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IToMomoBOE CyMMHpOBaHUE UIA 3HEPrUM Kasumupa
AHBNIEKTPHYECKOTO 11apa

Dueprua KazuMupa MaTepuansHoro mapa, moMeIeHHOro B GeCKOHEYHYIO Cpeny,
paccyMTaHa IyTeM CYMMHpOBAaHHA COGCTBEHHBIX 4acTOT ¢ HCIONB30BAHAEM KOHTYD-
HOro uHTerpupoBaHus. CHaYana npeanonaraercs, YTo AUdIEKTPHYECKAs] U MarHHTHAs
NPOHHLAEMOCTH IIapa H OKPYXalOIIEro ' AHIIEKTPHKA CBSA3aHBI  YC/IOBHEM

€1, = €1, 3areM mpoBeneH pacyer Wi chydad (g -—82)2 / (g, +(—:2)2 << 1.
Ipn stoM sHeprus Kasumupa MONOXWTENbHA W YBENTHYUBAETCS C YMEHBLIEHHEM

panuyca mapa. Takofi pe3ynsTaT NOTHOCTHIO HCKIIIOYAET BO3MOXHOCTh TOFO, YTO 3ch-
thext Kasumupa Sngercss MpUYMHOH COHOMIOMHHECIIEHLMH MYy3BIPHKOB B XHIKOCTH.

Pabora BeimoniteHa B JlabopaTopuu reoperuyeckoii ¢pusuku um.H.H.Borono6o-
sa OHSIH. ‘
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Direct Mode Summation for the Casimir Energy of a Solid Ball

The Casimir energy of a solid ball placed in an infinite medium is calculated
by a direct frequency summation using the contour integration. First it is assumed
that the permittivity and permeability of the ball and medium satisfy the condition
€11 =€ 1. Then the calculations are extended to the dilute dielectric ball

(t‘:1 - 82)2 / (t‘:1 +t‘:2)2 << 1. The Casimir energy for the last configuration turns out

to be positive, it being increased when the radius of the ball decreases. The latter
eliminates completely the possibility of explaining, via the Casimir -effect,
the sonoluminescence for bubbles in a liquid.

The investigation has been performed at the Bogoliubov Laboratory
of Theoretical Physics, JINR.
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1 Int;joduction

The Casimir energy, determined by the first quantum correction
to the ground state of a quantum field system with allowance for
nontrivial boundary conditions, proves to be essential in many prob-
lems of the elementary particle theory, in quantum cosmology, and in
physics of condensed matter. However, up to now there is no univer-
sal method for calculating the Casimir effect for arbitrary boundary
conditions. This has been done only for simple field configurations of
high symmetry: gap between two plates, sphere, cylinder, wedge and
so on. The curvature of the boundary and account of the diclectric
and magnetic properties of the medium lead to considerable com-
plications. While the attractive force between two uncharged metal
plates has been calculated by Casimir as far back as 1948 [1], this cf-
foet for perfectly conducting spherical shell in vacuum was computed
by Boyer only in 1968 [2] (sce also the latter calculations [3, 4,5, 6]).
If an infinitely thin spherical shell scparates media with arbitrary
diclectric (g1, &9) and maguetic (pg, p2) characteristics, this problem
is not solved till now. The main drawback here is the lack of a con-
sistent method for removing the divergences. Besides an attempt to
revive the quasiclassical model of an extended clectron proposed by
Casimir [7]; interest in this problem was also initiated by investiga-
tions of the bag models in hadron physics (8, 9, 10] and recently by
search for the mechanism of sonoluminescence [11]

In the case of nonmagnetic media (1= pg = 1) with permittiv-
ities (g1, 2y) slightly different €2 < 1, & = (g9 — €1)/(e1 + €9) the
Casimir energy for this configuration has been found in {12]. Unlike
the perfectly conducting spherical shell [3, 6] the Casimir energy of
a dilute dielectric ball proved to be negative. By making use of an
estimation of this energy [13, 14] a conclusion was drawn that the
Casimir effect for air bubbles in liquid cannot explain the sonolumi-
nescence as it was suggested by Schwinger [11]. '

In this paper we calculate the Casimir energy of a solid ball by
making use of the direct summation of eigenfrequencies of vacuum
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electromagnetic field employing the contour integration [15, 16]. A
definite advantage of this method, compared with the Green’s func-
tion technique employed in [12, 13, 14, 17], is its simplicity and vi-
sualization. First we consider a dielectric ball placed in an infinite
medium when the condition e1p; = e9p2 holds. In this way we at-
tain some generalization and refinement of the results obtained in
this problem earlier [17]. Further we address ourselves to.the case of
a dilute dielectric ball (1; = pg = 1 and €2 < 1). The Casimir energy
for this configuration proves to be positive, it being increased when
the radius of the ball decreases. The latter eliminates completely the
possibility of explaining, via the Casimir effect, the sonoluminescence
for bubbles in a liquid. :

The layout of the paper is as. follows -In Sect. II we derive
the Casimir energy of a solid ball in a infinite surrounding under
condition €y = g9 = ¢~ 2, where ¢ is an arbitrary constant not
necessary equal to one (it is the:light velocity in the medium), the
mode-by-mode summation of eigenfrequencies being employed. Use

of the uniform asymptotics of the Bessel function enables us to derive -

the first two terms of, the expansion of the Casimir energy in hand
with respect to £2. In Sect. III the general formula derived for the
Casimir energy is applied to a:dielectric ball under the condition
€2 <« 1. The implication of the obtained result to the Schwinger
attempt to explain the sonoluminescence by the Casimir effect is
also considered. In Conclusion (Sect. IV) the results of the paper
are briefly discussed. Dispersive effects are ignored in our paper.

2 Casimir energy of a solid ball under
the condition g1y = 9o

Let us consider the Casimir energy of a solid ball of radius a,
consisting of a material which is characterized by permittivity €;
and permeability p;. We assume that the ball is placed in an infinite
medium with permittivity €5 and permeability ps. We also suppose

that the conductivity of the ball material and its surroundings is
equal to zero.

In our consideration the main part will be played by equations de-
termining the eigenfrequencies w of the electromagnetic oscillations
for this configuration [18]. It is convenient to rewrite these equations
in terms of the Riccati-Bessel functions

5i(e) = zji(z),  éz) = zh{"(a), (2.1)

= /7/ 2:1:J,+1 /2 is the spherical Bessel function and

\/ 7/2zH , +1 o(z) is the spherical Hankel function of the
ﬁrst klnd For the TE- modes the frequency equation reads

ATE(aw) = eri §(kia)éi(kea) — \/Eai 5i(k1a)ey(kaa) = 0, (2.2)

where k; = /€jiw, ¢ =1,2 are the wave numbers inside and out-
side the ball, respectively; prime stands for the differentiation with
respect to the argument (kja or ksa) of the corresponding Riccati-
Bessel function. The frequencies of the TM-modes are determined

by
A?M(aw) = /€21 5;(1{:10)61(]&720) — VE1l2 §I(k1a)é;(k2a) =0. (23)

The orbital quantum number { in (2.2) and (2.3) assumes the values
1,2,.... Under mutual change €; < yu;, i = 1,2 frequency equa-
tions (2.2) and (2.3) transform into each other.

It is worth noting that the frequencies of the electromagnetic.
oscillations determined by Eq. (2.2) and (2.3) are the same inside
and outside the ball. ' The physical reason for this is that photons
do not perform work when passing through the boundary at r = a.
This is in contrast to the case of perfectly conducting spherical shell
in vacuum [6], where eigenfrequencies inside the shell and outside it
are determined by different equations [18].

As usual we define the Casimir energy by the formula

E = %Z(ws — @), (2.4)

where ]1



where w, are the roots of Egs. (2.2) and (2.3) and @; are the same
roots under condition a — oco. Here s is a collective index that
stands for a complete set of indices for the roots of Eqgs. (2.2) and
(2:3). Denoting the roots of Egs. (2.2) and (2.3) by w( ) ‘and wg,),
respectively, we can cast Eq. (2.4) in the explicit form ‘

2 o 00 o)
E=33"Y z Y (5 -a) =2 B @9
a=1 =1 m=-[ n=1 =1
wlere the notation
2 o
Ei=(+1/2)) 3 (- &%) (2.6)

a=1 n=1

is introduc ed Here we have taken into account that the eigenfre-
querncies w ) do not depend on the azimuthal quantum number m.
For pdrfldl enorglos E, we use representation in terms of the contour

integral provided by the Cauchy theorem [19]

I+1/2 ]{ d . ATE(az)ATM(az2)
= q
Bi=—r— pdzzgin ATE(00)ATM (o0)” (2.7)

C

where the contour C surrounds, counterclockwise, the roots of the
frequency equations in the right half-plane. Location of the roots of
Egs. (2.2) and (2.3) enables one to deform the contour C into a seg-
ment of the imaginary axis (—iA,4A) and a semicircle of radius A in
right half-plane. At a given value of A a finite number of the roots of
frequency equations is taken into account. Thus A plays the role of a
regularization parameter for the initial sum in Eq. (2.6) which should
be subsequently removed to infinity. In this limit the contribution of
the semicircle of radius A into integral (2.7) vanishes. From physical
considerations it is clear that multiplier z in (2.7) is understood to
‘be the lim,_g /22 + p?, where p is the photon mass. Therefore in

the integral along the segment (—iA,iA) we can integrate once by

-

parts, the nonintegral terms being canceled. As a result Eq. (2.7)‘
acquires the form

: 7 TE(; NATM(;
E = l+1/2/dyln AL (iy) A (i)
0 .

ATE(100) ATM (j00)

(2.8)

Ta
Now we need the modified Riccati-Bessel functions
si(z) = 12“51,(1«), el(z) = \/%I{,,(z), yv=141/2, (29)

where I,(z) and K,(z) are the modified Bessel functions [20]. With
allowance for the asymptomcs of sl(x) and e/(z) at x — oo and fixed

I

si(z) =~ -2—CI, (2.10)
efz) ~ e 7 - (2.11)
cquation (2.8) can be rewritten as
4e -2(q1—q2)

(VEipz + \/62111 N
X [\/5161/11/12 ((SI(Q1)61(Q2)) + (s4( QI)eI(Q2)) ) (2-12)
~(erps + 52/11.)Sl(QI)Sl(Q2)¢I(42)el(‘h)l },‘ |
VEiILY, ri - 1,2. We shall use thls general equation in

the next Section but here we address ourselves to the special case
when the condition

where: q; =

E1p = E2plp = C —2 ' (2 13)

is fulﬁlled Here c is'an arbitrary p051t1ve constant (the light velocity
in medium). Physical implications of this condition at ¢ = 1 can be



found in [21]): Now Eq. (2.12) is simplified considerably

g = L oyt [ + ()
e+ )] |, (214)

where £ = £1/e2. The argument of the logarithm in (2.14) can be
transformed, if the. following two equalities for the functions s;(y)
and e/(y)

siwey) — sie(y) = -1, (2.15)
siw)ey) + siy)ei(y) = (si@e(y)). (2.16)

are taken into account. It gives

E,:M/d In {1 - € {(s(y) () ]} (2.17)

Ta
0

where £ = (1 —¢)/(1 + ¢). Expression (2.17) agrees with the results
obtained in [22, 13], if one performs a partial integration of the ex-
pression for E given in these references and puts the cutoff parameter
5 equal to zero. However, Eq. (2.17) differs from the energy corre-
sponding the Casimir force (Eq. (2.42)) derived in Ref. [17, (1982)].
There seems to have occurred a calculational error in that reference.
If &€ = 0 or co and ¢ = 1 then, as one could expect, Eq. (2.17) turns
into the analogous expression for the perfectly conducting spherical
shell in vacuum [3, 6]. In the further consideration we shall follow
Ref. [6]. Integral in (2.17) converges as at large y ‘a‘nd fixed 1 we
have [20] ' T

(e = LK) = 52 @19
On the other hand, for y —0 ‘ | |
(si(me(y)) — 211? (2.19)

" The behavior of E; at large 1 is 'deduc’ed'by applying a uniform
asymptotic expansion of the Bessel functions [20]. This gives

%E,l ~ -i§2+ £4(6 - 7€%) + O(:ﬁ“). - (220)

l=co 64 1638412
We find the sum over ! in (2 5) by making use of the Hurwitz zeta-

function technique [23] R
. . 00 ) 3c 92 3c 9
E _%';E'*;(E'+64a£ 64a£>
= iE, —k—3~vc—£2§:(’ll+ 1/2)° (2.21)
. 64a”. ; N S : .

é[C (0, 1/2)—1]

= Z E, -

where Ej is the renormalized pzirtial Casimir energy
= — " "(2.22
E, = E| t 4a§ ; (2.22)

with ((z,q) being the Hurwitz zeta function [19]

o0

C(z,q = {1;‘(2.23)

n:O

For q =1 / 2 the relatlon [24] o
A =@-00) )

holds. Whence it follows in pa,rticuia,r that ¢(0,1/2) =0. In view of 7
this the Casimir energy (2.21) acquires the form

o © '30
E:ZE,+—G§2. o (2.25)



The sum Y 2, E} is finite because we have for large ! from Eq. (2.20)

Elﬁ

2149V2£2(6 - 78%). (2.26)

ole

With allowance for this we obtain the estimation for the sum Y2, E;

e B = 6 -7¢) ,Z T
2

= 2145 (6 — 7¢%) (%— ) (2.27)
= 5.135-107%¢2(6 — 7€%).

Thus the basic contribution into Eq. (2.25) is due to the second term.
Therefore with a fairly good accuracy (a few percents) one can put

~ 4ag (2.28)

Taking into account Eq. (2.27) we obtain, in place of (2.28), a
nmore precise formula

-~ 3c o 2
E~ 6_455 (1.066 — 0.077¢%). (2.29)
At all the values of the parameter ¢, 0 < &2 < 1 the Casimir energy
of a solid ball is positive. For ¢ = 1 Eq. (2.28). has been derived
in {17] by making use of the Green’s function technique. Formula
(2.29) even at ¢ = 1 differs from Eq. (2.60) in Ref. [17, (1982)]. More
precise result for the Casimir energy E can be obtained by direct

integration in Eq. (2.17) for the first values of ! and only after that -

using the asymptotics (2.26). Certainly, it can be done only for a
given numerical value of the parameter £.

Concluding it is worth to note once more that when calculating
the Casimir energy of a solid ball under condition (2.13) the diver-

gences have been removed in the same way as in the case of perfectly

-

conducting spherical shell [3, 6].

3 Casimir energy of a dilute dielectric
ball o

Now we address ourselves to the consideration of the Casimir
energy of a dielectric ball, when its permittivity and permittivity of
surrounding differ slightly

o £1+6 =2, e3—e =20e, |Aelfe<k 1. (3.1)
The permeabilitieé 1y and po are assumed to be equal to'1. When
this condition is satisfied, the general formula for the Casimir cn-

ergy (2.12) can be simplified putting there q; = gu. Making usc of
Egs. (2.15) and (2.16) again we arrive at Eq. (2.12) with ‘

(AR () e o

According to our assumption (3.1) Ez < 1, thorof()r( we call (xpand
the logarithm in Eq. (2.17) ’ ’

{1 &[sy)e®) P} = —f{[m(y)ez(y))712IM‘

&£ 1 ~,
“wrarap o 89

where z is defined by y = vz and v = 1+ 1/2 ( (f Eq. (2.54) in
Ref. [1/ (1982)]). This leads to

1

Byt ~ <L i [z 1
ball — —2—7r—al 1 vaziv 41}2 (1+z2)3
=17
2 o0 0 d o0

£ 0/ z 37
= - or (3.4
dma 12—1: g (1+ z2)3 47ra 16 < )

=1 9
With Zf_f_huo = —1, as before, we obtain, in dimensional units, the
Casimir energy of a dilute dielectric ball [25]
3hc €9 — €,)?

Eyan ~ —-52 (—Q (3.5)

4 256¢3/2a



‘As one could expect, this ‘s precisely Eq. (2.28) with afiew definitiok
of & given in (3.2). We remind that Eq. (2.28) has been. derived
by taking at first the limit v — co. It is worth giving here some
numerics. Take [£] = 0.1, .a =4-10"* cm. Then Ey, ~2:1075 eV.

This is immensely smaller than the amount of energy (~ 10 MeV)

ciitted in a sonoluminescent flash. Moreover, the Casimir. energy
(3.5) is always positive and increases when the radius of the ball,
a, decreases. The latter, obviously, completely eliminates possibility
of ,using the Casimir effect for explanation of the sonoluminescence.
As known [26], emission of light takes place at the end of collapsing
the bubbles.in liquid. In this respect, :more. precise formula (2.29).
with allowance for .(3.2) does not give anything . new. . It should be
cmphasized, however, that all our arguments are concerned with the
static Casimir effect only.’ o

Comparing our result for the Casunlr energy ofa dllute dielectric
ball (3.5).with other calculations of;this energy we see.that it is close
to Egs. (3.17) and (3.26) in Ref. [13] differing only. by the factor
97/46 ~ 0.6. This is important for justification of our consideration
because. Egs.  (3:17) and -(3.26) in [14] have been derived in the
framework of absolutely different but physically clear approach by a
direct summation of the van der Waals forces. Our result (3.5) differs
by the factor —3/4 from Eq. (7.5) in [13] and by the dependence on
A¢ from the calculation in [27].

4 Conclusion

Our method for calculating the Casimir energy E by means of
the contour integral (2.7) proves to be very convenient and effec-
tive. As known, there are in principle at least two different methods
for calculating E: one can follow a local approach, implying use of
the Green’s function to find the energy density (or the surface force

density). Or, one can sum the eigenfrequencies directly. Equation

(2.7) thus means that we have adopted the latter method here. The
Cauchy integral formula turns out to be most useful in other con-

10

text also, such as in the calculation of the Casimir energy for a piece
wise uniform relativistic string [28]. A survey on this subject can be
found in [29]. The great advantage of the method is that the multi-
plicity of zeros in the dispersion function is automatically taken care
of, i.e., one does not have to plug in the degeneracy in the formalism
by hand.

A remarkable feature of our approach is also the ultimate formula
for the Casimir energy having the form of the spectral representa-
tion, i.e., of an integral with respect to frequency between the limits
(0,0) of a smooth function, spectral density. Evidently, for physi-
cal applications one needs to know the frequency range which gives
the main contribution into the spectral density. An example of this
representation for the partial energies Ej is Eq. (2.17), where the
substitution y = wa should be done. As shown above, the partial
energies E; decrease rapidly as [ increases. Therefore the most in-
teresting is a few first values of I. In this case, as one could expect,
the spectral density is different from zero when wa =~ 1. Kecp-
ing in mind the search for the origin of the sonoluminescence we
put [13, 26] a = 4-107* cm. Then the wave length of the photon:in
question turns out to be 25.0- 10~* cm, i.e., this radiation belongs to
infrared region, while in experiments on sonoluminescence the blue
light is observed [26). This fact also testifies against the possibility
of explaining the sonoluminescence by the Casimir effect.

It is worth noting that the spectral distribution of the Casimir en-
ergy is practically not discussed in literature while the space density
of this energy has been investigated in detail (see, for example [17,
(1983)]. From the physical point of view the space density and spec-
tral density of energy in this problem should be treated on the same
footing. One can remind here the treatment of the Casimir effect as
a manifestation of the fluctuations of the vacuum fields [30], these
fluctuations being occurred in'space and time simultaneously.

It should be emphasized that in this paper we have neglected the
dispersion effects when calculating the Casimir energy. Importance
of this point has been demonstrated in [27]. As for the elucidation of

11



the sonoluminescence origin, we have to stress once more that in our
consideration we have ‘contentéd ourselves with the static Casimir
effect only. ‘ '

This work was accomplished with ﬁnanCIal support of Russian
F()un(latlon of Fundamental Research (Grant Ne 97-01-00745).
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