounts to the special choice of V"‘ Vi¥ and WV‘ W,, such that the

vacuum value of X?* vanishes:

w
6. W,

W, + £%(0:6,) , SR (4.20)
(ekal):i:“+z(eQ+eQ)W > (4.21)

il

F 1na.lly, we note that the transformation propertles of the (E M ) model equatlons of
motion under the duality group SL(2,Z) become transparent in terms of the dual pair of
superfields W and W, = Fy

DMW, — DHW, =4ig® , (4.22)
‘DRW.— DMW = 4iM™ . A (4.23)

This pair of equations is covariant under the duality group, provided -that the latter

properly rotates E*, M* through each other.

5 Passingto N =1 superﬁelds

The properties of the (E, M)-mechanism of the N = 2 supersymmetry spontaneous
breaking were studied in [1] baslcally inthe V=1 superﬁeld formalism. For completeness,
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we will briefly discuss how the above consideration can be translated to this language,
with focusing on the realizations of NV = 2 supersymmetry. -

One can pass to the N =1 superfield description, expanding N = 2 superﬁelds
in powers of the coordinate 6,. The coordinate 6, is assumed to parametrize N =
superspace, the gencrators QL. Qs = @3, forming the appropriate N =1 subalgebra of
N = 2 supersymmetry.

- We will use for W the natural decomp051t10n (4.20). The N= 1 superﬁeld expansion
of W reads _

W = ¢(z,0,) + 165 Wa(z,0,) + (6:)* A(z,6,) - (5.1)

Then the N = 1 superfield form of the relation (4.20) is given by

= +37(0)7, 6
We = Wy - 22907, - (5.3)
= (1/4)(D,)?, + 37 , : (5.4)

where the N = 1 chiral superfield ¢, and the N = 1 Maxwell chiral superfield strength
W2 with a real aux111ary component are coeficients in the N = l superﬁeld expansion
of W,. The superfield W& satisfies the standard B1anch1 1dent1ty that can be solved in
terms of the real N =1 prepotentlal V '

= (D )’D‘"V B . (5.5/)

Integrating over 63,02, in the N = 2 superfield action of the (E, M)-model, one arrives
at the N = 1 superfield action of ref.[1]. The analysis of vacuum solutions of the relevant
equations of motion has been already made in ref. [1], so we will limit ourselves to
discussing transformation properties of the involved N =1 superfields under the modified
‘N = 2 supersymmetry in the electric representation. ; ’

The N = 1 superfield components of W possess the standard homogeneous supersym-

metry transformation law
bp = —ieW,+i(6.Q +€Q.)p, W, = i€ns A+ 2620 hip Hi(aQ +EQ, W, . (5.6)

These transformations produce Goldstone-type transformations of the N =1 superfields
@, and W2

bp, = —2(2"¢] + 270y —iqW, 0 + z(c,Q‘ +2Q\)p, (5.7

W = 256+ 56) + (1)SUDYP + 2500 + (0@ + EQIWE . (558)

" The transformation of the Goldstone scalar superfield ¢, and the GM superfield W

contains inhomogeneous terms which correspond to the constant translations of spinor
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fields. To be convinced in this language that just the partial breaking is realized off
shell, let us choose the SU(2) frame (4.13). It is easy to observe that in this frame, with
22 #£0,2 = 3" =0, only W2 undergoes an inhomogeneous shift with the parameter ¢
while N = 1 supersymmetry is realized on ¢, and W¢ linearly and homogeneously. Thus
W is the Goldstone N = 1 superfield associated with the partial spontaneous breaking
N =2 — N = 1. This off-shell modlﬁcatlon of N =2 supersymmetry in the N =1
superfield formalism of the APT model was prev1ously noticed in [5] Our cons1derat10n
in the previous Sections shows that this phenomenon arises already after dualization of
one of FI terms (this time, the magnetic one) and actually does not require, on its own
range, the addition of another type of such a term. .

Note that the equally admissible choice £'* = £ =0 ,&" #0 leads to the vanishing
of inhomogeneous terms in the supersymmetry transformatlon of W} and the appearance
of such term ~ € in the transformation of ¢,. This means that with this choice the ¢
N = 1 supersymmetry is broken, while the ¢ one is not. But this does not mean that
@, can be treated as the corresponding Goldstone superfield in the spirit of ref. {12]. In
order to reveal which kind of N = 1 Goldstone superfield is actually relevant to one or
another pattern of the partial breaking N = 2 =N ='1"in the APT model, one should
always decompose N = 2 superfields over those N = 1 superfields associated with the
unbroken N = 1 supersymmetry. For instance, in the case of the just mentioned choice
of #'* a natural decomposition would be one with respeet to the coordinates 6,8, so
that the corresponding N = 1 superfields live on the N = 1 superspace (z,,,8?). Once
agam it is the appropriate N = 1 gauge superfield which plays the role of N =1 GM
superﬁeld in this case. The same is true for any other choice of &% . Thus, the model
under consideration is 2 kind of ‘non-minimal’ variant of the nonlinear realization of the
partial breaking with N = 1 Maxwell superfield as the Goldstone superfield {5]. Another
version of such a nonlinear realization, with chiral N = 1 superfield as the Goldstone one
[12], seems to bear no'direct relation to the present model despite the presence of chiral
N =1 superfield ¢, m N=2GM supermult)plet (actually, P, 15 masslve at the points
of moduli space correspondmg to'the partial breakmg)

"'A modification of N '= 2 supersymmetry can be studied on the N = 1 prepotential
V,. For the choice (4.15), N =2 transformation of V, is as follows

6.V, = m(0)20%€ar + (i/2)0% €s@s + c.c + i(6,Q* + EQ1)V, . (5.9)

The Lie bracket of these Goldstone supersymmetry transformations contains pure gauge
terms with*(#,)? and (8")?, similarly to the transformation of the vector field in ref.’ [2].
We will discuss the modification of N = 2 supersymmetry algebra in'more detail in the

next Section.
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It would be interesting to study the relation of this approach to the formalism of
nonlinear realization [6, 5, 12]. One can expect that both approaches are related by an

N = 2 analog of the nonlinear transformation constructed in [13] for the case of N =1

supersymmetry.

6 Consideration in harmonic superspace

Harmonic superspace was introduced in ref. { ] for off-shell description of the gauge,

supergravity and matter N =2 supermultlplets In ref. (8] this approach was applied for
analysis of spontaneous breaking of N = 2 supersymmetry in a general abelian N = 2
gauge theory. We will-show that it is also helpful for studying dual formulations of
N=2 gauge theory and partial N = 2 supersymmetry breaking. We use the SU(2 )/U(
harmonics uf and the notation of refs. 4, 14] for the harmonic and spinor derivatives'in

the harmonlc superspace for instance

D¥t = 9t — 210‘”0’”8" + ge+tor + 0”+8+ (6.1)
“DE = 8[80°" = 0F Dg = 8/06°~ = 6;-; , (6.2)
Dy =—3/80°% +%uF8%, (6.3)
Ho = GO _9iga-ga, . -
D; = —§/06%* 210_”8213. (6.4)
Here
u+iu_— — B A u+ 0 - ta _ aiauit , 0‘:!:& — éiddik ,
S : CQut , .
= 1™ —ifo '"0 (ufuj +ufug),. O = 8/0z%" . (6.5)

* The harmonic superspacé ‘solution of thé constra'mt (2.9) is given b’yv (4,15]

++
W, = W(v++) = D+ /d V (2 “‘) /du 2V (z,u) (6.6)
where a harmomc Green function [14] is used The superfield -
V*(zyu) = V(2] L0 e ) = VIH((, u) . (6.7)

is the abelian analyticx brepotehtial,
Dyt =DVt =0
o l) 1

a fundamental geometric object of N = 2 gauge theory. It contains N = 2 vector multiplet
and an infinite tower of pure gauge harmonic components. The gauge freedom of V*+ is

given by the transformations
VH o VR DY (6.8)
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L

= M((,u) being an arbitrary analytic gauge function. Both V** and ), as well as
the analytic subspace (¢(M,u) = (z4 ad gta g+a od) are real with respect to some gen-
eralized conjugation [4] (it becomes the ordinary complex conjugation when applied to
conventional N = 2 superfields). o

All the properties of W, eqgs. (2.6), (2.7), follow in the harmonic-superspace approach

from the analyticity of V+*. The harmonic superspace form of (2.6') is as follows
(DYYW, - (DY, =0, (6.9)
The fact that W does not depend on harmo;xics is expressed as the condition
D++ W =0 N
The prepotential V** is r‘elated to the M‘ezincescu prepotential as

V= (DY) (D) u; up V* + pure gauge terms] . * (6.10)

Various representations of the N = 2 Maxwell action with ;,nd without FI.terms
discussed in the previous Sections can be re-formulated in terms of Harﬁlonip superfields.
One can define two sorts of the analytic prepotentials, ‘electric’ V++ and ‘magnetic’ L**,
the latter naturally arising‘{a,s an analytic Lagrange multiplier for the constraint (6.9) in
an analog of the intermediate ‘master’ action introduced in Sect. 3. Below we present.a
brief account of the harﬁlqnic—superspace version of the APT model considered in Sect.
4, : L

The basic, holomorphic part of the ‘master’ action has the previous form (2.11), with
W, being replaced by an arbitrary chiral sﬁperﬁeld W. To appropriately rewrite the
Lagrange multiplier term S, in (3.1), (3.2) we define:the dual magnetic chiral superfield
strength W, on the pattern of eq. (6.6) ~+c o . T

L+ (z,uy)
(uvtu))?

Then this term in the harmonic formalism can be written as

W, = (D+)? / du, = /‘au(D~")2L++:(/z,u). (6.11)

yor

S, = —(i/4) f dizd*0du W(D" L+ Fce. " |
= (5/4) [ dCCVdu L+ (DYYPW - (DYPW], (612)

where
d¢CVdy = d*z(D™)(D™ ) du

is the measure of integration over the analytic subspace ((M,u,i) Note that the expression

in the square brackets in the second line of (6.12) is anﬁiytic in virtue of the property

(D*)® = 0 and chirality of W. Varying L** as an unconstrained analytic superfeild
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immdeiately yields the condition (6.9) which, together with the chirality of W, imply the
representation (6.6).
The ‘electric’ F'I term in the electric representation (2.11) can also be written as an

-integral over the analytic subspace
Se(V)= / d¢C0du EYtyt (6.13)

where E** = E**u}uf. lts ‘disguised’ form pertinent to the master action and defined in
eq. (3.12) becomes just (6.13) after using (6.6) and decomposing the explicit 0s in (3.12)
in their £+ harmonic projections. The equation of motion of the abelian model with such

a term is equivalent to the following analytic equation of motion:
(DFPFu(Wy) — cc. = [r(D*)* Wy + 7' D**W, DI W, ] — c.c.= 4iE* . (6.14)

1t can be obtained by varying the sum of actions (2.10) (with W, given by (6-6)) and
(6.13) with respect to V** (one should beforehand rewrite.the whole action as an integral
. over the analytic subspace).

The constraint (6.9) is modlﬁed if we add to the master action the harmonic version

of the magnetic F'/-term [4]
- / dC0du M¥ LY MY = M*ufut - (6.15)

which is an analog of the term (4.1) (and goes into it after making use of the magnetic
counterpart of the relation (6.10)). The modified form of the constraint contains the
SU(2)- breakmg constant term (cf. eq. (4.2))

(DYPW — (D)W = diM** . - (6.16)

At last, the modified magnetic chiral superfield strength W, defined by eq. (3.22) and

dual to W obeys the following harmonic-superspace form of the constraint (3.25)

(D)W, — (DF)W, = 4B (6.17)
(it amounts to eq. (6.14) because of the relation W, = Fw(W) that follows from the
master action by varying it with respect to W). In the rest of this Section we consider
how the magnetic-FI term induced modification of N = 2 supersymmetry in the electric
representation affects the transformation properties of V++, This modification was already
discussed in Sect. 4 in terms of ordirlary N = 2 superfields and in Sect. 5 in terms of
N =1 superfields.

Like in Sect. 5, it will be convenient to use the decomposition (4.20) to single out

the superfield strength W, subjected to the standa.rd constraint (6.9) from the object W

satlsfymg the M*+*-modified constraint (6.16)

W=W,+ (0k01):ck' (6.18)
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The first term is expressed according to eq.(6.6) through the real analytic prepotential V;*+
with a zero vacuum expectation value, while the'second term contains the constant vacuum
auxiliary field £* defined by egs. (4.9) - (4.12). By the modified N = 2 supersymmetry
transformation (4.21) of W, we can restore, modulo the analytic gauge transformations
(6.8), the modified transformation of V**. As is expected, it is of the Goldstone type

SV = —iMe2ot (0%) 2y tec +i(eQ+ Q) . (6.19)

For the choice of SU (2) frame as in (4 15), the mhomogeneous term of this transformatlon

is reduced to _ ’ 7 ‘

im [ €0 (0%)u] — E"”O_j;(éi*')zul‘ ]. (6.20)

It does not contain the parameters of the first supersymmetry ¢, and &, reflecting the
fact that the latter is unbroken under this choice.

It is straightforward to calculate the Lie bracket of the modified supersymmetry trans-

formations (6.19)

(6,0 6]V = 5;:,“:)v++ 5;:,°:;v++ ' (6:21)

Besides ordinary z-translations and central charge transformations 5"‘"‘V++, it contains

an extra term which is a spec1al case of the a.nalytlc gauge transformation (6 8)

(n 6)](ff') uy + 21m[n‘”” - (n © f)llf'ffrqu ;
+ 21m[r]°"°" (n & €)]0F0Futu; +cc.. (6.22)

VS = il -

Deﬁmng the approprlate dlmensmn 1 ga.uge generators

G V++ =im (0" ufu] ‘Gag,' Vit = 2im 0u0a(ufuy —uful),

' Gaa vt _21m0 0au uy, B ()

one can write the modification of N = 2 superalgebraon V;** as follows’ (omitting the

standard pleces with the 4-translation and central cha.rges genera.tors)

1@ Qa}mod—faaG @0 =G, (@ Qa.}"“"’—G (6.24)

Having found the explicit form of the modified ’generé.tors‘Q Q, one can deduce the full
modified N =2 supera.lgebra commuting the dimension 1 generators with Q @ produces
gauge generators of dimension 1 /2, etc. In this way one can single out the whole finite
set of the mutually (antl)commutmg gauge generators which together w1th Q, @ form
a closed superalgebra: We do not quote it here expllc1tly, llmltmg ourselves to a few

remarks concerning its structure.
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(i) The standard Poincaré or super-Poincaré algebras form a semi-direct product with the
corresponding gauge groups treated, in the spirit of ref. [16], as groups with an infinite
number of generators of the type (6.23). In the present case some of these generators
appear on the r.h.s. of the basic anticommutators of N = 2 superalgebra, indicating
that we are dealing with a non-trivial unification of N = 2 supersymmetry and N = 2
gauge group. The existence of such an extended algebraic structure does not contradict
the famous Coleman-Mandula theorem (or any its supersymmetric generalization), since
the two important assumptions of this theorem, manifest Lorentz invariance and positive
definiteness of the metric in the space of states, cannot be simultaneously satisfied for

gauge theories.

(ii) The above modification should be distinguished from the well-known modification of
N = 2 current algebra by a constant ‘central charge’ in the case of partial spontaneous
breaking [17]. The latter modification takes place in the APT model too [2, 18], and it
does not influence transformation propertles of the mvolved N = 2 superfields, irrespec-

tive of whether they are gauge-invariant or not!’

(iii) Gauge transformations in the r.h.s. of the anticommutator of spinor charges appear
also in the standard supersymmetric gauge theories (without FI terms) as the result of

fixing a gauge.. In our case such transformations are present before any gauge-ﬁxing.

(1v) Let us emphasize that the modxﬁcatlon of N = 2 transformation law (6.19) and, cor-
respondingly, the modification of N'= 2 supersymmetry algebra (6. 24) are unavoidable,
they cannot be‘removed by any redefinition of the G M-prepotential V**.. However, using
the freedom of adding some special gauge transformations to the ‘minimal’ transformation
law (6.19), one can change the structure of the anticommutators (6.24‘) by gaining some

additional dimension 1 gauge generators in their r.h.s.

(v) In the modified N = 2 superalgebra the automorphism SU(2 (2) symmetry is explicitly
broken down to some U(1) due to the presence of the SU(2)- breakmg parameters M#*

(or E** in the magnetrc representatron) as structure constants.

(vi) Due to a non-zero vacuum value of W|o = a at the minimum of the scalar potentlal
correspondmg to the partial breakmg of N = 2 supersymmetry in the APT model, mod-
1ﬁed N'=2 superalgebra necessarily contains, in the anticommutator {Q} Qﬁ} and its
conjugate, a central charge proportional to the global U/(1) generator of the gauge group.

It still commutes with all gauge generators, is vanishing on V** itself, but possesses a
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fion-trivial action on ainy charged matter multiplet.

(vii) Obv10usly, the above modification of N = 2 superalgebra, in analogy with the
central charge deformation just mentioned, should manifests itself on any charged matter
hypermultiplet. This entails problems with constructmg invariant mmlmal couphngs of

V+** to the analytic ¢* hypermultlplets The standard gauge lnvarla.nt qt Lagranglan

(D++ + 1V++) (6.25)

is not invariant under the modified transformations (6.19) and we do not-know how to
modify the N = 2 transformation properties of ¢* (and/or the coupling (6.25)) in order
to achieve such an invariance. Difficulties with .coupling of the APT model to an extra
charged matter were earlier noticed in [19] at the component. level. .It.is an interesting
open problem how to couple q+ to V;**, and a careful analySIS of the representatlons of
the modified N =2 superalﬂebra should be made'in order to solve it.

Finally, we would like to point out that a consistent interpretation of the partial
supersymmetry breaking in the APT model along the lines of the ncnlinear realization
approach of refs: [5], [12] will require constructing such a realization for the modified
N = 2 superalgebra. One can hope that on this way some unsolved questions raised
in ref. [5] can be answered. It seems interesting to seek any other realization of such

supersymmetry gauge algebras and to reveal their possible stringy orlgm
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