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This work is devoted to the memory of

. ‘ our dear fnend Lv. Lutsenko
1. Introductlon :

Starting with' the classmal works by Schrodinger [l], Stlvenson [3] a.nd Infeld [2]
systems with accidental degeneracy in spaces of constant curvature have attracted
attention of many researchers in'connection with nontrivial realization of hidden
symmetry in these problems and with possible applications, especially to constructing
many-particle wave functions [4], nonrelathstlc models of quark systems [5] and
solutions of the two-center problem [6]. ' : R

Essential advances in the theory of systems with a.ccxdenta.l degeneracy have been
made by Nishino (7], Higgs [8], Leemon [9] and [10, 11, 12, 13]. It has been shown
that the complete degeneracy of the spectrum of the Coulomb problem and harmonic
oscillator on the three-dimensional sphere in the orbital and azimuthal quantum num-
bers is caused by an additional integral of motion: an analog of Runge-Lenz’s vector.
(for the Coulomb potential) and an analog of Demkov’s tensor (for the oscillator).
However, in contrast with the flat space the integrals of motion for the Coulomb
problem and isotropic oscillator do not form the Lie algebra as ‘the relevant com-
mutators are nonlinear. The latter does not allow one to restore, respectively, the
algebra or the group of hidden symmetry. Later in:the works [14, 15] it-has been
shown that as an algebra of hidden symmetry ‘one can use quadratic-algebras of
the general type, the so-called Racah algebras. Systems with hidden symmetry for
the harmonic potential and-those of Winternitz-Smorodinsky’s.type in the three-
dimensional space of constant curvature were also studied by using the technique of
path integrals in the papers by Barut, Inomata and Junker [16, 17], Grosche [18] and
Grosche et al. [19, 20, 21].

A possible way of determining a group of hldden symmetry of systems with ac-
cidental degeneracy is determination of the expansion coefficients between different
bases obtained after the separation of variables in the Schrédinger equation. Such
interbasis expansions have first been considered for the "sphere-cylinder” transitions
(isotropic oscillator on the sphere), ’ "sphere-parabola” transitions and those between
spherical and elliptical bases (for the Coulomb potential on the sphere and hyper-
boloid) in [14, 15, 25]. It has been'shown in [19] that like for the Helmholtz equation
[22] variables in the Schrédinger equation for the potential of the isotropic oscillator
on the three-dimensional sphere are separated into all the six orthogonal systems of
coordinates: spherical, cylindrical, sphero-conical, two elliptic and ellipsoidal coor-
dinate systems.

The aim of the present paper is the description of solutions of the Schrodmger,
equation in'the spherical, cylindrical and two elliptic systems of coordinates and the
calculation of expansion coefficients between the corresponding bases. Note that the
solution of the Schrédinger equation for the isotropic oscillator in the spherical system
of coordinates was found in [8, 9; 14] and in the cylindrical and elhptlc systems of
coordinates are presented for the first time. :

The paper is organised as follows. Section 2 presents some known results related
to the Schrodinger equation for the three-dimensional space of constant curvature.
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Sectlon 3 is devoted to the solution of the Schrédinger equation for the potential of
the lsotroplc oscillator in the spherical and cylindrical systems of coordinates. Section
4 is the calculation of coefficients of the interbasis expansion between spherical and
cylindrical bases using the explicit expression for the wave functions of the isotropic
oscillator. In Section 5 the elliptic bases of the isotropic oscillator are constructed
as expansion over the spherical and cylindrical ones. :

2 The Schrédinger equation and 1ntegrals of mo-
tlon ‘ ‘

The Schrodmger equation in the space of constant curvature has the form

—o-ALp 7}— V(x) \IJ =’E\IJ. A (D)

2 S ,
where ALB is the Laplace—BeltraIm operator that in an arbltrary system of COOI‘dl-
nates is glven by -

~1a /R el .
ALB = Ta—ﬁg'k-—k, ds = g,kda: d::: SRR T ¢)
g 1
Cogh= (g.k) g = det(g.k) (z k = 1 2 3)

Choosmg a metnc of the space of consta.nt curva.ture in the form (r =z z,)

S S VP S W) IR
Ry [(6"“ )+1+r2/R2 r?]" (,3)

we derlve the followmg express1on for'the’ La.pla.ce—Beltra.ml opera.tor

it (pp + é2~ L) (4)

. r? itk ‘62‘ 'z. J .
Ars'= (1 + ﬁ) [(5"‘+ ) Dz:de t R 6:1:,]
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where R is the curvature radius,

_ | 6 T;Tk 6 _ . : 6 _ * ‘ :
., R = —1 [—BZ + —}?.a_z:k] 5 L, = f“lf,JkIJa—x; = 6,JkI,PJ . (5)

and the following commutation relations hold:
; . TiT}

(Pu] = —i (50 + F)

It is easily seen that within the limits of the flat space, i.e. as R — o0, the oper-

ator P; corresponds to an ordinary momentum operator, and the Laplace-Beltrami

operator (2) turns into an ordinary Laplace operator in the flat three-dimensional
space Fj.

[L,’,.’E(] = r—iq_,,-lz_,,' . (6)
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The issue of generalising the problem of isotropic oscillator for the spaces of con-
stant curvature with the use of the conformally flat metric in the classical mechanics
has obviously been solved for the first time in [7], where, in particular, an additional
integral of motion characteristic of an oscillator interaction was found. Later, in 18]
it has been shown that if the metric of the curved space is chosen in the form of (3),
the role of the potential, of isotropic oscillator in the flat space is played by

2,2
- opwir? o
Vi) =T ™
and an additional integral of motion has the form: ‘ :
, R
,;Dt‘k—2(PPk+PkP) 2 —zizk, L (8)

which in the limit of large R exactly transforms into Demkov’s tensor [23). For the
operators L; and D;; the following commutation relations are valid:

[Dyj, Ly} = i(ﬁ,i;ijtfﬁ_jkmD;m),'f o R

[ Di; D] : lll o —5— (6uLyj + 511:[«, + 5.1Lk1 + 5JkL.z) SR ({L.‘j,Dzk}

1
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+. {Lu,ij} + {Lk,’,Du}e+ {LH,D.'J'}), Li = 2P ~ 2P

where {, } means the a.ntlcommuta.tor of two operators.
The three-dimensional space of constant positive curvatiire can:also be realised
geometrically on the three-dimensional sphere 3 of the radius R, 1mbedded into the

four-dimensional Euclidean space, i.e on the hypersurfa.ce A
o . .

@+ qigi = R2

where the coordinates ¢; change: in the region ¢;q; < -R? and to each value of ¢;
correspond two points on the sphere. Relation between the coordlna.tes :z;, in the
tangent space and g, (g =0,1,2,3) is glven by e

T R
E=A +r2/R2’ o= VTR
obtained under the mapping from the center of the three—dlmensmna.l hypersphere .
onto the plane tangent to the ”North pole”. Such a parametrization of the space of
constant curvature is often called in literature the ”geodésic parametrization” [24]
and in a'one-to-one manner reflects only:the hemisphere (in this case the upper one)

or the sphere with identified diametrically opposite points.
In the coordinates q“ we have

P = RN = ((I-aq 405;1:), Li=—15ijkqja_qk’ o -(9)
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and B o

| D ¥v.47;3'.(1‘;? +L})

where the operators L; N; are generators of the group 0(4) 7
[LiyLj) = lf-;kLln [LnN] =ieiuNy, [Ni,Nj]= lfukLk

The potential of the isotropic oscilla.torris given by the symmetric function

Vi) =V(g) = _."2 2

=g +a+a (10)
with respect to the upper and lower hemispheres, equals zero at the poles of the
sphere and has a smgula.rlty at the equator. An additional integral of motion is
given by the expression: .

. o : i :
- ————q'q"‘ _ ~1)
2R2 1 -¢*/R?
and like in the case of the flat space leads to separation of variables in the Schrédinger
equation in more than one system of coordinates.

Dy = =5 (NiNVie + NiN;), + £

3 Solution of the Schrodlnger equatlon

3.1 . Spherical basxs
‘In the sphenca.l system of coordma.tes (

= Rsin x sin ¥ cos s q2 Rsin xsin 19 sin ¢,
q3—R51nxc0519 go = Rcosx,

0<x<r, 0<19<7r 0<tp<21r,

the osc1lla.tor potential ha.s the form

T
y =B
\ 2 S
Choosmg the wave functron accordmg to -
‘I’(X,19 ®; R) —Z(X)Y:m(ﬂ 99) leN; meZ, ' '(12)

Wi

“where Yzm(ﬂ cp) is"an ordinary spherlca.l functlon [31}, after sepa.ratlon of va.rla.bles
in the Schrodinger equation we have :

0 2uR?

1 9 . + h? 1(1+1) pwR?
sin X3X s —3 R?.

2;1R2 sin? x 2

ty’»x] }Z(x; R) =0 (13)
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Then, introducing the notation

(-

and making the substitution

“20?RY1 . 27 2,2 p4
kf,#WR sy 2pRE+pr

+7 h? h h?

—rt3 +l=€  (14)

we arrive at the equation without the first derivative of the Poschl -Teller-type

&2 k-1 k21
_f+ & - ¥24' f=0,
dy? siny  cos?y

whose general solution is well known [35]. The requirement of regularity of the wave

function Z(x) at x = 0 and #/2 leads' to quantization of the isotropic oscillator
energy :

- RIWN+)W+3) 2w, 3\ o
E”(R)‘éﬁ[ o (V)| o

where the principal quantum number N = 0,1,... is related with the 'radial and
orbital quantum numbers by N = 2n, + [, and the following notation is introduced:
1 1 2wt |
vk — =/l + ——"F — .
T 2T +-;/ﬁ- 2
Note that the d(‘grcc of (l(g( neracy, like in the case ()f motl()n in the fleld of the
harmonic isotropic oscillator in the three-dimensional Luclidean space, is equal:to
(N + 1)(N +2)/2.
The solutjon of the qqasnmdml S(,hro(lmg( r cquation (l 3), ()rthonorma.llsed in the
inte rval x € [0 ] is

#(x)

l‘(‘&zli‘)l(lv l+'$+ )

- 2N + v +2)(EHT N+'+,,+2
An,(x)=\/ Sl )

) L1
x. (sin x)!(cos X)"“P&” +’)(cos 2x), L (16)
2 - N

where P,E"'ﬁ)(:r) are the Jacobi polynomials.

Let us consider the limit of the flat space. It is easily seen that at large R

(v = AR%, X = pw/h?) the formula (14) is used to restore the formula for the energy
spectrum of the thre&drmensxonal oscillator

e 3
lim EN(R) = Ey = hw (N+ 5)
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Transition from the spherical system of coordinates on S; to the relevant system of
coordinates on Ej is accomplished within the limit R — oo, x —» 0 and ¥ ~ r/R
where 7 is the radius vector in the three-dimensional flat space [26]. Using the
known relation for the Jacobi polynomials [28]

2z
: (a,8) a
pllﬂ‘o P, (1 5 ) L3(2), (17

where L%(z) are the Laguerre polynomials, a.nd taking account of the llmltmg rela.—
tions

AN + v+ 2P(ME + v +2) (siny) | 7 U ywtlf2 A
\/ N(YHE8 1) Y/ DRy, (cos )+ = e,

we immediately get that

B 1/4 _ - k ‘v ’
A 2H1N(N = 1)
fin, G0 = () oo O

where Ry(r) is the orthonorma.hsed spherlcal radlal wave function-of an ordinary
three-dimensional isotropic oscillator in flat space [35].

1+§

"The second interésting limit is the transition to a free motion. As v — 0 (w —.0) |

we ha.ve )

11m EN(R) EN(R) 2

Compa.rmg the above-derived expressron with the formula for the energy of a free

R+ +3)
24

motion of particles on the sphere BJI42) we get that J = N+1land J =1,2,. and‘_

e
consequently, the ground ‘state with J =0 is missing in'the’ hrmtmg spectrum ‘As

for'the oscillator spectrum’ (N — I) is always even, within the limit of a free motlon ;

(J —1) takes odd values and at fixed J there exist only states with { = J—1,7—3,.

and, correspondingly, the degree 'of degeneracy of the limiting spectrum is sma.ller

than (J 4+ 1)?, as it should be for the free motion on the sphere. ‘
Further, usmg the tra.nsformatlon [34]

T+ 3/2)
T+ ma 1I(1/2)

connecting odd Gegenbauer polynomials with the Jacobi polynomials and passing
from the quantum number N to J, we come to the function

41 V | ‘. ,v‘
lims Z(x) :;2\;‘”\/ (J(;ri)l(il)') (S"X) CHI(C"“X) B

which, with an accuracy to a factor, V2 corresponds to the solutlon of the free
Schrédinger equation on the three-dimensional sphere with the impenetrable barrier
at the equator (x = 7 /2).

e PO ED (g ) Chnin(2), (19)

?) = Bi(r) (18)°

g T

A o

T i e

3.2 Cylindrical basis

In the cylindrical system of coordinates .

= Rsinacos ¢y, ¢, = Rsinasindg,,
q3 = Rcosasing,, go = R'cosacos ¢y,

OSCYSW/Z, 0S¢1<2T{', _ﬂ-s‘ﬁZSﬂ-)

the potential of the isotropic oscillator is written as

V="“’2R2[ 1 —1]. (20)

2 cos? a cos? ¢y

Choosing the wave function in the form )
v eimé1

U(¢1, 0, ¢2; R) = \/__(D(a) K(¢2) Sx Nord

after separation of variables we arrive at two dlfferentla.l equa.tlons of the Poschl—
Teller-type e ‘ !

M . m?— % A=Y
, - A3 -0 ; 91
da? T (8 sin’ cos""a) M =0, (21)
&K -1 g1
—— - K= 22
d¢? —t_-'(4A‘ sin’ ¢ + coszdz) = 0 o : (22)

where (sinacosa)™?M(a) = ®(a) ¢ = 2 + 2%, 4 € [0,Z] £ is determined by
expression (14). The spectrum of constants is determined by: ' ,

-—:(n3i+u+1)2 (2n+n3+|m|+u+2)2

where the quantum numbers n3 and n Tun the va.lues 0,1,2,: Assummg the prin-
cipal quantum number N to be equal to N = 2n + |m| + na, we'get the formula
(15) for the isotropic oscﬂla.tor energy. For the cylmdrlca.l basis we get the following
expression: .

\Il(‘ﬁlaa’ ¢2; R) = \Il}lvmna(‘ﬁl) a, ¢a; R) \/—¢N|m]n3 (a)I (¢2) \/— (23)

where the functions K} (¢2) and D (a), normalised in the mterva.l ¢ €[5, 51
a€[0,%], are 7

o (a) 2(N+V+2)(N—|nzz|-n3)!r(N+|"21[+na +J/+2)
Nim|n = mi{—n —[m[+n
{m[ns (N+I2I 3)!F(N |2I+ 24y +2)
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x (sina)™)(cos a)"3+”+1P,(J'1"|,;','fn+"+l)(cos 2a),
.2

V(n3 + v + 1)I(n; + 2v + 2)(n3)!
2+il(ng + v +2)

K:J(d’z) =

(cos g2)" P PLH T Dging,). (24)

Note that to a cylindrical system of coordinates corresponds an additional integral
of motion

d wW?RY 1 2wRY
= R*D 25
d¢22 h?  cos? ¢2 » + h? ( )
Within large R the cylindrical system of coordinates on the sphere turns into an
ordinary cylindrical system of coordinates (p, ¢,z) in the Euclidean space Ej [26].
Passing to the limit R — oo and a, ¢, — 0, and assuming

M=-

L o R
as well as using formula (17) and the following relation [28]

. ym 2\ 2/
AILIE:’/\ /20,).‘/2 (t\/;) = TH"(t)’

where H,,(z) are the Hermite polynomials [28], we get

ZA( N- |m|-n3 )|
A (N+|7121|—n3 )

. p z
sma~a~E, singy ~ ¢ ~ —,

£ (VA )""'L'"" o (W),

N
A, P Hmins(@) =

ns(\/_z)

‘ 1/4 As?
A . ez
—ooo\/— (r) ,/zns( )
Thus, formula (23) leads to the orthonormalised cylmdrlcal basis of the isotropic
oscillator in the flat space.
Within the limit of a free motion v — 0 (w — 0) with the use of the formula [2‘
(5,5)( )= (2n + 1)!! sin[(n + 1) arccos z] '
" = 2*(n+1)!  sin(arccosz)

- lim —=K (42)

?

we have

llli_I}})K:a(%)\: \/g sin{(n§+1)(¢z+%/2)},

\](N+2)(N—n;-|m[)'(N+n;+lm| +1)|

hm QX’I”‘I" ((1) —|m}4+n m|—-n.
oo TEE (N I2|+ *+ 1)!(N+I2| )

. . (sin @)™!(cos @)™*! P(IT,'.’ETi;)(cos 20).

Assuming n3 + 1 = |my|, |m| = |m;|-and-J-= N + 1, we obtain (with an accuracy
to a factor f odd solutions of the Schrodmger equation for a free motion in the
cylindrical system of coordinates. :

4 Expansion between spherlcal and cylindrical
bases

4.1 Calculation of the{‘transitic‘yn coefficients

Let us write the expansion between the spherical and cylindrical bases of the isotropic
oscillator in the form '

N~|m|
Vi (6050 R) = Y Wit (v)Wimny (41,0, 625 R), (26)
' ns’=o,1

where the quantum number nj takes even and odd va.lues depending on parity N —
ml.

To calculate an explicit form of the expansion coefficients: Wi (v) it is sufficient
to use orthogonality in one of the variables for the functions entering into the cylin-
drical wave function and to fix at the most appropriate point the second variable
that does not participate in integration. Passing beforehand in the left-hand side of
the expansion (26) from the spherical coordinates to the cylindrical ones, according
to the formulae

. o sina
' COS Y = CosSa-cosdy, ‘sind = R
v/1 — cos? a cos? ¢;

and taking into account that as ¢ — 0

¢ =

. “sina
€os Y — CoS ¢y, sind — e
, 2.

— 0,
we derive

ZrX) = Zin(¢2)

(-1)== 21411+ |m|)! (sina)™! eme

th(" 4’) ol |m]l (I = |m|)! (sin )™ /27

, 2N + v + 2)(Mtimlons yp(MHimlins ), 4 9) (sin )M
PN imins (@) N—|mj—n3 yip¢ N=lm]4ns o mt
(—E)IT(—5 +v+2) :



Then, substituting the asymptotic formulae derived into the interbasis expansion
(26), reducing (sin a)f’"' and using the orthogonality of the functions K%, (¢2) in the
interval -7 < ¢2 < 7, we arrive at the following integral representa.tlon for the
coefficients Wy, (v):

@1+ 1)(ns + v+1) (1 + m|)(Xzlzn2 )y
Wit )= (1 \j2lml+"+11“(n3+u+3)(l—lml) rezzET N

Nlmlng(u)

| (a5 (mlm+u+2)I‘(N+I+V+2)F(n3+2u+2)A
I( 5 Iz o (M D)

where

) /2 ’ $ ‘ (el el
AsV]m|ﬂ.3(V) = / (sin (ﬁg)l_]ml(COS ¢2)2v+2P£'12;{2' +2)(COS 2¢2)

/2

P’(lu+%,i/+%)(sin¢2)d¢2'. TR (28)

‘A complete solution of the-problem needs calculation of the integral in formula
(27).- Let-us consider separately the cases of even and odd” qua.ntum number nj.
Separating the interval of integration (28) into two intervals.(—%,0) and (0, §), after
the substitution in the first.integral ¢, — ~¢; we see that the va.lue of the integra.l is
just doubled due to parity (I = |m|—n3). Then .using the well-known transformation
for the Jacobi polynomials [34] oy o

( D(ns +a+1)(F)!
(3 +at1)(m)

P,(,_:L » )(2::2 —1) for ny - even,

(a a)(z)
D(ns +a+1) (235)!
r (% + C!) (n3)!
after the substitution z = cos? ¢,, we come to the‘“followingr two table integrals for
even and odd nj

e e 1y PRI
z P;az)@zz —1) for n3 — odd,
2

(-7 F(na+ v+ 2)(%)!

AN ) =
{mina 2u+—§"‘—'+l I‘(Z’i:2 + v)(na)!
/ (1_1 '; l+I)u+2P(l+2 Wwtg )( )P(——u+ )( )dl,
na—1 —
AC) () = (EVF Tmstv+d) (%)!
N|m|na =

2u+'—‘—|1|+—3" I‘(ﬂﬁ-i-u) (na)!
/ (1—2) 1 4 2)+d P('+2'"+ (g )P(” v+ () d.

‘10

e g T

Using the formula for integration of the two Jacobi polynormnials[30]

2+ Na— 7+ n)I(B+n+1)
(m){(n)!T(p + 1)Ia — 7)
1},

Plptm+ DI +1) o [ -m, ptftm+], 7+1, T—a+l
TB+r+n+2) 2| p+l, B+7+n+2, T—a—n+1

we immediately get that A;S,T,L Ins (v) is expressed through the generalised hypergeo-

metric functlon 4F3 of the unit argument

/ (1= )7 (14 2P PO (@) PE A 2 =

Ay DT F(na+v+3)F(—+Jl+1)I‘(—+—+u)
‘ {Vl’"fﬂs N (na)!I‘(—’§+—+V)(N_1)!I‘(—£—1+1)

)

A9 ()= 1) % 20(ng + v + HN(FHPEA 4 )Pl 4 1)
Nimis VT () D(252 1 )(Ahyp( izl
1}.

I(%+1) o Zmaclomdd gy, Dlml g MHmlod
TR )’ 3, Molples'y, ainion

Taking account of the known symmetry property for the series 4 F3(1) of the Saalschitz-

type [29]

D(EREres)
(—LJ +v+2)

. -
{ —Bomy oy, _IM, _%"}_l
-1 N-=m] __N+|m|
2 2 tv +2’ 2

k4

and analogously ’

/

20

‘ -n, b, ¢, d _(f b)n(g = b)n H—n, be c,. e  d
w{ThY M* GROR “F{e,b fontlb- g—n+1ll}’

—n+b+c+d—1+e+f+g,

one can ea.sﬂy be convinced that both the hypergeometric functlons 4F3(l) entering
into ANlmIn (v) can be transformed to a unique form: ‘ {

ﬁ;,%uruu i bl () PTG iy 1)
aF39° 1
%, +V+2 _N+ ] ( n3+1 )F( +m!—n3 +1)

D b PO gy ) (Rtimlmyip(t 1)
TR (¥l 1 2)0(v + DR 1)

F -z _m—_l N’,_:}'_+V+21
4143 V+% [—n3+l l|m|—n3+1 ’
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(1= r)r(sipil)
[(%2 4 1)I(HHml=me 4 )

na=1 mad3 § I=jm|’ I4m[-1
{7 e L R )

3 N |m|+5 __Nim|—1
21~ 'l"’ 2

NG A )| G sl ) G s 11 i i)

F(N+l;"|+1)1-\(N—|1721l+n3 +V+2)F(V+1)F(l—m|—n3 +1)
k _11. _._a:l _ NI _:l'_ 2

,4F{ , =M, B b+ 1}

+3 —L—l—“"“"“ +1, —l—l—‘"’ +1
After simple transformations we finally derive the sought formula for the coefficients
of the interbasis expansion Wi (v) -

(-1)™4 \/‘\/(21+1 )(ns + v + 1)(I + [m]){(I — [m])!
l+v+1 F(l |m2|—na +1)F(1+lm2|-ﬂa +1)F(V+g')

Wiimns (V) =

Nimns

T(XH 4 v 4+ 2T(Y=H3 4 )T (g + 20 + 2)(zlmlons )y Mtlmlons
PR+ DF)T(EE 4 v 4 2)D(FHEER 4y + 2)(ny)!

o~ B L B
<4f'3 l/+%, I+(m|lng +1 l—lm[-na +1

3 e

Note that the expression we have derived for W,'\',’,m(u) is independent of parity of
the quantum number nj.

4.2 Connection with the Racah coefficients

The interbasis expansion coefficients (29) can also be expressed through 6j, the
symbols or Racah coefficients of the SU(2) group, extended over their indices to the
region of real values. Comparing the expression for WN,,"1 (V) with the representation
of the Racah coefficients W (abed; cf) through the hypergeometric functions 4 F5(1)
of the unit argument [31]

Afabc)A(cde)Afaef)A(bdf)
(a+b—c)l(d+e—'c)!(a—f+e)!‘
(@+b+d+e+1) ,
b-f+dc—a—-d+flic=b—e+ f)!

W(abed; cf)

(30)

A F —a—b+c¢, -b—d+f, ~a—e+f,c—d~e 1
3 —a—b—d—e—1, ~atc—d+ f+]1, —b+c—e+f+1
where A(abc) is

@t b—)(a—b+ )b+ c—a)l
. A(abc)—\/ @tbtct) ,
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: - i ‘ X

et

s

o

i b

o’

and taking account of the symmetry property of the Racah coefficients
W (abed; cf) = i(—1)*"*"*W (abed; cf),
E=—e—1, d=—-d-1, f=-f—1,

after simple calculations we get the required formula

Wi () = (—1) 5+ 24 T 1/2)(ms + v + )W (abed; cf), (31)
T
d="lygl, e=MPlhg fents

Then, using the relatlon of orthonorma.liza.tlon for the Racah coefficients [31]

Z \/(2c+ 12f+1 W(abed cf)W(abed cf') =650,

we can write the inverse expansion in the form

Z WNmna(V)‘I’Nlm(Xa” ‘PwR)»
I=|m/, [m|+1

‘lllmn‘;, (¢1, aa‘¢2i R) =

where summation over { starts w1th |m| or [ml + 1 depending on the parity of the
number N — |m|, and the coefficients . ;

Wiin () =
can be expressed through the polynomials 4F3(l) with the use of the representation
(30).

Nim(¥)

4.3 Limiting relations

Consider limiting transitions to the flat space and free motion in the expansion
coefficients WN,,"la (v). ;
4-3.1As R — oo the generalised hypergeometric function 4F3(1) transforms into
3F3(1) according to
3

Havmg made the relevant limitlng transition in gamma functions, after simple alge-
braic tra.nsformatlons we get the known formula. for the coeﬂic1ents of the interbasis

mg-1 _ N=l

_mzl Nl ;*—+u+2 o —m, ;
1 1} = b2 { ‘*'"‘"2"“ +1, "i"‘l”*'g +1

._21
F . :
4 { l/+1 +lm|—n3 +1 | I-ng +1
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expansion between the spherical and cylindrical bases of the harmonic isotropic os-
cillator in the flat Euclidean space (33]:

) [V =l = gV + ] — o)t
}LIgWNlm(V) ol—n3 \/ (N + 1+ 1N = D(na)!
VRIH D+ [m)( — [m])!

—ny _pgml o N
: af2 { Liml—ns | 1 Iolml=ny l 1} :
(B r(tE ) pe L T
On the other hand, the limiting transition to the flat space can directly be traced in
the formula (31). Indeed using at large R the asymptotic coupling [31]

1. c(d—e
~N— (% e
2R(2c +1) af=ebid]

and the symmetry property of the Clebsch Gordan coefficients [31]

Colasp= ()™ Colip

b

W(abe + R, d+Rcf+R)

we obtain that »
: n, mi|m| 2oL J—l—l
llm Wi (v) = (1) N1|ml Njmi=ang N=im=1 gL

4.3.2. Assuming v = 0,.(w = 0) and pa.ssmg to the quantum numbers corre-
sponding to the free motion on the sphere m = my,n3 +1 = |my|,N = J — 1 (note

that J — lis odd and J = |ma] - |ma| is even), we ha.ve

] |m2|J (Fhimsl=lmalyy( 7= '"“' 'm’l)'(J+z+ DI - 1)”

2% (J+|m12I+IM2I)t(J+|:’{12| —imalyi( +)M(J =11
VOFDAF )= [l f <lzal=d, lmal? ot Jak
I—|my |—|m2] 3 I+|mal=|m2| 3y aF3 3 l+lrn.| ]mJ 3 I~ |m! |mzl 1

D= 4 (7 4 3) 2 +3 +

_ (SR T Wabed; of)y o (32)

where ' . - : LY Yy
J+|m|—1 b= J—|m|-2 21-1 .
= —-—4 !

d= _I_l e = M_L_ f J*_";I_
Let us mention an interesting fact that W1th1n the limit of a free motlon in formula.
(32) for the interbasis coefficients Wi, (v) instead of the hypergeometrlc function 3F,
of the unit a.rgument we have the functlon oF3; and instead of the Clebsch-Gordan
coef‘ﬁc1ents of .the SU(2) group, the Racah coefficients for one fourth values of the
SU(l 1) group momentum Analogous { formulae arose in ca.lcula.tmg the coefficients of
transition between different hyperspherlcal systems of coordinates (in the formalism
of trees”) and have been analysed in [32]. In our case, this fact allows an alternative
calculation of the integral AﬁVlmIna(V) in formula (28) at v = 0.

lim Wi, () = (1)

a =

14

5 Elliptic bases

The oblate elliptic system of coordinates ( known as the elliptic-cylindrical I) has
the form

= Rsn(y, k)dn(v, k') cos ¢, ¢ = Rsn(y, k)dn(v, k') sin ¢,
q3 = ch(,u, k)en(v, &' ), go = Rdn{y, k)sn(v, ¥').

—K<up<K, 2K'<y<21{’0<¢<27r
where the elliptic Jacobi functions of the variables a and B ‘have the moduli k and
k', respectively, K2+ k2 = 1, and K and K’ are the complete elhptlc mtegra.ls
For the potential V in the elliptic system of coordinates we have

L 1] . (33

dn®usn?y

Vig,v) = %szR2 [
Choosing the wave function ¥ in the form

U(, v,0) = %(u)%@)j’f,

after the separation of variables in the Schrédinger equa.tlon (33) we arrive at two
ordinary differential equations : ST i
P opdnpdiy [ (2MER2 Mwm)i Pt

Cdpr T Tsap dp - |\ AT e R?

meZ, (34)

m2. M2 2R4 k'2

sn?yu. k2

+ ]zpl ARy (%)

$ofs | psveny diy IMER? MR . .
dv? - " dov. dv - R . R v

Km?  M%wR!

+ dn®v . K

) R S
snzV} vr =il R)¢2’ (36)t

where:the quantum number ¢ enumerates the elliptic separation constant A,(k; R).
Extluding from the equations (35) and (36) energy E, we come to.the following
operator.

1 8 9% enpdnp |, 8 ~ Sy g
A_ _ - k2 2 ___kl2k2—_
< k2sn?p — dn®y dn* V@ 2t sn’ 5‘ 2t snp dn V6,u dny v
MRt dn’v + kzsn ,u ~1 dov+ k*sn?p 9?
R? dn?usn2v dn’vsn?u  0p?
M2 2 pa 2
= (1- k)L — KRDy + K212 4 (b)) B p2MR (37)

h2
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whose eigenvalues are A,{k; R), and eigenfunctions are given by expression (34). Let
. us introduce a new operator according to

1 MR 2MR?
Cxobl. L2 2
S TR {A+(1 B)—— - P

= L?—aR*Dy, (38)

H+ k’Lg}

where a = k%/(1 — k%) € [0,00). As is known [27], a transition from the oblate to
the prolate elliptic system of coordinates on the sphere can be obtained under the
transformation k — ik/k', k' — 1/k'. In thls case, the operator (38) for the prolate
system of coordma.tes has the form

$*" = [* + K*R? Dy (39)

The latter formula allows one to describe both the elliptic systems of coordinates
uniquely with the use of the operator

% = Lz - aR2D33, : (40)

where a € [—1;00). For positive a we have the oblate system; and for e € [ 1,0],
the prolate elllptlc system of coordinates. ~

5.1 Expansion of elliptic bases over the hyperépherical and
cylindrical ones
Thus, we have seen in the previous sections that all three oscillator bases: hyper-

spherical, cylindrical and both the elliptic ones, are elgenfunctlons of three complete

sets of operators {H, L?, L2}, {H, Dy, L?} and {H, S, L2} so that

E L2‘I’Nlm(‘x;‘9v w) = I+ l)leﬁ(x’ﬂ’ <P), : (41)
D33\I’Nn;m(‘P11a7 ‘P?) = (n3 +v+ 1)2\I’Nn3m(‘PlyQ, ‘Pz)a (42)
%Tﬂqm(l‘v vp) = X<,1(a'; R)‘I’nqm(l" v, ). (43)

The operator equations'(41)-(43) allow us to construct elliptic bases of the isotropic

oscillator on the sphere as a superposition-over the hyperspherical and cylindrical

bases. :
Now, let us write the sought exp\a.nsions:

. v N ,
Ungm(ts2,0) = Y Thgm(e5 B)¥nim(x:9, ), (44)
" I=jmjml+1 - .
N—=|m|
WN?'“(”? v, ‘P) = Z qu(a; R)‘I’Nﬂam(‘Pha:‘P2)' (45)
. na=0,1
16

Consider the expansion (44). Substituting (44) into the operator equation (42), we
find

N
1 .
— U0+ 1) = A(& )} Thrgm = 3 Thgm (Dsa) (46)
I'=0
where -
(D) = / Wiy (Do) U ntimdY. (47)

To calculate the integral (47). we use the expansion of the spherical basis over the
cylindrical one and equation (42) for the eigenfunctions of the operator Dj;. As a
result, we come to the following expression for (Dsz)ur:

' ; N-{m| : : . :
(D33)"' = Z W;\?lmw;\;l’ (n3 + v+ 1)21 (13)

n3

Then, using the three-term recurrence relatlons for the Racah coefficients [31]

g prerona (G0 prasena{girf -0
where o
B, =" \/(a+b+c+2)(—a+b+c+1)(a-—b+c+1)(a+b-——c) (50)
% VA TFerDEF - 9@ T rer (—dFTe+ D),

A = [aa+1)-b( b+1)][d(d+1)-—l(l+1)]+c(c+1)[a(a+1) NGy
+ b(b+1)+d(d+1)+l(l+1)—cc+1)]—2c(c+1)f(f+1)
and the orthogonality property

X

© N-=|m| ’ . o
Z WFr’:me: —511' o - (52)
,_01 SRR ' SR
’we have
16Bi., . - 16B,
T el 2 ' — _—————6 4
(Ds3)u RO 1)51-2,1‘+C15u\ TEREE) 12,0
1ere

= LR R DT e 2 I =D

x /(N+1+2v+4)(N—-1+2v+1), TR TR (53)

;= %{4(N+1)(N+3)+2(2Im|2—1)+4V(2N+2u+5)—(21—1)(21+3)

(54)

(4mf2 — 1)(2N + 3)(2N + 5 + u)} :
2I—1)(2l + 3)
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Substituting the matrix element.(53) into (46), we finally arrive at the three-term
recurrence relation

16

AT P Them (@ B+ { ;2[(1 +1) - Aq(a;R)]—Cz} Tngm(a; R)

16 b2 |
MNCTRE ) oI BiTym(a; B) =0, (59)

Tm(a; B) = Tx;(a; B) = 0.

for the expansion coefﬁcients'T]'v\q‘m(a; R). The recurrence relation (55) is a system
of homogeneous equations which has to be solved with the normalization condition

i

N

> [Thgm(a R =
I=mflml4+1 o
Y

Eigenvalues of the elliptic separa.tlon consta.nt Aq(ayR) are: ca.lculated from the con-
dition for the determma.nt of the system “of homogeneous equatlons to be equal to
zero (55). g

Consider now the expansion (45) of the elliptic basis over the cyllndrlcal one. In
a slmllar way, like in the calculation of the expansion coefﬁc1ents' (44), we get

N-|m|

{A (k R) +aR2(n3 +r+1) } qu(k R = Y"U qu (k; R) LZ)m . (56)
n}=0,1 . Tl :
where ‘ o PR o
(s = [ Wrean PO (57)

The integral in (57) can be calculated if one uses the expansion of the cylindrical
basis over the spherical one and then the symmetry property of the Racah coefficients

a,b,c - _avl1f v |
{d,l,f}'{d,b,c} R | (58)

and the three-term recurrence relation (49). As a result of simple calculations we
obtain the expression (UR3,, = Uy,) o o
BrUnsta + {Cos = Ay(k; B) — aR¥(ns + v + 1)2} Uny + BryogUpyg =0, (59)

where SR

1 [(n3 +2v +2)(n3 +2)(n3 + 1)(n3 + 2v + 3)(N + |m| + ng + 2v 4 4)
4 (ns+v+1)(ns+v+2)>2(ns+v+3)

. Bﬂs =

18

X V(N +]m[=n3)(N — |m| = n3)(N — [m| + n3 + 2v + 4),

Cny, = %{(N+2)2—{—V(2N+21/+5)+(|m|2——2)—(n3+u)(n3+u+2)‘

V(v + 1)(N + |m| + v + 2)(N — |m| + 1/)}
(na+v)(ns+v+2) ’

N

As in the previous case, a homogeneous system of equations should be solved together
with the normahzatlon condltlon

. N~|m|

3 Ui 03 B = 1,

n3=0,1

and the separation constant can again be determined from the condition of equality -
to zero of the corresponding determlna.nt of the homogeneous system of equations
(59).

In conclusion, we would like to mention that in the limit of the.free motion:
v — 0, the three-term recurrence relations (55) and (59) transform into those for the
expansion coefficients of the elliptic basis over cylindrical and ‘spherical ones, Wthh
have been obtained in the work [27]. RN

6 Conclusion

In the present paper, a first step has been made to completely study the Schrodmger
equation' and to calculate the coefficients of various interbasis expansions for-the
potential: of the isotropic oscillator on the three-dimensional sphere in different or-
thogonal systems of coordinates. We have calculated interbasis expansions for the
”sphere—cylinder” transition-and:also constructed solutions of the Schrodmger equa’
tion in both the elliptic systems of coordinates as expansion over the spherlca.l and
cylindrical bases. In contrast with the "sphere-cylinder” transition; in which the
transformation coefficients are expressed through-the generalised hypergeometric
functions 4Fs of the unit argument or through the Racah coefficients, extended over
their indices into the region of arbitrary real .values, thé'tranSitfon coefficiénts’ for
the elliptic bases are deﬁned by the three-term recurrence relatlons and cannot, be
written ‘down exp11c1tly
In thls paper we have considered the sphero-conic' and’ ell]psmda.l ‘bases of :the
isotropic oscillator. In separating variables in the Schrédinger equation for the
sphero-conic system of coordinates we arrive at the quasiradial equa.tlon (13) con-
sidered in Sect. 3 and two standard Lame equations that are derived in separating
variables for the Helmholtz equation on the two-dimensional sphere. As a result, the
solution of the Schrédinger equation is

U(x, 0, B; R) = Ziu(x) Aun(a)An(B),

19



where the function Zy;(x) is determined by expression (16), and the explicit form
of the Lame polynomials A;x(a) can be found in [28, 36].

For the ellipsoidal basis of the isotropic oscillator, after separation of variables
in the Schrodinger equation we obtain three 1dent,1cal equations containing two el-
lipsoidal separation constants Ai,A;. This means that in contrast with the cases
considered we deal with the two-parametric spectral problem. Application of the
method of constructing solutions of the Schrodinger equation as expansion over sim-
pler bases leads to two many- termed recurrence relations determined by the cubic
matrix. Obv1ously, the simplest way of constructing an, elllps01dal basis consists
in applying the Niven method [37] allowing one to write down a solution to the
Schrédinger equation in terms of zeroes of the wave function and reduce the problem

to a system of relevant nonlinear equations. This kind of investigation is beyond the

scope of the present paper and will be carried out elsewhere.
In conclusion, we would like to thank L.G. Ma.rdoya.n and V.M. Ter-Antonyan
for useful mtereqtmg dlscuss1ons B .
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