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At present time the experiments on the study of hadronic atoms =7 {1}, 7p, vd
[2] have being carried out. Namely, the first estimate of the #¥7~ atom lifetime
was given in Ref. {1]. Now the DIRAC collaboration works out an experiment at

CERN on the high precision measurement of the lifetime of 7¥n~ atoms. This
experiment might provide a decisive improvement in the direct determination of
the difference of the S-wave 77 scattering lengths and thus serve as a valuable
test for the predictions of Chiral Perturbation Theory 13]. In the view of these
experiments there arises a need in the theoretical framework which would enable
one to calculate the characteristics of such atoms with a high accuracy based on
the ideas of standard model. ;

The theoretical study of hadronic atoms starts from Refs. [4]-[6] where the non-
relativistic relations of the energy level displacement of the hadronic atom due to

strong interactions and its lifetime with the strong scattering lengths are estab-

lished. The expression for the width I'g-of the #¥7~ atom in the ground state

. 167 [2Am, » : '
Vo = ‘9—\/(’;"—"“(“3—‘13)2% o (1)

where Am, is the m,: — m,e mass difference, and ¢g is the valuc of the Coulomb

is

wave function (w.f.) of the pionium at the origin.

The approach to the study of the problem of hadronic atoms, developed in
Ref. [}, makes use of the general characteristic feature of the hadronic atoms - the
factorization of strong and clectromagnetic interactions. The formula (1) demon-
strates this factorization property explicitly, expressing the atom lifetime as a prod-
uct of two factors - the Coulomb w.1. at the origin and t};e strong interaction factor,
completely conccn_trat.ed in the w7 strong séa.ttering lerjgths.

" The problem of evaluation of the électromagnetic and stroﬁg corrections to the
basic formula (1) within different approaches is addressed in Refs. [7]-[14]). For a
brief review see Ref. [12]. In this paper within the Bethe-Salpeter (BS) approach
we have derived the relativistic analogue of the formula (1) taking into account
the correction due to the displacement of the bound state pole position by strong
interactions (strong correction) in the first order. This correction was found to be of -

the relative order 1073, It should be stressed that the field-theoretical approaches
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(10, 12, 13, 14] to the problem, unlike the potential treatment [7, 11], do not refer to
a concept of the phenomenologrca.l strong interaction 7 potential, which is a source
of an additional ambrgurty in the calculations of hadronic atom characteristics. In
the former approaches these characteristics are expressed directly in terms of the
underlying’ strong interaction (chiral) Lagrangian, and the results can be compared
to the experlment providing the consistent test of the predrctlons of chiral theory.
In the present work we suggest a relativistic perturbative framework for the
calculatlon of the energy levels and lifetime of hadronic atoms. The main purpose
of this work is to demonstrate a possrbrhty (not only in the potentral scattering
theory, but in the BS treatment as well) of the clear-cut factorization of strong and
electromagnetrc mtera.ctlons in the observa.ble cha.ra.cterlstlcs of hadronic atoms,
avoiding the double-countmg problem in the calculation of these quantltles One
should note that the suggested approach a.llows to calculate strong and electromag-
netic corrections in all orders of the perturbatlon theory ‘At the present stage we
apply the general formalism to the ca.lcula.tron of the first-order strong and elec-
tromagnetic corrections to the pionium lifetime. The results:for strong corrections
obtained in Ref. [12] are reproduced in these calculations.
Our framework is based on the perturbative expansion -which is pertormed

around the solution of the BS equation with the Coulomb kernel similar to that’
Jantroduced in Ref. [15] '

p,q) \/ 4””"6 \/w(q, . w(1:>)=\/"ﬂ+p2 (2

The factor \/w(p)w(q) mtroduced in the kernel (2) enables one to reduce the BS
equatxon with such a kernel to the exactly solvable Schrodlnger equation with the

Coulomb potential. Then the exact solution of the BS .equation w1th this kernel
is wr1tten in the form

(p)—zGo ,p)4\/ 7 mm”fo, @p(p)=¢c(b), S )

where v = m,a/2 and M*? =4, m2(4 — a?) is the eigenvalue corresponding to the

“unperturbed-ground-state solution. Go denotes the-free Green’s function of the
7+n~-pair. The exact Green’s function corresponding to the Coulomb kernel (2)

is given by the well-known expression
Go(P*ipg) = (21)'6W(p— q)Go(P*p) + Go(P*;p)Tc(E*; P, q)Go(P"5 ). (4)
Here Tc is given by

' 1 ' wdpp™
To(E*p,q) = 16immray/w(p)w(a) [(—ﬁ)"ﬁ/o m] ®)

2 2
My * P *__.q_ — 2,
(p— q)p—4E*(E ‘Tnj)(E m,)(l ’) ‘.

where v = a\/m,,/(—4E*) and E* = (P*2 4m?)/(4m,).

“The full BS equation for the 7¥#~ atom w.f. x(p) is written as

D(p;p,q)

: 4

) = [ GV Praxe, O

where V(P; p, g) denotes the full BS kernel which is constructed from the underlying
(effective) Lagrangian according to the general rules and includes all strong a.nd
electromagnetic two-charged-pion irreducible diagrams. In partlculer, it contarns
the diagrams with two neutral pions in the intermediate state which determme
the decay the 7t7~ atom into 7°z°. Note that in addition V(P;n, q) conta.rns the
charged pion selt—energy diagrams attached to the outgoing pionle legs (W1th the
relative momentum g¢), which are two-particle reducible. rI“hese‘ diagrams arlse' in
the definition of the kernel V(P; p, q) because the free two-particle Green’s functlon
is used in the Lh.s. of Eq: (6) instead of the‘ dressed one. The c.m. momentum,
squared P? of the atom has the complex value, corresponding to the fa.et tha.t the
atom is an:unstable system. According to the conventional parametrization, we
can write P2'= M?* = M* —iMT where M denotes the "mass” of the atom, and I’

is the atom decay width. .

The full four-point Green’s function G(P) for the kernel V' has a pole in the
complex P? plane at the bound-state energy. The relation between the exact w.f.

x(p) and the Coulomb w.f. ¢ is given by {12]
<x|=C < ¢l G“(P*)G(P), P M*, PP o M? | (7)

where C is the normalization constant. In what follows we assume that the limiting

*2 __ *2 2 _
procedure is performed with the use of the prescription 2] P*=M*+ AP
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M24 0,0 50 The validity of Eq. (7) can be trivially checked, extracting the

bound-state pole in G(P) and using the BS equation for 1.
In order to perform the perturbative expansion of the bound-state characteris-

tics M and I around the unperturbed values we, as in Ref. [12), split the full BS

kernel V into two parts as V = Vo + V' and consider V' as a perturbation. It can -

be shown that Eq. (7) is equivalent to
<xl=-C" <yc|1 + (AG;! - V’)GnQ]“; AGy" = G3H(P) ~ G5'(P*) (8)
With the use of. Eq. (8) the following identity is easily obtained
<Yel[1+ (G = V)GrQ]™(AGS - VY)iyo >=0, (9)

which is an exact relation and serves as a basic equation for pérforming the per-
turbative expansion for the bound-state energy.

In the Eqs. (8) and (9) GrQ stands for the regular (pole subtracted) part of
the Coulomb Green’s function (4), projected onto the subspace, orthogonal to the
ground-state unperturbed solution. This quantity can Ee further split into two
pieces, according to GpQ = Go(M*) + 6G. llere the function §G corresponds to
the ladder of the exchanged Coulomb photons and thereby contains explicit powers

of a. It is given by the following expression:

G = i\/”?v(p)w(q)[<1>(p,q)—S(p)S(q)/S,%JGu(Al*,p)(;o(M*,q)
¥(p.q) = 16mm[ﬁ+1ﬂ(p,q)J+(m£a)‘25(p)5(q)1f(p,q) - (10

S(p) = drm.ade(p?+4%), R(p,q) =25 — \/%[S(p) +S(q)]+---

where the ellipses stand for the higher-order terms in a. The integral fn(p,q) is
. given by
1

; d -~ _ 1 N
(p:) = [ % 10 p,q) - D05, ), E'=—imat (1)

0

The equation (8) expresses the exact BS w.f. of the atom in terms of the

unperturbed w.f. via the perturbative expansion in the perturbation potential V.,

- This p.(')tent.ial cbnsispé of the following pieces:

4.
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1. The purely strong part, which is isotopically invariant. This part survives
when the electromagnetic interactions are "turned off” in the Lagrangian.

2. The part, containing the diaérams with the finite mass insertions which are
responsible for the m,+ — m_o electromagnetic mass difference.

3. The part, containing the exchanges of one, two, ... virtual photons and an
arbitrary number of strong interaction vertices.

Note that the terrhs‘1 and 2 are more important due to the following rea-
sons. The first term includes strong interactions responsible for the decay of the
pionium. The second term makes this decay kinematically allowed due to finite
difference of charged and neutral pion masses. Consequently, it seems to be nat-
ural to consider together the pieces 1 and 2. We refer to the corresponding po-
tential as Vi2. The T-matrix corresponding to the potential Vj; is defined by
Ta(P) = Vio(P) + Vi2(P)Go(P)T12(P). The rest of the potential V' is referred
as Vs = V'~ W,. In what follows we. restrict ourselves .to the first order in the
fine structure constant a, i.e. consider the diagrams with only one virtual photon
contained in V;. ‘

Returning to the basic cquation (9), we expand it in the perturbative series
considering Vs and 6G as perturbations. Mcanwhile we expand AGy! in the Taylor
series ir; M = M — M* and substitutc M = M* + AEW £ AE® — /210 _

/20 4 (8M)TIT0 4 |

Restricting ourselves to the first order of the perturbative expansion, we arrive

at the [ollowing rclations

;T 1 i ’
AEM = Re (ﬁm—”qsg) ~oT = Im (ﬁfdsg) (12)

llercafter we usc the local approximation for T}z, assuming that it does not depend
on the relative momenta. The Egs. (12) coincide with the well-known Deser-type -
formulae for the energy-level displacement and lifetime [4]. Note that on the mass
shell :

Re(iTis) ~ T(rtr~ — 7*x7), Im(iTy,) ~ VAmL T (n*7~ — =°r%)?, (13)

If we assume V3 = §G = 0, we arrive at the result

re 9AEM e : 1
o= —gT — 0.763(1,. | E, = -—-Zm,ra2' (14)
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The first term of this expression called "strong correction” was obtained in our
previous paper [12]. However, as opposed to the present derivation, in Ref. [12] we
have used the Born approximation for the calculation of AEM, ie. in Eq. (12) Tia
was substituted by Via. The last term comes from the relativistic normalization
factor \/W in the kernel (2) and corresponds to relativistic modification of
the pionium Coulomb w.f. | [ d*p/(27)*¢c(p)* = #(1 —0. 38101)2/m,r Since this
correction comes from the Coulomb w.f. of the atom, it does not depend on the
parameters of the strong T 1nteract10n and for this reason it was neglected in
Ref. {12]. ” '
Inclusron of 6G mtroduces the correction due to the exchange of the mﬁnlte
number of Coulomb photons in the lifetime. The integrals emerglng in the cal-
culation of this correction are ultravrolet convergent containing, however (in a
complete analogy with a well-known result from nonrelatlvxstlc scattermg theory)
an 1nfrared enhancement alne whlch stems from the one—photon exchange piece 1n
Eq. (5). Collecting all terms together and using Egs. (12) for relatlng Imle to
AE(I), we finally arrive at the ﬁrst-order correction to the pionium rate

' 9 AEW AED
r = I‘U(l (=g 7)) 0T + (17242691 Ina)
- 8 E- (N4 E1
L N———r relativistic w.f.

strong’ " . Coulomb photon exchanges

+' 5M — (A{*I‘(U)—‘Re < 1/)C|(1r+ leGO(M*))%(I + GO(M*)TH)"(J)C >) (15)

+

where 6y stands for the mass shift correction [14] and the last term collects the
radiative corrections [14, 13] (including retardation correction [10], correction due
to vacuum pollarization (8], etc.). In the Eq. (15) all first-order strong and elec-
tromdgnetic ‘corrections are given in a closed form avoiding any difficulties con-
nected with double counting problem. The kernel which appears in the last term:
\ (14 Ti2Go(M*))V5(1 F Go(M*)T3), is constructed from the underlying Lagrangian
with the use of the conventional Feynman diagrammatic technique. The detailed
reexamination of the above mentioned corrections within BS approach will be ad-
dressed in our forthcoming pubhcatlons

In order to estimate the size of the calculated corrections to the pionium hfetlme
(Eq. (15) we have used the following value m.(24§ + a3) = 0. 49 of the singlet
scattering length corresponding to the value AE(I)/EI = 0.24%. The first, second

6

and third terms then contrlbute respectively, —0. 26%, —0.55% and +1.85%, an.d‘
t 7
he total contribution amounts up to ~ 1% to the decay width (apart from the
mass shift and radiative correctlons) The largest contribution comes from the

alno term in Eq. (15).
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