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At present time the experiments on the study of hadronic atoms 1r1r [1], 1rp, 1rd 

[2], have being carried out. Namely, the first estimate of the 1r+1r- atom lifetime 

was given in Ref. [1]. Now the DIRAC collaboration works out an expe~iment at 

CERN on the high precision measurement of the lifetime of 7r+7r- atoms. This 

experiment might provide a decisive improvement in the direct determination of 

the difference of the S-wave 1r1r scattering lengths and thus serve as a valuable 

test for the predictions of Chiral Perturbation Theory [3]. In the view of these 

experiments there arises a need in the theoretical framework .which would enable 

one to calculate the characteristics of such atoms with a high accuracy based on 

the ideas of standard model. 

The theoretical study of hadronic atoms starts from Refs. [4]-[6] where the non

relativistic relations· of the energy level displacement of the hadronic atom dpc to 

strong interactions and i~s lifetime with the strong scattering, lengths arc estab

lished. The expression for the width r0 of the 1r+1r- atom in the ground state 

IS 

1, _ · l61r ✓2D.m" ( 0 _ 2)2 ,1,2 
0 - llo llo 'l'O 

, 9 _ m" , 
(l) 

where D.m" is the m"± - m"a mass difference, and efio is the value of the Coulomb 

wave function ( w.f:) of the pionium at the origin. 

The approach to the study of the problem of hadronic atoms, developed in 

Ref. [4], makes use of the general characteristic feature of the hadronic atoms - the 

factorization of strong and electromagnetic interactions. The formula ( 1) demon

strates this factorization property explicitly, ex_pressing the atom lifetime as a prod

uct of two factors - the Coulomb w.f. at the origin and the strong interaction factor, 

completely concen_trated in the 7r7r strong scattering lengths. 

The problem of evaluation of the electromagnetic and strong corrections to the 
. ' 

basic formula (1) within different approaches is addressed in Refs. [7]-[14]. For a 

brief review see Ref. [12]. In this paper within the Bethe-Salpeter (BS) approach 

we have derived the relativistic analogue of the formula (1) taking into account 

the correction due to the displacement of the bound state pole position by strong 

interactions (strong correction) in the first order. This correction was found to be of 

the relative order 10-3
• It should be stressed that the field-theoretical approaches 
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[IO, 12, 13, 14] to the problem, unlike the potential treatment [7, ll], do not refer to 

a concept of the phenomenological strong interaction 1r1r potential, which is a sour'ce 

'of an additional ambiguity in the calculations of hadronic atom characteristics. In 

the former approaches these characteristics are expressed directly in terms of the 

underlying strong interaction ( chiral) Lagrangian, and the results can be compared 

to the experiment, providing the consistent test of the pred1ctions of chiral theory. 

In the present work we suggest ·a relativistic perturbaiive framework for the 

calculation of the energy levels and lifetime of hadronic atoms. The main purpose 

of 'this work is to demonst;ate' a possibility (not only in the potential scattering 

theory, but in the BS treatment as well) of the clear-cut factorizati~n of strong and 

electromagnetic interactions in 'the o·hservable characteristics of h~dronic atoms, 

avoiding th~ double-counting problem· in' the calculation of thes~ quantities. One 

should note that the 'sugge~ted approach allows to calc~lat~ sfrong and electromag

netic corrections in. all orders of the perturbation' theory'. At the present ~tage we 

apply the general formalism to the calculation of the first-order ~trong and elec

tr?magnetic corrections to the pioniull\ lifetime. The result~,for strong corrections 

obtained in Ref. [12] are reproduced in thl'cse calculations. 

O'ur framework is based on the perturbative expansion which is pe/formed 

around the solution of the BS equation with the Coulornb kern'el similar to that 

\introduced in Ref. [15] 

~4im,,e2 ~ 
.Vc(p,q) = yw(p)( )2yw(q), 

. p-q .. w(p) = ✓m; + p2_ (2) 

The: factor ✓w(p )w( q) :introduced in the kernel (2) enables one to reduce the _BS 

equation with such a kernel to the exactly solvable Schrodinger equation with the 

Coulomb potential. Then, the exact solution of the B~ •. equation with this kernel 
is written in the form 

·. * . . ~ 41ram1r</>o - ( ) ) t/>c(p)=zG0 (M;p)4yw(p) 
2
+ 

2
, t/>cp =t/>c(p, 

. p '· 
(3) 

where 1 = m"a/2 and M*
2 = m;(4 - a 2

) is the eigenvalue corresponding to the 

· unperturbed-ground-state solution. G0 denotes the-fr_ee Green's function of the 

1r+1r--pair. The exact Green's function corresponding to the Coulomb kernel (2) 

·2 

t-

\ 
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is given by the well-known expression 

Gc(P*;p,q) = (21r)\5(4l(p- q)G0(P\p) + Go(P*;p)Tc(E*;p,q)Go(P*;q). (4) 

Here Tc is given by 

Tc(E*; P, q) [ 
l 11 vdpp-v ] 

I6i1rm .. aJw(p)w(q) (p-q)2 + 0 D(p;p,q) (5) 

D(p;p,q) = ) 2 _ m .. (E* _ _!C) (E* - _t._)(1 - p)2, 
(p - q p 4E* m.. m .. 

where v = aJm .. /(-4E*) and E* = (P*2 
- 4m;.)/(4m .. ). 

The full BS equation for the 1r+1r- atom w.f. x(p) is written as 

. -1 . J d4k 
G0 (P;p)x(p) = (

2
1r)4 V(P;p,q)x(q), (6) 

where V(P; p, q) denotes the full BS kernel which is constructed from the underlying 

(effective) Lagrangian according to the general rules and includes all strong and 

electromagnetic two-charged-pion irreducible diagrams. In particular, it contains 

the diagrams with two neutral pions in the intermediate state which determine 

the decay the 1r+1r- atom into 1r01r0 . Note that in addition V(P; p, q) contains the 

charged pion self-energy diagrams attached to the outgoing pioriic legs (with the 

relative momentum q), which are two-particle reducible. These diagrams arise in 

the definition or'the kernel V(P; p, q) beca~se the free two-p'artide Green's fu_nction 

is used in the l:h.s. of Eq. (6) instead of the dressed one. The c.rn. momentum, 
I . 

squared P 2 of the atom has the complex value, corres'ponding to the fact that the 

atom is an unstable system. According to the conventional parametrization, we 

can write P 2 = f.il2 = M 2 - iMI' where M denotes the "mass" of the atom, and r 
is the a.torn de.cay width. 

The full four-point Green's function G(P) for the kernel V has a pole in the 

complex P 2 plane at the bound-state energy. The relation between the exact w.f. 

x(p) and the Coulomb w.f. t/>c is given by [12] 

<xi= C < 1,1,cl Gc/(P*)G(P), P*
2

--+ M*
2

, P
2

--+ M
2 (7) 

where C is the normalization constant. In what follows we assume that the li~iting 

procedure is performed with the use of the prescription [12] P*
2 = M*

2 + >., P
2 = 
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lv/2 + ,\, ,\ -+ 0. The validity of Eq. (7) can be trivially checked, extracting the 

bound-state pole in G(P) and using the BS equation for 1/Jc. 

• In order to perform the perturbative expansion of the bound-state characteris

tics M and r around the unperturbed values we, as in Ref. [12], split the full BS 

kernel V into two parts as V = Ve + V' and consider V' as a perturbation. It can · 

be shown that Eq. (7) is equivalent to 

<xi= -c-l < 1/Jcl[l + (Ll9o
1 

- V')GRQr1, LlGo1 = Go1(P) - Go1(P*). (8) 

With the use of Eq. (8) the following identity is easily obtained 

< 1/Jcl[I + (LlGo
1 

- V')GRQr\LlG01 - V')l1/Jc >= 0, (9) 

which is an exact relati~n and serves as a basic equation for performing the per

turbativc expansion for the bound-state energy. 

In the Eqs. (8) and (9) GRQ stands for the regular (pole subtracted) part of 

the Coulomb Green's function (4), projected onto the subspace, orthogonal to the 

ground-state unperturbed solution. This quantity can be further split into two 

pieces, according to G11Q = G0 (M*) + 8G. Herc the function 8G corresponds to 

the ladder of the exchanged Coulomb photons and thereby contain~ explicit. powers 

of a. It is given by the following expression: 

8G = iJw(p)w(q) [cl>(p,q) - S(p)S(q) ~*a~•] Go(M*,p)Go(M*,q) 

cl>(p,q) = 16irm,,.a[(p ~ q)2 + /R(p,q)] + (m,,.'ar2S(p)S(q)R(p,q) (IO) 

S(p) = 4irm,,.a¢o(P
2

+-y
2
)-

1
, R(p,q)=25- ✓ 8 [S(p)+S(q)]+··· 

irm,,.a 

where the ellipses stand for the higher-order terms in a. The integral IR(P, q) is 
. given by 

I 

Jdp I · 
/R(P,q)= - [D-

1
(p;p,q)-D-1(0;p,q)], E*=--m,,.a2. (11) 

p 4 
0 

The equation (8) expresses the exact BS w.f. of the atom in ter·ms of the · 

unperturbed w.f. via the perturbative expansion in the perturbation potential V'. 
This potential c~nsists of th"e following pieces: 
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I. The purely strong part, which is isotopically invariant. This part survives 

when the electromagnetic interacti~ns are "turned ofP' in _the Lagrangian. 

· 2. The part, containing the diagrams with the finite mass insertions which are 

responsible for the m,,.± - m,,.o electromagnetic mass difference. 

3. The part, containing the exchanges of one, two, ... virtual photons and an 

arbitrary number of strong interaction ver~ices. 

Note that the terms 1 and 2 are more important due to the following rea

sons. The first term includes strong interactions responsible for the decay of the 

pionium. The second term makes this decay kinematically allowed due to finite 

difference of charged and neutral pion masses. Consequently, it seems to be nat

ural to consider together the pieces I and 2. We refer to the corresponding po

tential as ¼ 2. The T-matrix corresponding to the potential ¼2 is defined by 

T12(P) = ¼2(P) + ¼2(P)Go(P)T12(P). The rest of the potential V' is referred 

as ½ = V' -,- ¼ 2 .. In what follows we-restrict ourselves· to the first order in the 

fine structure constant a, i.e. consider the diagrams with only one virtual photon 
contained in \1:i. 

Returning to the basic equation (9), we expand it in the pcrturbativc series 

considc~ing Vi a~d 8G as perturbations. Meanwhile we expand LlG01 in the Taylor 

series in 8M = M - M* and substitute M = M* + Ll£P) + Ll£(2) - i/2 f(I) -

i/2 r<2
> + (SM·)-1 r<1>

2 + .... 
Restricting ourselves to the first order of the perturbative expansion, we arrive 

at. the following relations 

LlE(ll = Re (-i_T12 ¢2) 
2M*m,,. 0 

' 
-~r(IJ =Im(-· _i_T12¢2) 

2 2M*m,,. 0 
• 

(12) 

Hereafter we use the local appr~ximation for T12, assuming that it does not depend 

on the relative momenta. The Eqs. (12) coincide with the well-known Deser-type 

formulae for the energy-level displacement and lifetime [4]. Note that on the mass 
shell 

Re(iT12) ~ T(ir+ir--+ ir+ir-), Im(iT12) "-: ~IT(ir+ir--+ ir0ir0 )12, (13) 

If we assume½= oG = 0, we arrive at the result 

r<2) 9 fl£(!} _ o. 763a, 
f(l) = -8 E1 

1 2 E1 = --m,,.a 
4 (14) 
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The first term of this expression called "strong correction" was obtained in our 

previous paper [12]. However, as opposed to the present derivation, in Ref. [12] we 

have used the Born approximation for the calculation of /lE(ll, i.e. in Eq. (12) T12 

was substituted by ½2. The last term comes from the relativistic normalization 

factor Jw(p )w( q) in the kernel (2) and corresponds to relativistic modification of 

the pionium Coulomb w.f. I J d4p/(21r)4 ipc(P)l2 = ef>~(l - 0.38la)2 /m". Since this 

correction comes from the Coulomb w.f. of the atom, it does not depend on the 

parameters of the strong 1r1r interaction, and for this reason it was neglected in 

Ref. [12]. 
Inclusion of 5G introd~ces the ~orrection due to the exchange of the infinite 

number of Coulomb photons ·in the lifetime. The integrals emerging in the cal

culation of this correction are ult~aviolet conv~rgent, containing, however (in ~ 
complete analogy with a well-known result from nonrelativistic scattering theory), 

an infrared enhancement alna which stems from the one-photon exchange piece in 

Eq. (5). Collecting all terms together and using Eqs. (12) for relating ImT12 to 

/lE(l), we finally arrive at the first-order correction to the pionium rat~ 

( ( 
9 flE(l)) flE(l) 

fo 1 + - 8 ~ + (-0.763a) + (1/2 + 2.694 - Ina)£;- + 

..______,,.__, relativistic w.f. 

r 

strong' Coulomb photon exchanges 

+ DM - (.M*r(ll)-
1
Re < 1Pcl(l, + T12Go(M*))½(l + Go(M*)T12)l1Pc >) (15) 

where DM stands for the mass shift correction [14] and the last term·collects the 

radiative corrections [14, 13] (includ\ng retardation correction [10], correction due 

to vacuum polarization [8], etc.). In the Eq. (15) all first-order strong and elec

tromagnetic ·corrections are given in a closed form avoiding an·y difficulties con

nected with double counting problem. The kernel which appears in the last term: 

(1 + Ti2Go(M*))½(l + G0 (.M*)T12), is constructed from the underlying Lagrangian 

with the use of the conventional Feynman diagrammatic technique. The detailed 

reexamination of the above mentioned corrections within BS approach will be ad

dressed in our forthcoming publications. 

In order to estimate the size of the calculated ~orrections to the pionium lifetime 

(Eq. (15) we have used the following value m1r(2ag + a5) = 0.49 of the singlet 

scattering length corresponding to the value /lE(ll / E1 = 0.24%. The first, second 

6 

~ 

and third terms then contribute; respectively, -0.26%, -0.55% and +L85%, and 

the_ total contribution amounts up to ~ 1% to the decay width (apart from the 

mass shift and radiative corrections). The largest contribution comes from the 
alna term in Eq. (15). 
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