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1 Introduction 

This work is devoted to the memory of 
our d~ar friend I.V. Lutsenko 

Starting with the classical works by Schrodinger [1], Stivenson [3] and Infeld [2] 
systems with accidental degeneracy in spaces of constant curvature have attracted 
attention of many researchers in connection with nontrivial realization.of hidden 
symmetry in these problems and with possible applications, especially to constructing 
many-particle wave functions [4], nonrelativistic models of quark systems (5] and 
solutions of the two-center problem (6]. · · · ,· 1 ·' 

Essential advances in the theory of systems with accidental degeneracy have been 
made by Nishino [7], Higgs [8], Leemon (9] and [10, 11, 12, 13]. It has been shown 
that the complete degeneracy of the spectrum of the Coulomb problem and harmonic 
oscillator on the three-dimensional sphere in the orbital and azimuthal quantum num­
bers is caused by an additional integral of motion: an analog of Runge-Lenz's vector 
(for the Coulomb potential) and an analog of Demkov's tensor {for the oscillator). 
However, in contrast with the flat space the integrals of motion for the Coulomb 
problem and isotropi~ oscillator do not form the Lie algebr~ as the' relevant com­
mutators are nonlinear. The latter does not allow one to restore, re'spectively, the 
algebra or the group of hidden symmetry. Later in, the works (14, 15] it has been 
shown that as an algebra of hidden· symmetry one can use quadratic· algebras of 
the general type, the so-called Racah algebras. Systems with hidden symmetry for 
the harmonic potential and those of Winternitz-Smorodinsky's. type in the three­
dimensional space of constant curvature were also studied by using the technique of 
path integrals in the papers by Barut, Inomata and Junker (16, 17], Grosche (18] arid 
Grosche et al. [19, 20, 21]. 

A possible way of determining a group of hidden symmetry of systems with ac­
cidental degeneracy is determination of the expansion coefficients between different 
bases obtained after the separation of variables in the Schrodinger equation. Suc;h 
interbasis expansions have first been considered for the "sphere-cylinder" transitions 
(isotropic oscillator on the sphere), "sphere-parabola" transitions and those between 
spherical and elliptical bases (for the Coulomb potential on the sphere and hyper­
boloid) in (14, 15, 25]. It has been ·shown in (19] that like for the Helmholtz equation 
(22] variables in the Schrodinger equation for the pote~tial cifthe isotropic oscillator 
on the three-dimensional sphere are separated into all the six orthogonal systems of 
coordinates: spherical, cylindrical, sphero-conical, two elliptic and ellipsoidal coor­
dinate systems. 

The aim of the present paper is the description of solutions of the Schrodinger 
equation in the spherical, cylindrical and two elliptic systems of coordinates and the 
calculation of expansion coefficients between the corresponding bases. Note that the 
solution of the Schrodinger equation for the isotropic oscillator in the spherical system 
of coordinates was found in [8, 9, 14] and in the cylindrical and elliptic systems of 
coordinates are presented for the first time. 

The·paper is organised as follows. Section 2 presents some known results related 
to the Schrodinger equation for the three-dimensional space of constant curvature. 



Section 3. is devoted to the solution of the Schrodinger equation for the potential of 
the is~tropic o~cill~tor in the spherical and cylindrical systems of co.ordinates. Section 
4 is the calculation of coefficients of the interbasis expansion between spherical and 
cylindrical bases using the explicit expression for the wave functions of the isotropic 
oscillator. In Section 5 the elliptic bases of the isotropic oscillator are constructed 
as expansion over the spherical and cylindrical ones. 

2 The Schrodinger equation and integrals of mo­
tion 

The Schrodinger equation in the space of constant curvature has the form 

[ 
t,,

2 
. ] ' .. . 4 

--6'.LB + V(x) '11 = Ew . . 
2µ . ·. . 

(1) 

;her~ 6,.LB is the Laplace-Beltrami ope~afor that in an arbitrary· system of co~rdi~ 
nates is given .by . . . . . . . . . 

, .. , '\''' ' 

· · . · 1 · a ik · a 2 i · J,.. 

D.LB = rn-a .Jgg -a k' ds =.9ikdx dx y9 X' X . 
. [ 

i gik = (9ikV 1
, • g == det(g;k) (i, k = 1, 2, 3). 

Choosing a metric of the space of co.~stant curvature in the.form (r2 ,= x;x;) 

1 [(· X;Xk) 1 X;Xk] 
. 9ik = 1 .+ r2 / R2 D;k - 7 + 1 + r2 /RZ r2 ' . 

we derive the following expression for the Laplace-Beltrami operator: 

,,,,, . ( . r
2
.) [( . x;xk) a,2 x; a ·] ( .1 •) 

6'.rn ;= 1 + R2 · D;k + R2 8x;8xk + R2 8x; = ~ P;P; +, R 2 L;L; 

where R is .the curvature radius, 

[ 
a X;Xk a ] 

P; = -i 8x; + R2 axk ' 

a . . 
L; = -if.ijkXj-

8 
= lijkxiPj 

Xk 

and the following commutation relations hold: 

( 
x·x1) [P;,xi] = -i 8il + ~2 , [L;,xi] = .-it;;1x; 

(2) 

(3) 

(4) 

(5) 

(6) 

It is easily seen that within the limits of the flat space, i.e. as R --> oo, the oper­
ator P; corresponds to an ordinary momentum operator, and the Laplace-Beltrami 
operator (2) turns into an ordinary Laplace operator in the flat three-dimensional 
space E3 • 
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' 

The issue of generalising the problem of isotropic oscillator for the spaces of con­
stant curvature with the use of the conformally flat metric in the classical mechanics 
has obviously been solved for the first time in [7], where, in particular, an ad~itional 
integral of motion characteristic of an oscillator interaction was found. Later, in [8] 
it has been shown that if the metric of the curved space is chosen in the form of (3), 
the role of the poterltiaL of isotropic oscillator in the flat space is played by 

2 2 
V(r) = µw_r ' 

2 

and an additional integral of motion has the form: 

1 . . . µ2w2 . 
• D;k = 2 (P;Pk + PkP;) + yx;xk, 

(7) 

(8) 

which in the limit of large R exactly transforms into Demkov;s tensor [23]: For the 
operators L; and D;j the following commutation relations are valid: 

[D;j,Lk] 

[D;k,D;i] 

i (~ik}Djl + ljkmDim), 
. ' ' . 

iµ2w2 . . . i ( 
- ~ (81;Lkj + 81kLij + D;jLkl +. Djk~il) + 2R2 {L;j, D1k} 

, /,:- gil:,
1 
fk~} + {~kj, J?;1} +jLk1'., ~i}), /ik = x;Pk - xkP;. 

where {,} means the anticommutator of two operators. 
The three-dimensional space of coristant positive cu'rvatur~ can:· also be realised 

geometrically on the three-dimensional sphere S3 of t~e radius R, imbedd«'!d into the 
four-dimensional Euclidean space, i.e on the hypersurface · 

q5 + q;q; = R2, 

where the coordinates q; change in the region q;q; S R\ and to each value of q; 
correspond two points on the sphere. Relation between the coordinate~, x; in the 
tangent space and qµ, (µ = 0, 1, 2, 3) is given by · · ·· · ·' -., 

x; R 
q; = JI + r2 / R2 ' · qo = JI+rz I R2 

, l, . - ., ,. 

obtained under the mapping from the center of the three-dimensional hypersphere 
onto the plane tangent to the "North pole''. S.uch a parametrization of the space of 
constant curvature is often called in literature the "geodesic parametrization" [24] 
and in a·one-to~one manner reflects only:the hemisphere (in this.case the upper one) 
or the sphere with identified diametrically opposite points. 

In the coordinates qµ, we have 

·. 1 .i( a .a) 
P; = -RN; = R q; 8qo - qo 8q; ' 

3 

a 
L; = -ilijkqj 8qk (9) 



an~ 
. . 1 - 2 2' 

D.LB = - R2 (N; + L;) 

where the operators L; N; are generat6i-s' of thegroup 0(4) 
,;; ,, 1' 

[L;, Lj] = ifijkLk, [L;, Nj] = if.ijkNk, [N;, N;] = ifijkLk 

The potential of the isotropic oscillator is given by the symmetric function 

2 2 

V(r)=V(q)=µ; 1-:2/R2' q2=qi+qi+q~ (10) 

with respect to the upper and. lower hemispheres, equals zero at the poles of the 
sphere and has a singularity at the' equator. 'An additional integral of motion is 
given by the expression. 

µ2w2 q;qk 
D;k = 2~2'(N;Nk + NkN;),+ 71- q2/R2 (11) 

and like in the case of the flat space .leads to separation of variables in the Schrodinger 
equation in more than o~~ system of coordinates. · 

3 Solution of the Schrodinger equation 

3.1 Spherical basis 

In the spherical system ofcoordin.~tes 

qi = R sin X sin{) cos'{), q2 = R sin X sin{) sin'{), 
q3 = R sin X cos 11, . qo = R cos X, . 

0 $ X $ i , 0 $ ,1 $ 1r , 0 $ '{) < 21r, 
. ' 

the oscillator potential has the form 

µw2R2 
V = -2-tg2x: 

Choosing the wave function according to 
' . 1 .. 
'W(x __ ,11,'f);R)= · /"mZ(x)Yi,,;(11,'f)), lEN; mEZ, 

. ·. vR3 
(12) 

where Yim(!?,'{)) is an ordinary spherical function [31], after separation of variables 
in the Schrodinger equation we have · · 

{ 
1 a . 2 a 2µR2 [E . t,,.2 l( l + 1) µw2 R2 2 ] } Z( . R) - 0 {13) ---smx-+-- ---------tgx X -

sin2 X ax ' ax t,,2 2µR2 sin2 X 2 . ' 
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Then, introducing the notation 

( 
1)2 - 2 µ2w2R4 1 - . 2 2µR2E µ2w2R4 -

l + 2 - k1, _1i_2_ + 4 - k2, _1i_2_ + 1i2 + 1 - £ (11) 

and making the substitution 

Z( ) = J(x) 
X . ' smx 

we arrive at the equation without the first derivative of the Jloschl -Teller-type 

-+ £---4. ___ 4 f=O d2 f [ k; - ! k~ - .. ! ] 

dx2 sin2 X cos2 X ' 

whose general solution is well known [35]. The requirement of regularity of the. wave 
function Z (X) at x = 0 and 1r /2 leads to quantization of the isotropic oscillator 
energy 

,v _h
2

[(N+I)(N+:J) 2v(N :!.)] 
EN(R) - 2/l Jl2 . + fl2. + 2 , ( 15) 

where the principal quantum number N ~- 0, l, ... · is related with the radial and 
orbital quantum numbers by N = 2n, + l, and t.he following not.at.ion is introduced: 

1 I 
V = k2 - 2 = 2 I + 11t2w2u1 

!t2 2 

Note that' the degree of degeneracy, like in t.lw case of, motion in the field of the 
harrnc;nic isotropic oscillator in the three-dirni!nsional Euclidean space, is equal :to 
(N + l)(N + 2)/2. 

The solution of t.l!equasiradial Schrodinger equal.ion ( I :J), orthonormalised in the 
inferval x E [O, f] is · 

Z(x) Z~n(x) = 2(N + v + 2)(¾1-)!I'(t!f- + v + 2) 
I'( N+;+:i )I'( N-;+3 + v) 

( · )/( )v+IJJ(l+½,v+½)( 2 ) 
X Sill X cos X N-1 cos X , -,-

where P~o,/J)(x) are the Jacobi polynomials. 

(16) 

Let us consider the limit of the flat space. It is easily seen that at large R 
(v-> >.R2

, >. = µw/1i 2) the formula (14) is used to restore the formula for the energy 
spectrum of the three-dimensional oscillator 

Jim E'fv(R) = E;, ~ liw (N + ~) 
R~oo 2 

5 . 



Transition from the spherical system of coordinates on S3 to the relevant sys~em of 
coordinates on E3 is accomplished within the limit R -+ oo, x -+ 0 and x ~ r / R 
where r is the radius vector in the three-dimensional flat space [26]. Using the 
known relation for the Jacobi polynomials [28] 

Jim p(a,/J) (1 - 2
x) = L°'(x) 

/3-+oo n /3 n ' 
(17) 

where L~ ( x) are the Laguerre polynomials, and taking account of the limiting rela­
tions 

· · l ~r 2 2(N+v+2)f(;t1+v+2) (smx) ⇒✓2).3/2(✓-\r)', (cosxy+1 /2 ⇒ e- 2, 

f(N-~+3 + v) .Jfi3 

we immediately get that 

Ii 1 · (>.) 1/4 
n-II;, .Jii3ZJ<,,(x) = ; 2

1
+I>.(N -1)!! (✓-\r)' e-~;

2 

L1;},(>.r2) = RNl(r) (18) 
(N + l +J)!! - 2 

where RNI(r) is the orthonorinalised sphericalradial wave function of an ordinary 
three-dimensional isotropic oscillator in flat spa~e [35]. 

The second interesting limit is the transition to a free motion. As v -+ O (w -+ 0) 
we have 

limE;,(R) = Eo(R) = h
2 

(N + l)(N + 3) 
v-o . N 2 . µ R2 

Comparing the above-derived expression with the formhla for the energy of a free 
motion of particles on the sphere "

2;(~t2l we get that J = N + 1 and J = 1, 2, ... , and 
consequently, the ground· state with J = 0 is missing in· the :limiting spe~trum .. 'As 
for'the oscillator spectrum (N -1) is always even, within the limit of'a free motion 
( J -1) takes odd values and at.fixed J there exist only states with l = J -1, 'J - 3, .... 
and, correspondingly, the degree 'of degeneracy' of the limiting spectrum is smaller 
than ( J + 1 )2, as it should be for the free motion on the sphere. · 

Further, using.the tran~formation [34] 

x P~.\-"½.½\2x2 _ l) ·= f(,\)f(m + 3/2) ,\ 
f(>. + m + l)f(l/2) C2m+1(x), (19) 

connecting odd Gegenbauer polynomials with the Jacobi polynomials and passing 
from the quantum number N to J, we come to the function 

2'+I[! 
lim ZK,,(x) = .J'ir 
V-+0, 

(J + l)(J - l)!(sinx)'C~~~(cosx), 
(J+l+l)! 

which, with an accuracy to a factor, .,/2 corresponds to the solution of the free 
Schrodinger equation on the three-dimensional sphere with the impenetrable barrier 
at the equator (x = 1r /2). 
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3.2 Cylindrical basis 

In the cylindrical system of coordinates 

qI = R sin a cos ¢1 , q2 = R sin a sin ¢1 , 

q3 = Rcosasin¢2, q0 = Rcosacos¢2, 

0 '5:_ a '5:_ 1r /2, 0 '5:_ <PI < 21r, -'Ir '5:_ <P2 '5:_ 1r, 

the potential of the isotropic oscillator is written as 

V--- -----1 µw
2
R

2 
[ 1 1· 

- 2 cos2 a cos2 ¢2 · 

Choosing the wave function in the form 

1 eim,J,1 

IJ!(<P1,a,¢2;R) = 1m<I>(a)I<(¢2) HC' 
. vR3 v21r 

(20) 

after separation of variables we arrive at two differential equations of the Poschl­
Teller-type 

d2M ( m
2 -! A-!) --+ £----4, ___ 4 M=O, 

da2 sin2 a cos2 a 
(21) 

d2 I< ( k2 - ! k2 - !) 
. d,1..2 +_ 4A ,-- : 2 } + 2 

. 21 I< = O, 
'+' · · sm '+' cos '+' ... . · 

(22) 

where (sinacosat1f2M(a) = <I>(a) <P =~+!,<PE [0,f] £ is determined by 
expression (14). The spectrum of constants is determined by: 

A= (n3 + v + 1)2, £ = (2n + n3 + jmj + v + 2)2, 
~ . 

where the quantum nu~bers n3 and n run the values 0, 1, 2, :: .. • Assuming the prin­
cipal quantum number N to be equal to N = 2n + 1ml + n3; we:get the formula 
(15) for the isotropic oscillator energy. For the cylindrical basis we get the following 
expression: 

1 eimef,, 

1J!(¢1,a,¢2;R) = IJ!Nmn,(<P1,a,¢2;R) = m<I>Nlmln,(a)I<:J<P2) y'2-i (23) 

where the functions I<;3(<P2) and <I>Nlmlna(a), normalised in the interval <P2 E [-f, fl, 
a E [0, f], are · 

<I>Nlmlna(a) 
2(N + V + 2)( N-!~!-na )!f( N+!~!+na + v + 2) 

(N+l~l-na)!f(N-1,;l+na + v + 2) 

7 



I<;3 ( c/>2) 

. . 

X (sin a)lml(cos a)n3+v+l p!lml,n3+v-tl)(cos 2a). N-lm!-n3 7 
2 

J(n3 + v + l)f(r½+ 2v + 2)(n3)! 

2v+½f(n3 + V + ~) 

( ,;_ )"+1p(v+½,v+½)( , ,;_ ) cos'f'2 • n3 s1n'f'2. (24) 

Note that to a cylindrical system of coordinates corresp<?nds an additional integral 
of motion · 

<fl µ2w2 R4 1 2 µ2w2 R4 
M = - def>/ + _;,,_2_cos2 c/>2 = R D33 + _;,,_2_ (25) 

Within large R the cylindrical system of coordinates on the sphere turns into an 
ordinary cylindrical system of coordinates (p, cf>, z) in the Euclidean space E3 [26]. 
Passing to the limit R---+ oo and a, c/>2 ---+ 0, and assuming 

. p. . ,I_ ,I_ z 
s1na ~a~ R' s1n'f'2 ~ '+'2 ~ R' 

as well as using formula (17) and the following relation [28] 

lim ,\-n/2c;t2 (t f!_) = 2-n/2 'Hn(t), 
,\ ..... oo • V >. n! 

where 'Hn(z) are the Hermite polynomials [28], we get 

l
. 1 
!ill -cl>" R ..... oo R NlmJn3(a) 

2,\( N-l';!-n3 )! e-¥-( ✓,\p)lml £l;;'~lm!-n3 (,\p2), 
( N+!';!-n3 )! 2 

l
. 1 
lffi -J<" ("' ) 

R-+oo .Jii, n3 'f'2 (,\)1/4 . e-!f 'Hn3(✓,\;), 
= ; J2n3(n3 )! · 

Thus, formula (23) leads to the orthonormalised cylindrical basis of the isotropic 
oscillator in the flat space. 

Within the limit of a free motion v ---+ 0 (w ---+ 0) with the use of the formula (2R'. 

we have 

P.
(½, ½>c ) _ (2n + 1)!! sin[(n + 1) arccos x] 
n X - , 

2n(n + 1)! sin(arccos x) 

Jim K;3(cf>2) 
v-+0 

lim cl>Nlmln (a) 
11~0 3 

{2 . 
y; sin{(n3 + l)(c/>2 + 1r/2)}, 

(N + 2)(N-n;-lml)!(N+n~+lm! + l)! 

(N-!7;!+n3 + l)!(N+l';l-n3)! 

(sin a)lml(cos a)n3+tp(lml,n3+Il(cos 2a) N-n3-lml • 
2 
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Assuming n3 + 1 = lm2!, 1ml = lm1! and J = N + I; we obtain (with an accuracy 
to a factor v'2) odd solutions of the Schrodinger equation for a free motion in the 
cylindrical system of coordinates. 

4 Expansion between spherical and cylindrical 
bases 

. 
4.1 Calculation of the transition coefficients 

Let us write the expansion between the spherical and cylindrical bases of the isotropic 
oscillator in the form 

N-lml 

WN1m(x,t9,cp;R) = ~ WN1m(v)WNmn3(c/>1,a,cf>2;R), (26) 
n3=0,l 

where the quantum number n3 takes even and odd values depending on parity N -
1ml. 

To calculate an explicit form of the expansion coefficients W~1m ( v) it is sufficient 
to use orthogonality in one of the variables for the functions entering into the cylin­
drical wave function and to fix at the most appropriate point the second variable 
that does not participate in integration. Passing beforehand in the left-hand side of 
the expansion (26) from the spherical coordinates to the cylindrical ones, according 
to the formulae 

cos X = cos a · cos </>2, 
sin a 

. ' 
sin t9 = Jl _ cos2 a cos2 c/>2 cf>= c/>1 

and taking into account that as a ---+ 0 

we derive 

cos X ---+ cos c/>2, 
. sin a 

sm t9 ---+ -- ---+ 0, 
sinc/>2 

z;11(x) ---+ zN,( c/>2) 

Yim(,?, cp)---+ (-1)~ 
21mljmj! 

21 + 1 (l + jml)! (sina)lml eim,p 

2 (l - !ml)! (sincf>2)lml .j2i 

cl>Nlmln3 (a) ---+ 
2(N + V + 2)(N+f';l-n3 )!r(N+l7;l+n3 + V + 2) (sina)lml 

(N-17;1-n3)!r(N-l';l+n3 +v+2) Im!! 

9 



Then, substituting the asymptotic formulae derived into the interbasis expansion 
(26), reducing (sina)lml and using the orthogonality of the functions /{~

3
(ef>2) in the 

interval -f ~ </>2 ~ f, we arrive at the following integral representation for the 
coefficients WNlm(v): 

W ( ) ( . m+lml . 
Nlmn3 V = -1) 2 

(21 +i)(n3 + v + 1) (l + jml)!(N-1~1-n, )! 

21ml+v+lf(n3 + v + ~) (l- lml)!(N+li;l-:-n')! 

(n3)!(N;1)! r(N-l~l+n3 + V + 2)r(¥ + V + 2)f(n3 +'2i, + 2) Al ('v) 
· 1 · Nlmln, , f(!!fl-+~) , f(N+l~+n'+v+2)f(N2-1+v+~) 

where 

A~lmln, ( V) 1
,r/2 • 1 1 

(sin </>2)1-!ml( cos </>2) 2"+2 Pi~,2'"+ 2\ cos 2ef>2) 
-,r/2 . 2 

P H½,v+½l( . ,1, )d,1, 
n 3 Sin '1'2 '1'2· 

(27) 

(28) 

A complete solution of the,problem.needs calculation oft.he integral in formula 
(27). Let us consider separately the cases of even and odd quantum number n3. 
Separating the interval of integration (28) into two intervals (-f, 0) and (0, f ), after 
the substitution in the first.integral ef>2 - ':-</>2 we see that the value of the integral is 
just doubled due to parity (l- lml-n3). Then, using the. :well-known transformation 
for the Jacobi polynomials (34] 

p~a,al(x) = 
3 -· 

f(n3+a+l)(!!f)! (a,-½)( 2 ) 
. . P~ . 2x -1 

f(¥- +.a+ l)(n3)!'. 2 · • 

f(n3 +a+ 1) (¥)! x:P(a,½)(2x2 -1) 
f (na;-i + a) (n3)! ¥ 

for n3 -: even, 

for n3 - odd, 

after the substitution x = cos2 </>2, we come to the following two table integrals for 
even and odd n3 

Al(+) ( ) 
N!mln, V = 

Al(-) ( ) 
Nlmln, V 

(-1)~ 
2v+•-r1+1 

f(n3 + V + ~)(¥-)! 
r(n32+3 + v)(n3)! 

1
1 

(1 - x) l-l-;I-' (1 + x )"+½ Pi~,½,v+½)(x )P~;½,v+½l (x )dx, 
-1 I • 2 

~ f( 3) (na-1) I ( -1) 2 n3 + V + 2 2 • 

2v+'-l';l+3 
• f (nai2 + v) (n3)! 

1
1 

(1- x(t1(1 + x)"+½p~~,½,v+½l(x)P~+½)(x)dx. 
-1 2 2 

·10 

~ 

• 
I 

r 

Using the formula for integration of the two Jacobi polynomials(30] 

11 (1 - x)"(l + x)l1 p(a,f3l(x)P(P,f3)(x)d; = 2/J+,-+lf(a - r + n)f(,B + n + l) 
_1 n m (m)!(n)!f(p + l)f(a - r) 

f(p + m + l)f(r + 1) 
4
F

3 
{-m, p + ,B + m + 1, r + 1, r - a+ 11 1} 

f(,8 + T + n + 2) p + 1, ,8 + T + n + 2, T - a - n + 1 ' 

we immediately get that A~lln, ( v) is expt'essed through the generalised hypergeo­
metric function 4F3 of the unit argument 

Al(+) V - (-1)9-f(n3+v+~)r(~+1)r(~+v)' 
N!m!n,( ) - ..ji (n3)!f(nat3 + v)(N;l)!f(1+rl + 1) 

. 2 2 F 2' 2 V , 2 , 2 1 r(l.-lml+l )f(!!rll) { _!!,l !!a.+ + l 1-lml+l _ 1+lml I } 
r(N-rl + V + 2) 4 3_ ½, N-;lml t- V + 2, _N~lml ' , 

and analogously 

Al(-) v _ (-1)¥ 2r(n3 + v + ~)r(~ )f( ~ + v)r(!::f-1 + 1) 
Nlmln,( ) - ...Ji (n3)!f(nar + v)(N;l)!f(1+1~1+I) 

f(!!a. + 1) '{ _ n3-1 n3+3 + 1-lml + 1 _ l+lml-1 I } 2 F 2 , 2 v, 2 , 2 1 
. r(N-lml+S )4 3 ~ N-lml+S + _.N+lml-1 · --2-+v 2• 2 v, 2 

Taking account of the known symmetry property for the series 4F3(1) ,of the Saalschiitz­
type [29] 

4
F

3
{-n, b, c, dl 1} = (f-b)n(g_-b)n

4
A{ -n, b;e-c, e.-,,d ll}, 

e, f, g (f)n(Y)n e, b-f-n+l, b-g:-n+l 

-n + b + c + d = 1 + e + f + g, 

one can easily be convinced that both the hypergeometric functions 4A(l) entering 

into A~fl
1
n,(v) can be transf~rmed to a unique form: 

F {-!\?-, T + V + 1, 1-1~1+1, _1+~ml i 1}- (-l)~f(½)r(!.::f! + 1) 
4 3 ½, N-;Jml+v+2, _N~lml - qnag-i)r(l+lmJ-n'+l) 

r(T + v + ~)r(!!:pl + v + 2)(N+li;l-n3 )!f(~ + 1) 

r(N+r1 + l)f(N-l~l+n, + V + 2)f(v + l)r(1-lmJ-n3 +l) 

2' 2 ' 2 ' 2 
{

-~ _na-1 _N-1 !'!.±1.+v+21} 
• 4F3 V + ~, l+JmJ-n3 + l, 1-lmJ-n3 + l 1 , 
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{ 

_n,-1 n,+3 + 1-lml ·+ 1 _l+lml-1 I } (-l)~r(:!)r(l-lml+l) F 2 , 2 v, 2 , 2 1 = 2 2 . 

4 3 :! N-lml+s + V _N+lml-1 r(& + l)r(l+lml-n3 + 1) 
2' . 2 ' 2 2 2 

r(T + V + ~)r(~ + V + ~)(N+l~l-n3)!r(~) 

r(N+l~l+l )r(N-l~l+n3 + V + 2)r(v + 1)r(1-lmJ-n3 + 1) 

. F 2 1 2, 2, 2 1 
{ 

_!!J. _n,-1 _N-1 fY±l+v+21 } 
4 3 V + ~' l+lmJ-n3 + 1, l-lmJ-n3 + 1 · 

After simple transformations we finally derive the sought formula for the coefficients 
of the interbasis expansion W~}m(v) 

n (-1) m~fmf .fo J(2l + l)(n; + v +-f)(l + fml)!(l -=Tml)! 
W 3 (v) - -'----'-----'-- -'-'----'-.:___---.-:--'----'-....:.:..--'-----'-__:.: 

Nlmn3 - 21+v+1 r(l-lm~-n3 + l)r(~ + l)r(v + ~) 

r(!!f- + V + 2)r(~ + v)r(n3 + 2v + 2)(N-l~l-n3)!(N+l~l-n3)! 

r( ¥ + ~)( N:;l)!r( N-l~l+n3 + V + 2)r(N+l~l+n3 + V + 2)(n3)! 

F 2' 2' 2' 2 1 { 

_ !!J. _ n,-1 _ N -1 fY±l + V + 21 } 
• 4 3 . V + ~' l+lmJ-n3 + 1, l-!"'J-n3 + 1 · (29) 

Note that the expression we have derived for W~im(v) is independent of parity of 
the quantum number n3 • 

4.2 Connection with the Racah coefficients 

The interbasis expansion coefficients (29) can also be expressed through 6j, the 
symbols or Racah coefficients of the SU(2) group, extended over their indices to the 
region of real values. Comparing the expression for W1mn3 ( ~) with the representation 
of the Racah coefficients W(abed; cf) through the hypergeometric functions 4F3 (1) 
of the unit argument [31] 

W(abed; cf) = Ll(abc)Ll(cde)Ll(aef)Ll(bdf) 
(a+ b - c)!(d + e - c)!(a _ J + e)! 

(a+b+d+e+l)! 
(b- J + d)!(c - a - d,+ f)!(c - b- e + !)! 

·4F3 · 1 { 
-a - b + c, -b - d + J, -a - e + J, c - d - e I } 

-a - b - d - e - 1, -a+ c - d + J + 1, -b + c - e + J + 1 ' 

where Ll(abc) is 

, Ll(abc) = (a+ b - c)!(a - b + c)!(b + c - a)! 
(a+b+c+l)! 

12 

(30) 

!~j 
. ' 
I) 

{ 

' l 

j 

-~ 
1) 

l 
I 

and taking account of the symmetry property cif the Racah coefficients 

W(abed; cf)= i(-1r+b-cW(abed; cf), 

e = -·e -1, J = :..:.a-1, f = -f -1, 

after simple calculations we get the required formula 

'N-l+m+fmf V ., · 
w~~m(v) = (-1)-2 2 (1 + 1/.2)(n3 + V + l)W(abed; cf), 

- N+!ml b - N-lmH a- 4 , - 4 ' 

d = N-!m! + ~ + l = N+lm! + ~ 
4 2 4' e 4 2> 

21-1 
C = ---4-, 

f=T+f 
Then, using the relation of orthonormalization for the Racah coefficients [31] 

L J(2c + 1)(2J -J:- l)W(abed; cf)W(abed; cf')= 8n,, 

we can write the inverse expansion in the form 

N 

W'fvmn3(</>1,a,</>2;R) = L w,!.mn3(v)W'fv1m(x,t?,<p;R), 
l=lml,lml+l 

(31) 

where summation over l starts with 1ml or 1ml + 1 depending on the parity of the 
number N - 1ml, and the coefficients 

W- I . ( ) _ wn3 ( ) Nmn3 V - Nim V 

can be expressed through the polynomials 4F3(1) with the use of the representation 
(30). 

4.3 Limiting relations 

Consider limiting transitions to the flat space and free motion in the expansion 
coefficients W,!.mn3(v). . 

,{..3.1 As R--+ oo the generalised hypergeometric function 4F3 (1) transforms into 
3 F2(1) according to 

' 2' · , 2 ' 2 ' •2 V · · 2 ' 2 ' 2 
{ 

_!!,l. _n,-1 _N-1 !i:±1.+ +21 } { _!!,l.· _n,-1 _N-1 I } 
4F3 . v.+ 1,. l+lmJ-n3 +1, HmJ-n3 + 1 1 :::} 3F2 l+!mJ-:n3 +1, HmJ-n3 + 1 1 

Having made the relevant limiting transition in gamma functions, after simple alge­
braic transfor~ations we get the known for~ula for the coefficients of the interbasis 

13 



expansion between the spherical and cylindrical bases of the harmonic isotropic os­
cillator in the flat Euclidean space [33]: 

(- )m+r1 
lim WN/m ( v) = ~l-

., ..... oo 2 n3 
(N - lml - n3)!!(N + 1ml - n3)!! 

(N + l + l)!!(N - /)!!(n3)! 

J(2/ + l)(l + lml)!(/ - jml)! F { -T, - n32-1, _N2-1 j 1}. 
r('-lmJ-n3 + l)f('+lmJ-na + l) 3 2 1+1m1-n, + l, t-lmJ-na + l 

On the other hand, the limiting transition to the flat space can directly be traced in 
the formula (31). Indeed, using at large R the asymptotic coupling [31] 

W(abe+R,d+R;c,f+R)~ l_' c~·1d=:·bd-f 
J2R(2c + 1) ' ' ', 

l . • ~.• •. • 

and the symmetry property of the Clebsch-Gordan coefficients [31] 

cc,--y = (- I)a+b-c cc,-y . '· 
a,-cx;b,-{J a,a;b,/3' 

we obtain that 
~ 21-1 21m1-1 

lim WN1m(v) = (-1) m 2 m C N!,..:, .J+lml-2n3 .N-lml-1 2n3-Ntlml-l. 
V-+00 4 I ,{ 1 4 I -. 4c 

4.3.2. Assuming v = 0, (w = 0) and passing to the quantum numbers corre­
sponding to the free motion on the sphere m ~ m1,n3 + 1 = lm2l,N = J -1 (note 
~hat J - / is odd and J - lm1l - lm2l is even), we have 

; . ' , ·. r----·-· -------'-, ---------
(J+lm1J-lm2l)!(J-'jmiJ-lm2l)!(J+ l +l)!!(J - l)!! 

(J+lm1J+lm2l)!(J+lm_1J-lm2l)!(J + /)!!(J - / -1)!! 
~~ WN/m(v) = (-1) m1+}m1I lm2l 

. 2' 

J(l + 1/2)(/ + lml)!(l - lml)! F { ..:·lm22r-1,_ ... lm~-2, __ J-~-1, J+~+3 I } 
r(l-lm1l-lm2I + ;!)r('+lm,Hm2I + ;!) . 4 3 ;! l+lml-lm2I + ;! l-lml-lm2! + ;! 

1 
2 2 2 2 27 2 27 2 2 

= (-l)J-~-1+mJtr11 J(l + 1/2)lm2I W(abed; cf), (32) 

where 
_ :!+lml-1 b _ J-lml-2 _ 21-1 

a- 4 ' - 4 ' C- 4' 

d - J-lml - J+lml.:.I .. f - ·1m2(.'...1 
- 4 , e- 4 ' - 2 • 

Let us mention an interesting fact that within the limit of a free motion in formula 
(32) for the inter basis coefficients WNtm (v) instead of the hyper geometric functi~n 3F2 

of the unit argument we have the function 4F3; and instead of the Clebsch-Gordan 
coefficients of the SU(2) group, the Raca_h coefficients for one fourth values of the 
SU ( 1,1) group momentum. Analogous formulae arose in calcul~ting the coefficients of 
transition between different hypersphe~ical syste~s of coordin'~tes (iri the formalism 
of "trees") and have been analysed in [32]. In our case, this fact allows an alternative 
calculation of the integral Al,.lmln,(v) in formula (28) at v = 0. 
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5 Elliptic bases 

The oblate elliptic system of coordinates ( known as the elliptic-cylindrical I) has 
the form 

q1 = Rsn(µ, k )dn( v, k') cos</>, q2 = Rsn(µ, k )dn( v, k') sin</>, 
q3 = Ren(µ, k)cn(v, k'), q0 = Rdn(µ, k)sn(v, k'). 

-I{ 5: µ 5: K,-21{' :S v 5: 21{',0 5: </> < 21r, 

where the elliptic _Jacobi functions of the variables a and f3 have the moduli k and 
k', respectively, k2 + k'2 = 1, and J{ and J{' are the complete elliptic integrals. 

For the potential V in the elliptic system of coordinates we have 

) 1· 22[ 1 ] V(µ, v = -
2

Mw R d 2 2 
- 1 . 

n µsn v 
(33) 

Choosing the wave function '11 in the form 
eimr.p 

'11(µ, v, rp) = 1P1 (µ )t/J2(v) ,/2-i' mE Z, (34) 

after the separation of variables in the Schrodinger equation (33) we arrive at two 
ordinary differential equations 

d
2

t/;1 + cnµdnµdt/; 1 _ [(2MER
2 

+ M
2
w

2
R

4).k2sn2µ .. 
dµ 2 snµ dµ - ;,, 2 n,2 • , 

d2t/;2 
dv2 

m2 

+ sn2µ. 
M2w2 R4 l!:_] 1P1 = ->.q(k; R)t/;1,• 
~ d~µ . . 

k'2 snvcnv dt/;2 [ ( 2M E R2 M2w2 R4 ). . . 2 ·., 
dnv . dv + ;,,2 + ;,,2i· dn v 

k2m 2 M 2w2 R4 1 ] . 
+ -d 2 - ;,,2 2 1P2 = +>.q(k; ./f.)t/;2, 

n v sn v · •· 

(35) 

(36) 

where the quantum number q enumerates the elliptic separation constant >.q(k;-R). 
Excluding from the equations (35) and (36) energy E, we co_me to the following 
operator. 

A 
1 [d 2 82 k2 2 82 . cnµdnµ d 2 8 ·· ·k,2k· 2 snvcnv 8 ] = ----~- n v- + sn µ- + --'--'- n v- - ----

- k2sn2µ - dn2v 8µ 2 · ov2 snµ 8µ dnv 8v 

M 2w2 R4 dn2 v + k2sn2µ - 1 dn2 v + k2sn2µ 82 + _____________ .._..c.._ 

n2 dn2µsn 2v dn2vsn2µ 8rp2 

(1- k2)L2 - k2R2D + k2L2 + (k'2)M2w2R4 + k22MR2 H 
33 3 ;,,2 ;,,2 ' 
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whose eigenvalues are Aq(k; R), and eigenfunctions are given by expression (34). Let 
us introduce a new operator according to · 

~obi. _1_ {11. (1- k2)M2w2 R4 - k22M R2 H k2 L2} 
1 - k2 + t,,2 n.2 + 3 

L2 -aR2 D33, (38) 

where a = k2 /(1 - k2
) E [0, oo ). As is known [27], a transition from the oblate to 

the prolate elliptic system of coordinates on the sphere can be obtained under the 
transformation k--+ ik/k', k'--+ 1/k'. In this case, the operator (38) for the prolate 
system of coordinates has the form 

~p,l. = L 2 + k2 R2 D33. (39) 

The latter formula allows one to describe both the elliptic systems of coordinates 
uniquely with the use of the operator 

S' = L2 - aR2D33, ( 40) 

where a E ['-1,oo). For positive a we have the oblate system; and for a E [-1,0], 
the prolate elliptic system of coordinates. 

5.1 Expansion of elliptic bases over the hyperspherical and 
cylindrical ones 

Thus, we have seen in the previous sections that all three oscillator bases: hyper­
spherical, cylindrical and both the elliptic ones, are eigenfunctions of three complete 
sets of operators {H, L2, L;}, {H, D33 , L;} and {H, ~, L;} so that 

L2WN1m(X,i'J,cp) = 1(1+ l)WNim(x,i'J,rp), (41) 

D33WNnam(<f'1,a,cp2) = (n3 +II+ 1)2wNn3m(<f'1,a,cp2), (42) 

~Wnqm(µ, 11, cp) = Aq(a; R)Wnqm(µ, II, cp). (43) 

The operator equations ( 41 )-( 43) allow us to construct elliptic bases of the isotropic 
oscillator on the sphere as a superposition over the hyperspherical and cylindrical 
bases. 

Now, let us write the sought exp,ansions: 

ii 
WNqm(µ,11,cp) = L Tiqm(a;R)WNim(x,i'J,cp)i 

l=lml,lml+l 

N-lml 
WNqm(µ,11,cp) = L u;•qm(a;R)WNn3m(<f'1,a,cp2)-

n3=0,l 

16 

(44) 

(45) 

Consider the expansion (44). Substituting (44) into the operator equation (42), we 
find 

N 

a~
2 

{/(/ + 1) - Aq(a; R)} T1qm = L T~qm(D33)111, 
l'=O 

(46) 

where 

(D33)111 = J Wi.1m_(D33)WN1 1mdft (47) 

To calculate the integral ( 4 7) we use the expansion of the spherical basis over the 
cylindrical one and equation ( 42) for the eigenf~nctions' of the operator D33 • As a 
result, we come to the following expression for (D33)111 : 

N-lml 

(D33)11 1 = L WNlmWNl'm(n3 +II+ ~)2, 
n3 

Then, using the three-term recurrence relation~ for the Racah coefficients [31] 

B {
a,b,c+l} ( l)B ·{a,b,c-1} (2 l)A {a,b,c}-o 

c c d,l,f + c+ c.;..1 d,l,f +,. c+ c d,l,f. - , 
' ' ' • , , r 

where 

Be = 'V(a+ b + c + 2)(-a+ b + c + l)(a-' b + c + l)(a + b- c) 
' 

x V(d-1,+ c+ l)(d+ 1-c)(d+ I+ c+2)(-d+ I+ c+ 1), 

Ac, =. [a(a + 1) ~ b(b + l)][d(d+ 1) :--1(1 + 1)] .+ c(c + l)[a(a + 1) 

+ b(b + 1) + d(d + 1) + 1(1 + 1) - c(c + 1)] - 2c(c + l)f(f + 1) 

and the orthogonality property 

N-lml 

L WN/m WNl'm = hw, 
n3=0,1 

we have 
16B1_2 . . ·. · l6B1 

0 (D33)111 = - (2/ - 1)(2/ + 1) 01-2,11 + C1h111 
- (21 + 1)(2/ + 3) 1+2,1' 

,ere 

( I~) 

(49) 

(50) 

(51) 

(52) 

1 ' I "• • 

= 
16 

V(l- lml + 1)(/ - 1ml + 2)(/ + 1ml + 1)(/ + 1ml + 2)(N,+ I+ 3)(N -1) 

x V(N +I+ 2v + 4)(N - I+ 2v + 1), (53) 

= ½{ 4(N + l)(N + 3) + 2(2lml2 -1) + 4v(2N + 2v + 5) - (21- 1)(2/ + 3) 

(4lml2 -1)(2N+3)(2N+5+v)} ( ) 
(2/ - 1)(2/ + 3) 

54 
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Substituting the matrix element (53) into ( 46), we finally arrive at the three-term 
recurrence relation 

16 1-2 { 1 } (2l-1)(2l+l)B1-2TNqm(a;R) + aR2[l(l+l)-Aq(a;R)]-C1 Tivqm(a;R) 

16 + ~---:-:--:-:----B T1+2 (2/ + 1)(2/ + 3) I Nqm(a; R) = 0, (55) 

, Tiv;m ( a; R) ·= Tiv;m ( a; R) = 0. 

for the expansion coefficients Tj,;q'm ( a; R). The recurrence 'relation (55) is a system 
of homogeneous equations which has to be solved with the normalization condition 

N 

L ITivqm(a; R)l 2 = 1. 
l=lml,lml+I .l 

' 1 : ~ ,~ ,- :' ;. ' c' . ": 

Eigenvalues of the elliptic separation constant Aq(a;·R)' are calculated from the con-
dition for the determinant of the system 'of ho~ogeneous equations to b~ equal to 
zero (55). 

Consider now tlie expansion ( 45) ·of the elliptic basis over th~ cylindrical one. In 
a similar way, like in the calculation of the expansion coefficients ( 44), we get 

. N-lml 

{Aq(k;R) + aR2(n3 +ii+ 1)2} UN~m(k; R) = L' u;~m(k;R),(L2)n3n~\ (56) 
n;;:=o,1 

where 

(L2)n3n; = J WNn3mL2WNn;'."dfl. (57) 

The integral in (57) can be calculated if one uses the expansion of the cylindrical 
basis over the spherical one and then the symmetry property of the Racah coefficients 

{ 
a,b,c} = { a,l,f} 
d,l,f d,b,c 

(58) 

and the three-term recurrence relation ( 49). As a result of simple calculatioi'is we 
obtain the expression (U;?qm = Un3) · 

jjn3Un3+2 + { Cn3 - Aq(k; R) - aR2(n3 + V + 1)2
} Un3 + Bn3-2Un3-2 = 0, (59) 

where 

Bn3 
1 ;(n3 + 2v + 2)(n3 + 2)(n3 + l)(n3 + 2v + 3)(N + 1ml + n3 + 2v + 4) 
4\ (n3 + V + l)(n3 + V + 2)2(n3 + V + 3) 
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x J(N + 1ml - n3)(N - !ml - n3)(N - !ml+ n3 + 2v + 4), 

- 1 { Cn3 = 2 (N + 2)2 + v(2N + 2v + 5) + (lml2 
- 2) - (n3 + v)(n3 + v + 2) 

~ ·v(v + l)(N + l~I + v + 2)(N - 1ml + v)} 
(n3+v)(n3+v+2) · 

As in the previous case, a homogeneous sys~em of equations should be solved together 
with the normalization condition 

N-lml 

L IUN~m(a;R)l 2 = 1, 
n3=0,1 

and the separation constant can again be determined from the condition of equality . 
to zero ~f the corresponding determinant of the homogeneous system of equations 
(59). . 

In conclusion, we would like to mention that in the limit of the. free motion\ 
v -+ 0, the three-term recurrence relations (55) and (59) transform into those for the 
expansion coefficients of the elliptic basis over cylindrical and ·spherical ones, which 
have been obtained in the work [27]. 

6 Conclusion 

In the present paper, a first step has been made to completely study the Schrodinger 
equation· and to calculate the. coefficients 'of'various inter basis expa~si~ns· foi the 
potentiaL()f the isotropic oscillator on the three-dimensional sphere in different or­
thogonai systems of coordinates. We have calculated interbasis expansions Jor .the 
"sphere,-cylinder" transition·and also constructed ~oluti'ons ofthe Sclirodiriger equa­
tion in both the elliptic systems of coordinates as expansion over the spherical and 
cylindrical bases. In contrast with the "sphere-cylinde~" tran~ition; in ~liich the 
transformation coefficients are expressed through the gener~lised hypergeometric 
functions 4 F3 of the unit argument or through the Racah coefficients, extended over 
their indices into the region of arbitrary real .values, the transition co~fficierits for 
the elliptic bases are defined by the three-.term recurr;nce relations and. cannot be 
written down explicitly. ' • 

In this paper we have considered the sphero-conic and ellipsoidal bases of the 
isot;opic oscillator. In separating variables in the Schrodinger equation for the 
sphero-conic system of coordinates we arrive at the quasiradial equation (13) con­
sidered in Sect. 3 and two standard Lame equations that are derived i~ separating 
variables for the Helmholtz equation on the two-dimensional sphere. As a result, the 
solution of the Schrodinger equation is 

•t< 

1ll(x,a,{3;R) = Z,~1(x)Av.(a)A1>,(/3), 
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where the function ZJv1(x) is determined by expression (16), and the explicit form 
of the Lame polynomials Av.(o:) can be found in [28, 36]. 

For the ellipsoidal basis of the isotropic oscillator, after separation of variables 
in the Schrodinger equati~n we obtain three identical equations containing tw~ el­
lipsoidal separation constants ,\1, ,\2. This means that in contrast with the cases 
considered we deal with the two-parametric spectral problem. Application of the 
method of constructing solutions of the Schrodinger equation as expansion over sim­
pler bases leads to two many-termed recurrence relations determined by the cubic 
matrix. Obviously, the simplest way of constructing an. eilipsoidal basis consists 
in applying the Niven method [37] allowing one to w~ite down a solution to the 
Schrodinger equation in terms of zeroes of the wave function and reduce the problem 
to a system of relevant nonlinear equations. This kind of investigation is beyond the 
scope of the present paper and will be carried out elsewhere. 

In condusion, we would like to thank L.G. Mardoyan and V.M. Ter-Antonyan 
for useful interesting discussions. 
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