


1  Introduction. .

" The posxtlon of Gauge Theorles in- the modern physms is.excep-
tlonally 1mportant The very name includes the ‘adjective pointing
out to the important quahty in the theories - gauge. symnetry. Such
theorles involve also other symmetrles not less important oncs. Dial
symmetry has taken its own place in the number as well. It does not
seem to be honorable enough L - o

One cannot say. that :the dual qymrnetry was stu(h(‘(l httl(‘ ; })('
51des a lot of artlcles there are; also. a few books. Espccially. this
topic was . dlscussed very actnely when the magnetic monopole
problem clmmed attention of phyql( ists. Anoth(‘r related -topic ‘is .
instantons and Inonopoleq in tho non- Abclmn theories. : :

. Still, it should be ()nce Inore (‘IIlI)hdSl/(‘(l that. this fl(‘l(l has. 110t .
been studied enough Tho Dual Symmetry - (DUSY«].) ds:the-step-
(laught(‘r of Ficld Theory while Gauge Symmetry is: the favorite: one.

It " will be re mlndod tho dual symmetry. like. gauge onc is’ a
necessary. dttrll)uto of g(mb(‘ th(‘oru's ‘And:in this fact an, idea of -
Unific atiol, passing thr()ug,h tho 1110(1(‘rn physus is displaycd. How- .
ever, whdt (()ul(l be said of (ludhty in Grdvmmon’ Nearly . nothmg' :
But’; this is one; ()f the unp()rt.lnt g(mbo th(’oru-s In this paper it is ~
shown that there exists two- parameter (llldl group in GI‘dVltd.thIl

A lot of attempts to solve the magnetic monopole problcm in
clec tI‘()(lVIldlIll( s by means of (ludhty have been- montlone(l to be un-
dertaken.” There are. maiiy referenices to this: ‘subject in [1] and [2].
More modern approaches can be seen, c. g., in [3 4]. o

Dual invariance of the pure: (‘lectrodynamlcs equations was found
rather long ago. Having at first appcared: as.a_discrete symmetry,
this invariance was then descrlbed as continuous, one (dual turning)
by G. Rainich [5], C. Misner and J. Wheeler [6].

The interesting and. strange. fact-is that- the pure Maxwell elec-
trodynamics equations are invariant under the dual turning, and the
Lagrangian does not possess such:-a symmetry :

And what about introducing the dual syrn_met}‘y_in theory from. -
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~the very beginning in 5 standard manner, ha\)iiig'fbhosen the dual

invariar}fl asa Lagrangian?' The obi(ious objection to this idea is that
the motion equations are badly nonlinear. - Neyverthelesks-, it wili be
seen furtherlthat the inserted dual symmetry models are of interest.
For example, - there may be an opportunity to ilitérpfet the nonlinear
dual theory as a linear Maxwell théory, with source. In this case the
original theory-nonlinearity is hjdgieﬁ into thé source. Non-Abelian
fields can be" considered according to a similar scheme.

- On the other hand, the dual-covariant elvectro’dyna‘niics equations
.may well be intérpreted as linear equations of the electrodyﬁanﬁcs
_with magnetic charge. ‘Transition from the picture with electrical
charge to the picture with magnetic one is provided by means of
local dual transformation. Local dual angle arises in the theory in a

‘natural way. A similar angle (phase, complexion) was discussed by

C. Misner and J."Wheeler [6]. , .
Establishing the dual group in Gravitation enables us to speak
szout gravité.tiqnal instantons as solutions to-the dualiﬁy equations
hke it happens in the Yang-Mills theory. "Mor‘e‘over, the instanton
,secto.r is here far richer than in the ‘Yang-Mills case since there are
two 1’r.reduciblev" »r‘epre’se'ntations of the dual group. In addition this
. fact gives new opportunities to obtain new g'r'avitational‘e(iuati(‘)ns,

to construct the Lagrangians.

2 : Dual Symmetry in Electrodynamics
2.1 The Dual Tifénsformations | |
In the modern form the dual transformations were introduced by

Rainich [5], and Misner and Wheeler [6]:

/L 9.1 :
Fm,\ = F,, cosf + *xF,, sin @ = e*eF,,,,,

‘HI
* F o= ‘
By ns

: —Fusinb+%F,, cos0=e? s« F, . (1)
where *Fy, =1 /25#V’;,;F o ' ,
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In view of formal similarity of the di;al conjugation operator and
imaginary unit and because of the fact that the transition operator
from F to F' looks like turning in' some plane as well, it becomes:
evident that transformation (1) is referred to as the dual turning.

The pure Maxwell electrodynamics‘equations: with the’ conven--
tional quadratic Lagrangian ' S EREEE

p :T'g.F#”F ] EgF‘?k .

prove to be invariant under the transformations (1) while the La-
grangian itself does not possess the invariance! That is, there is no
symmetry but this points out that the symmetry might be realized
nonlinearly (é_ompare with spontaneous symmetry breaking).: Well-
known as though,this rather unusual fact did not claim due attention
of the theorists. T ’ gt
Meanwhile, the authors of the book [1}, playing on invariance of -

- equations but ignoring the Lagrangian noninvariance, try to intro-

duce the ”conserva.tive’f dual current what seems to us to be not
quite correct.” " . v e ' SRR

It would be quite in spirit of the modern approaches to consider .
the Lagrangian with the expiicit dual Symmetry._ It is known there
is the only dual invariant which is also Lorentz one. It has not been'
considered (as far as I know) as a Lagrangian what is quite clear
— it would: lead to the badly nonlinear motion equation;“Néyérthe—"
less it is of interest to consider the model of pure electrodynamics -
with dual-invariant Lagrangian, first, in virtue of the unusual and
very nice properties of the model and, second, since this essentially. -
nonlinear theory may well relate in' some way both to the Maxwell
electrodynamics and to the magnetic charge problem. »

One can obtain the only dual-invariant éxpyressi'on as follows. Let
us consider a complex quadratic form o

F? 4 i+ FF.

This fbrm is usually regarded in corﬁplexifying F-space. It is invari- -
ant under the complex orthogonal transformations O(3, C) [7]. With
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respect to the dual gr’:ou/p:(lv)y the form transforms aslfollov’\"s: .
F'LixFF = (F? 4 i+ FF)e¥,

E;irst, this formula establishes isomorphism bétWéen the ‘dual rota-
tions z_md the ordinary phase transformations. Second. it is etting
clear .that‘the transformations (1) are not a subgrou;’) of Og(3 C)g
That is, the complex orthogonal'trarfsform'a.tionsshould not mi),( u[;

, v_vi‘th‘ the dual ones. Now it is'quite clear that -

i (P’ 4+ (+FF) = ino.

: It is the only cxpmssion to be invariant under ‘either the Lorentz or
the dual‘tr‘ausformatlons. Occasionally, it should be noted that fo
- any componcent Fy, = f ' s
FHief=(F +isf)e” — Praf = iny,

s Let the La rra'n rian of the pr : . : |
as follows: grang ‘ he pure ‘dlldl clectrodynamics be Ch_Osen

L=/ G,

) V&llf}&ltl?}{&ll principle brings about the cquations

N N ‘(-r ' R F2 o 1““" 3 ‘ N /‘\' g . AY
. Fl”/ . 1173 *FF Lo
BN Ca > =+ 1 . -
< V(F2)2+ (+FF)2 \/(F2)2+(*FF)2> W"_,O"

Tt is seen ,
o t».ls Seen that th.e local angle @ determined by clectromagnetic
s ‘rength at the point of space-time appears: ST

Cos = - . , sin = _+FF-
- VERHEERE T s Ry

" And n i ions can be wri ‘ .
~And now the motion equations can be written in a.shorter form

(F* cos @ + +F™ sin p),, = 0.
Denoting’ ) ' R :
R : Flu/ Cos (P + *F,uu Sin(p '= eﬂa(i)F'uu’

.‘,/‘ o » . 4

one can rewrite these equations in a more elegant way: .

T

Adding the identity S R | R

*FH o, =0, T (3)
we obtain the complete sys\t‘em (set) of dual electrodynamics equa-
tions (2),(3) which is essentially non-linear. \

- 2.2 ‘Transformation Properties of the Model
under the Dual Group. - .- e

Further it is written down how some values transfi)'rm. o
o _ F= C'_*OF,I,;{{ ’*F}zbv:"efAfoi*»f}iu,r G (4)

cos @ = cos(@’ + 20), - sinp = sin(p' +28),

L PRy=el(e P ()
All these formulae could b(ébbtaill(!d (ler(tly We can sce that the
left-hand sides of the system (2),(3) transform in’ various ways. The
left-liand side of (3) transforms like (4), i.c./ co-gradiently with:re-
spect to the field F,. As seen from (5); the left-hand side:of . (2)
transforins by ‘means of invert transformation, i: e. contra-gradiently

with respect to Fj,.
+.2.3 - Dual Electrodynamics as a Maxwell,. .
.~ System with Source. : - : ' :

"~ One can’re:wiri‘te thcset(2),(3) 'V'Q't}:ierWi‘sé,z Just "rés'.(l);l"\‘/'i“ng the first
of the equations with respect to FW o

W= o (P tan = FP) =GR (6)

*F’“’,,, =0..



One can consider such representation of (2),(3) as a way to break
down the symmetry since both sides of (6) transform in different-

ways . Thereby, the.equation (6) takes the form of the Maxwell
equation with source. Let us suppose that the nonlinear set (6) ha,s
~a solution of the form. T

B 1 1\ . -
FO#:E'\{—, ]OZMO(_>, r-— 00.
r r

~ Then perhaps the notation of the right—hand side of (6) as a current
could be justified. It will be noted that genuine central-symmetry

field makes the right-hand side of (6) to be equal zero. That is

‘all right. But it 'would be better to find an asymptotzcally central-
symmetric solution.

Going on to.speculate on this matter, it could be noted that .

quantlzatlon of charge which is effective in such a theory would arise
as a result of quantizing the nonlinear field theory.

o 2.4 Instantons in Electrodynamics

o Instantons in electrodynamics are known to be absent because of
‘the gauge group topology triviality. Although the term »instanton”
- should be made more precise. . |
e Let us notice the motion equations are satisfied if the condition

F#,,cos<p+*F,wsin<p=0' . ' ’_ (7)

is fulfilled. Let it be called the generalized instanton equation. Why
- instanton it will be seen later when discuissing an analogous equation

- in-the non-Abelian theory. It is convenient to denote a=Fb=

+FF. Then, projecting (7) onto F, one obtains a? 4 b* = 0, or, on
account of the reality of the fields *F and F,a = 0, b = 0. Thus, the
electrodynamical instantons are, e.g., plane waves.

R et S8

o

2.5 The Local Dual Transformations,, .
Appearance of the angle ¢(z) in a natural manner prompts to
introduce the space-time point-dependent dual transformations. So

: _FI"V ?;;e*‘PF#V‘ B O A AP T A (8)

To go further, it is necessary to know what is *F? Its definition is
introduced as follows. For any functlon f to be glven on F-space the ‘
dual conjugation procedure is b s

« (F) = f}(i«F.>: . ©)
Then, for example, ; ~ -
« Fy(F) = F,(+F). (10)
Notlcmg that g F- ; : TR
| :COS go(*F) — COS P, ein go(*F) =—sm<,0, R
_we ﬁnd by means of (10) I o ‘
% F,,,, = F#,, sin $- *F#,; cosgo _:  e*“’*F#,, B (11) ,

Now one can easily prove the propertles

(1.«‘2)2 + (*FF)2 (F2)2 + (*FF)2

N cosp =cosp,  sinp= S,,}w.- i (12)

F‘?rf"’ins,tarl‘ce,; LR t

V(E2)2 4 (sFF)?

F2(cos? ¢ — sin 20)+ 2(*FF) sm<,9 cos @
V(E22+ (FF)2

_=.cospcos2p +sinpsin2p = clovsyycp.

cos@ =




Taking into account: (9), (10) and (12) one can mvert the formulae
®), (11):.

' F,“,—e F =e* F,“,, *F,“,__ *F

Now the system (2),(3) can be written in terms of the tensor F),, -

’ (e*,? * F",“') =0

. ‘F;UIVZO’

B}

‘and admits, like the set (6), to be written in the form

B, =0, sFW, =

where j* is formally a magnetic charge current.

In conclusion write down the relation

C*acpe*él;vlw — 6*(1—‘1)“01‘_‘

g

where a is any number. The property to be expressed by the formula
is due to the definition (10) and makes:it difficult to introduce ”par-
tial” local transformation, by means of whlch one (ould havo both
electrical sources and magnetic ones.’ ‘

The transformations (8) (11) and (13) are rdthor similar to dis-

“crete ones by its propvrtlos ‘Do thoy form a group? What i is deeper
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sense of the field F and 1ts prot()typo F?

3 (’Duality in Non-Abelian Theory

3.1 The Lagrz_irlgilan and Motion Equatilons

The dual-invariant Legrangian‘ for non-Abelian fields can be cho-

sen in the form

L=/ TrF"’)"’-i—(Tr(>o<FF))2

‘Where the fields F),, and the potentlals A, take values in Lie algebra

of some group. The dual transformatlons

‘F,v'“, = F,,cos6 + *F#',, sm()l ='e Fﬂ,,, - Fu= '*GFIC,,,

*F,“, (13)

R AT N

Perhdpq it would bo useful to apply gduge transf()rmatlons

p s PRI ‘-B '
*F), =*Fﬂ,,cos()—Fﬂ,,sm()ze*B*F,“,, *F,“,=e ’ *F’

are the same as in the electrodynanncs Agaln for conveniernce nota—
tions are 1ntroduced - 3 :
a . b ‘
—, S =
a? + b2 L4 Va2 + b2’

o= F’“’coscp-{-*F’“’smcp = e*"’F’“’

a=TrF? b= Tr(*FF), kc_osrp =

The motlon equatlons are
Fw +z[F B A ] = (!

These equations are far more nonhnear than the X ang-Mills ones. To
know transformation properties of these equatlons one need to know
how the vector-potential A, transforms. Thlq is the old pr()blom 11].

3.2 The In‘starrt;okné,gih N

The motion equations will be satisfied , the condition

FIY 2 Peosip £ xFWsing =0 (14)

having b('(‘n fulfilled: Any solution to thls oquatlon will: be referred to
as_a generalized instanton. It is not difficult to see that the. Belavm—

- Polyakov-Schwartz- Tyupkm (BPST) instanton, [8] obeys the equa—

tion.: Really, the BPST instanton is the solutlon to the (antl )self-

duality equation (the space-time:is pseudo Euchdean)

*Fﬂy '=':i:iF,w

PrOJectlng this and also the equatlon (14) onto F,“, w1th tracmg

\/ a? -i-‘b2 =

“results i in '

b = *ia,



Smce in the non-Abelian case the fields'are complex in the general
case a, b # 0. Taking into account the duality equation, the equality
(14) can be written in the form

:i:z(b:an) -
- Vi) b—ia)

It is fulfilled for the (anti-)self—dual fields because the degree of zero
over the fraction bar is higher than below bar. ‘

One can show that conventional Yang-Mills equations will be
satisfied if together with (14) takes place the condition

b ="tia, = 0.

*F* (tan ¢),, =0

wh1ch is valid for the (anti- )self dual fields.
" Non-self-dual solutions were searched for in [9] by means of gen-
“eralization of the duality equations. It is the equation (14) that may
well be regarded as such a generahzatlon To ﬁnd new solutions to
cu the equation (14) is an 1mportant task.

14 Dual Symmetry 1n Grav1tat10n

4 1 Some Notatlons y

‘ Flrst one needs ta introduce some notations and recall some facts

"wrltmg them in the form convenient to use further. - -
' " Curvature tensor. R,,,,p‘7 in gravitation is the-analog of the electro-
~magnetic strength. There are two channels (two pair of 1nd1ces) not
* to be quite mdependent for Wthh the dual conjugation operation
can be introduced. So

*Rukl = 1E, R™ ’ R*';kl — lRm"E - Eiy = LE

" 9Fijmn {y » 1_? D) ij mnkl, 17kl \/—_-_—g ijkl-

The properties can be easily verified:

"**R-:R**:‘—R.‘

.10

—— e

" where

It is convenient to rewrite ‘a number of known properties of the
curvature tensor in terms of the rlght -handed and/or the left handed

dual-conjugated tensor.
The circular transposmon 1dent1ty is rewrltten in the form

Rpupa + R;wup + Rppau =0 . | — *Rll: =0 and/or R*ll: = ,0' ‘ |
The Bianchi identity .
' Rp;/:oa';é + Rpu&p;a + Rpuaéd;p : 0 ;
can be wrltten as follows o
v *R,, pow =0 and/or R*u,° , = 0.
However ' S NCDICE
R %, "0y # 0 andfor x Ry,7 0 # 0.
Often one considers the so-called twice dual curvature tensor :

(TDCT) [10] B L
*R*;wp” 4EﬂvaﬂRaﬂ76E76p&‘t

Using the expressmn for the antisymmetric 6—symbols product in
terms of the Kronecker é-symbols [11]; it is not difficult to- express »

. TDCT in terms of the curvature tensor:

« R4 4y = R 4 SURY 5#3"' SERY — 6"R"+ R(&"&" - 616%).
)

4.2 Dual Group in Gravitation

By means of TDCT the curvature tensor in a natural and invari-
ant manner is expanded into a sum of two- 1rredu01ble parts

R;u/pa = Rpupa + Spv;w;

1 . 1, :
Ryvpo = §(R#ilpv — *Rx ;u/pv) Spvps = 2(R#Vp0 + *R*#VPU)_' B

11
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The properties may easrly be proved - to take place (sometlmes no
: 1nd1ces notations are used)

*R:R’F,' *R¥=+*R =R xx=-R,
S = —Sx, *S*_Szf**S_—S**_

For instance, - ‘ 7 R

*R = *%(R — *xRx) ; —;—(*R+ R*) = Rx*

xS = >I.<%(R+ *Rx) = %(*R - Rx) =~

“cte. Since the tensors R and S transform simply in dual conjugat-
" ing, the notations can be somewhat improved. We take into account
that among the left-handed and right-handed dual-conjugated ten-
. SOTS (e g., *R ’R*) the independent tensor is alone .

¥R = Rx :R, *S = —S*:S .
. Using the explicit expression.for the TDCT, (15) one can write

~down the explicit expressions f()rk'R.au(l S

R = Ty

(g;w'Rup + JupR;m' _(];tpRua' - ybaR,[p)
+— (gupgva guagup)

= Cﬂ".ﬂv‘f;ﬁ.(,gw?%*?ﬂ?g.kﬂ)’. o 18)

| Spipo = 5 (gupRW + 9volyp — Guolup — Gupltys)
e LR (gwgup g“pgw)
where Chvpo 1s conformal Well’s tensor It is also easy to obtaln
.

12

—Gvoe, j'R‘le\lVH: Ra'- ( :. (17) .

R '
Spu“a = R,; ;._‘Zgua'y e SIIVI“-,I‘ = 0 ,5"» >
Now one gets ready to introduce a dual group in gravrtatlon Let
us consrder the transformatlon

R——»R’ R’:e*"Re*ﬂ SR (18)

where «- and [ are mdependent dual ‘angles.. More prec1sely, the
somewhat symbolic notatlon (18) means

R = Rcosacosﬂ+ *Rsmacosﬂ+R*cosas1nﬂ+ *R*smaslnﬂ
S (19)
Quite clear, the transformatlons of kind (19) form an Abclian two-
parameter group
Next, one finds that the tensors ’R S transform szmply when ac t('d
by the group (19) - : o

R = @R = Rt ! —e*(a 8 = S (90)

#

and actually reah/e an 1rredu(1ble reprosontatlon ()f tho dual group

~in gravrtatlon

By ‘analogy w1th the dual ole( tr()dynaml(s as a (onsequence ‘of

, (2()) we, unm(‘(hatoly ()btaln two (lual g,raVItatl()nal mvarlants

z f'J W

IR

R (R2)2+(RR>2 L= 4 (s

‘ Hero ’R2 RIPIR e “etc. Perhaps it would be far more convenlent

to use the linear combinations of these 1nvar1ants Wthh are expressed
in terms of this curvature tensor:

JI = (R2)2 -|— (*RR)2 + (RR*)2 + (*RR*)2 o
|k = RGRRY-GRR)RRs), |

where in reality
+RR = RR+, «RR+ = R(*R*)

13



4.3 The Gravitati‘onailnInstantons
4.3.1 Discussion

The current state of the gravitational instantons question seems
to be somewhat intricate.: Penrose’s [12] instantons (nonlinear gravi-
tons) are the (anti)self-dual complex solutions to Einstein’s equa-
tions. Hawking introduces the instantons as Euclidean solutions to
Einstein’s equations with finite action [13]. This matter is reviewed
e.g. in [14]. In either event gravitational instantons are related to
solutions to Einstein’s equations in the Euclidean space -

R;w = /\gpku '

and should obey the (antl )self -duality- equations to be understood

as follows
‘ C;wpa = iCpupar

* where C,,,,,,,, is Weil’s tensor. !  As seen, for example; from non-
‘Abelian theory, the instantons, to a certain degree, do not depend on

~ dynamics. They rather display deeper. klnematlc—topologlcal proper—

ties. For Einstein’s gravitation it is not the point.

- It isnot worthwhlle to relate 1nstantons to any dynamical equa-

tions, to Einstein’s ones in partlcular These equations, as distimct

from Yang-Mills ones, place too hard restrictions on the curvature

~ ' tensor from the point of view of the (anti-)self-duality properties.

- Let us call as gravitational instantons the solutions to the duality
{equatlons in pseudo-Euclidean space for the tensors R and S

R=+iR, &= iS. (21)

These equations are qulte equlvalent to the duahty conditions in the -

Yang-Mills theory. Of course, ‘the R-space i is real and the equations
* (21) are reduced to

Ryupa = 0, Syupa’ =0. (22)

1This point has been cleared up to me by A. Popov.

14

-where

So the real gravrtatlonal instantons are determlned by. the equatlons
(22). To avoid misunderstanding it should be emphasized that the
equations (22) must not be regarded as a system (set).

Written in another form, such equations are given in the book [15]
and they were obtained otherwise. Solutions to_these equatlons

- (which are not obtained and are not presented in the book) are re-

ferred to as twice (anti-)self- dual ones, which are similar to usual
instantons by their properties.

It follows from our approach that they are usual gravitational
instantons. ' ‘

Next a few centra.l—synunetry solutions are shown.
4.3.2 Th'ef 4-central-symmetr_io solutions
The Metric Choice. Let us look for the.solu‘tions to (22) as

a metric of the form

ds? = e Pdp? — pz[d¢2‘+‘§inh2 (d6? + sin? 0dg?)],

dsg = dp [dz/;2 + smh2 1/;(d62 + sin 6d¢2)]

is a 4- spherlcal ﬂat metric. Calculatlng the curvature tensor glves _
four nonzero (diagonal) components of the tensor 'Ry, and six nonzero
(dlagonal) components of the tensors R,,,,p,,

Rouvpe = 0 Slx components of the equation that do not turn
into 1dent1t1es reduce to the only one of the ﬁrst order :

- . ‘ ) 2 y"‘
v - (p) = ;(1 —.e)
The equation is easily solved: °
9.
V(p) R .
P —.C

The metrlc is gettlng flat 1f p — 00 or C’ 0.

15



- Suvpe = 0. Six components of the equation not to‘be'reduced/to
identities reduce to a differential first order equation alone

o) = 2(e —
V(p),—p( — 1),

which has the solution
. | 1

1= Cp?
If p — 0 or C =0 the metric g.ets flat.

e’ =

R,, = 0. Einstein’s equations in empty space have a trivial so-
“lution only: e” = 0. This merely emphasizes the fact that the gravi-
tational instantons are poorly compatible with Einstein’s equations.
The solutions described in this section are qu1te analogous to the
spherical-symmetric BPST’s instanton [8].

4.3.3 The Statlc Central—Symmetmc Solutlons

- The Metric Choice. We search for a solution as follows (the
metrlc is just as in Landau and LlfShltb [11]): ‘

ds? = ("'(')dt2 "(')dr 2(dH2 + sin’ 0d¢ )

Ve

Asa result of the curvature tensor calculation 1t turncd out to cousist
of four nonzero (diagonal) components’ of the .tensor R, and six
-nonzero (dlagonal) ones of R,‘,,,,,,

Ruvpe = 0. Six equations not to be reduced to identities reduce
to the only differential equation of the second order

A=v, v'(r) ='7-2—(e” —1). ' '

“This is a rather nontr1v1al equation. It can be exactly solved [16].
The solution is represented in two forms:

e = 91242 sin~? [—}—(r - Cg)]
2. W2
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Or ‘ ‘- * B
Ct » X [CI‘ '
e’ = —r’sinh™? | ==(r — C ]
o2 T ﬁ( 2)| -
With the constant C equal to zero, the solution becomes more simple:
L2

(r —C’)2

This solutlon is asymptotlcally ﬂat at 7 — oo and for a small r:

Suvpe = 0. Six equations not to ‘be identities reduce to thc only

“equation of the second order

A=-v, A+ =50,

~ which is solved simply:

e’ = i ‘+‘Cl‘r2 + 93.

It is secn that this solution contains Schwart7schlld s solutlon (1f
C = 0) For large r the first metrlc coefficient’ goes to mﬁnlty, what
pomts ()ut that the metnc ‘may be closed.

4.3.4 Generalized Instantons

By analbgy with the dual electrodynaﬁ.licsa‘nd non-Abelian the-

.ory, the generalized 1nstantons are deﬁned as follows (1t is not a

system of equations):

Rpuvpo cos o+ Ruvpo S.in‘Plgbak- B (23)
’ SI;}(P” cos 1,b+ 5,,,,},;, siny = Q, | . '(24) R
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where

cosgo:\/——ﬁ, \singo:‘/——(ﬂ_:_’_by
cosyP = c siny =

N Wz
a=R%, b=RR, c=382 d=8S5.
It follows from (23),(24) -

a’ —I—ib2 =0, E+d?=0

or a = 0,’b:=:~10,‘c'=‘0,~d = 0. The instantons-R = 0.and S = 0 |

are easily seen to obey the equations (23),(24). Perhaps, there exists
some way to complexify R-space, so that the instanton notion in
gravitation would be:more comprehensive as it should be in non-
Abelian theory

4.4 The Gr:avitation Equations

If there are tensors that possess the basic symmetries of the cur-
- vature tensor, metric and the energy-momentum tensor of matter,
new grav1tatlonal equatlons could be constructed. Let us begln from
the trivial but visual example It is possible to construct tensor by
means of the metric and the energy- momentum tensor, Wthh has the
“curvature tensor symmetries. The following equatlon is postulated:

-k Rpupa = CQnSt(gppTua + guanp - gpaTup t_.gl)pra)- - (25)

‘Is this equation good or ‘bad? It is bad as it follows from below. Let

the energy-momentum tensor be concentrated at finite range of the

space. Out of the range the equation is given by
Ryypo = 0.

‘Thus, the equation (25) predicts the absence of gravity wherever the
' matter is absent.
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Let us try once more to find: the gravrtatlonal equatlon usmg the:
twice anti-self- dual part of the curvature tensor - '

Rivpe = A(gipTyo + guanp gpaT.,p 9vpTuo)- (26)

One can show that in the long run the equatlon reduces to the con—'
formal flat Nordstrom s theory [17]. Really, reducmg it with respect
to the indices p and p and taking 1nto account (17) we obtam '

L . Rgua = A(2Tua + guaT) “ » : (27‘)
One more reductlon glves ‘
R=6AT. (2

Expressmg T,,,, from (27) and substltutmg it to (26) alsotaking‘ into‘
account (28),(16), we find eventually ' T

‘ R
R;ww = Clww + 12(9;1;)91”7 g;wglw) 12(9;1;)9"0 gwgvp)

Thus C,,,,p,, = 0 Together w1th (28) thls equatlon isa formulatlon of

Nordstrém’s conformal flat theory. [10] Wthh for ‘example, predlcts

no dev1at10n of hght in the ‘gravity field.
Be1ng consequent we have to try constructlng an equatlon by
means of the tensor S '

‘ ‘;SW;&‘ '__:’ B('g',,/‘pTWt—I—;«g,,,;T,,p g,wT,,p ~g~"pT."°‘)',
One can show that this equatlon reduces to sl o
- R - Eg,,,,’:?BT,“,, S T=0. -

It would be of 1nterest to consider the system: electromagnetlc field
- grav1tatlon startlng from these equatlons rather than the Maxwell—

Elnsteln ones
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4.5 ‘Duality and Variaﬁio“hal~=1?1finc‘iple 1n '

Gravitation

* We concerned the dynamical aspects just 'in the previous sub-

_section trying to construct gravitational equations by means of the:

dual-symmetric parts of the ctrvatjlre ten:sb'r’ o'nly." It'i‘s:of‘ ’ipter.est
to establish a variational principle which is compatlblef W‘l'th‘.dlli.lllty,
say, in the way to be similar to the dual electr.odynarmcs variational
principle. As has been noted, Einstein’s equation, and consequently,

_Hilbert’s variational principle are poor combatible with duality.

It is possible also to use directly

However, direct attempt to create a gravitational theory»with. thie

| dual symmetry to be involved faces troubles.

Let us treat maintaining the analogy to electrodynamic-s. It is
known that the quadratic Lagrangian electrodynamics equations are

dual invariant.  In the gravitational case that all would have ‘beg'{l '

analogous if the equations

(o4 —
Ry’ o =0 s R *pp %0 =0

(29)

had t;ﬂ(ﬁn place. But for the quadratic in R Lagrangian onc ()btmrls ‘

‘the equation” - ‘ T
: L Riyp e =0 S (30)

rather than the first one of (29) V(jhris:t‘offel»’s syii;}iqlsk{rc ?sfiggcst..(éd
to be related to metric in the usual way but f;bérlj;i('z'(;ti(iiis are va‘r’wd
rather than the metric. However, the left-hand side of '(3(?) is iden-
tically zero on account of the cirfcularvtr‘a,’ns.ppsit}ior‘l‘ i’dcntlty. Thus
we have no variational principle leading to the equations (29) and at

“this point the analogy toseléctrodynam_ics already vanishes..

1 nsymmetric ‘connections intro-
Perhaps, one should consider nonsym

-+ ducing in this way torsion. “In.any case this would enable one to

avoid the equation (30). None forbid however to compound the dl'1a'l—
»s'ymmetric objects by means of .the tensors, R and S. ,In,.yeffect _this
‘has been done in the subsection about the gravitational instantons.
tis 0 to use directly  two gravitational dual invariants.
We have to repeat, however, that besides the problem to choose the -

-
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viewof 30).

Lagrangian, there is another{ difficulty. If the basic dynafnical‘vari—

- ables are symmetric connections related to-the metric in-the usual

fashion' then the dual invariant Lagrangian theory will{be-ugly in

5  Conclusion o5

In the paper an attempt to consider the consequences of the the-
ory with the incorporated. dual symmetry has been made. ‘The,dual
symmetry in gravitation has been investigated as well. Such an ap-
proach to gravitation has not appeared before. The dual electro-
dynamics is the elegant nonlinear model which might be related to
the linear Maxwell electrodyna.mics. The local dual angle arises in
a natural fashjon in this theory. This angle enables ixllt,ro‘(lli(':iiié the
local dual transformations. . By means of these transformations the
theory may be refofml‘llated in terms of the magnetic charge. The
cquations have been considered the solutions.to which were referred
to as the generalized instantons (for the BPST-instanton oheys these
equations). Nontrivial gravitational instantons have been found. Tr-
reducible rfeprescntativons of ‘the dual group in_,gr‘avlitat;ipn.giye-fr‘lcw

‘opportunitics to establish new gbra,viﬂtationg;l cquations. The :prob-
lem related to variational principle notion for the dual-symmetric

gravitation has heen- discussed.
The tasks of interest should be noted.

o Scarching for solutions to the dual electrodynamics and non-
Abelian theory (the instantons as well). The problem to find
the asymptotically central-symmetric salutions is of great im-
.portance. ‘ SNV RPN S EEENE

e The transformation properfy in the flé)n-ABelién >t’he(>)r37 (iIi par-
ticular for vector-potential) under the: dual group:
e Establishing the‘dual-'symmetric variational priﬁCif)le in 4‘g’ra,v’- -

'itation.'Per,ha.ps,«the torsion should be included in.the}theory{:
" to obtain self-consistent theory. JIRCE IS
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