
E2-97-249 

A.L.Koshkarov* 

DUAL SYMMETRY IN GAUGE THEORIES 

Submitted to «TeopentqecKru~ H MaTeMaTwqecKru~ cfJHJHKa» 

*Permanent address: Petrozavodsk State University, Petrozavodsk, 
185640, Russia; 
e-mail address: koshkar@mainpgu.karelia.ru 



J--· 

"·>-" 

A.t. 
:Lri ('}aug e 

·. 

j 
~ 

1 Introduction. · 
' ' 

. . The position of Gauge Theories in the modern physics is exccp-
= . . ' . 

t~onally important. The very name _includes the adjective pointing 
out to the important ·quality in the theories - gauge symmetry. Such 
tlwories involve also other symmetric~, not less important ones·. Dual 
symmetry has taken its own place in the number ~s well. It docs not 
seem to be honorable enough. 

One cannot say that.the dual symmetry was studied little :he­
sid~s a lot of articles . there a~e· also a few hooks~- Especially this 
topic was discuss~dyery actively when the miiguetic monopole 
problem claimed. attention of physicists. . Anoth,er rehtted topic is 

' ·. . . / ' 

instantons and monop()les _in the non~Abeliantheories. 
' Still, it shcnild be once more er~lphasized .that, this fidd has not 

been studied enough. The Dual Symnwtry: (DUSYa) ~is. the step­
daugl~ter 6f Field Theory .whil~~ ,G~mge Symrqet.ryis th<;. favorite one. 

It will he reinindcd the dual- symmetry; like gauge one is a 
necessary attrih1Ite of gauge. Hworie~. Ancl' in. this fact . a11. idea of 
lJnifkati<>'u, passing thrmigh,the ~noclcru physic:s,, i~ clisplayed. How­
~~wr, what .coi1lcl he said of dm~lity in Gravitation'!. Ne<_trly nothing! 
But .this is mw of theiinpc)~tant gauge theories; ~n this paper it is - . · 
shmvn that th<;n· exists twc)-paraiueter dual gn:mp in Gravitation. 

·~. lot of attempts to solve the niagnetic monopole problem in 
ele-ctrodynamics by me<ms of,duality have been mentioned to _be un­
df'rtaken. · There are mi~riy· r~ferences to this subject ih [1] and [2]. 
).Jon• modern approaches can be seen, e.g.,in [3, 4). 

Dual invariance of the pure Clect~odynamic~'eqtiations was found 
rather lQng ago. Having at, first appeared CJ.S,a discrete symme.try, 
this inw~riance was then described ati C()ntinwms,_qne (dual turning) 
by G. Rainich [5], C. Misner and J. Wheeler [6]. 

The interesting and strange fact~ is that the pure Maxwell elec­
trodynamics equations are invariant under the dual turning, and the 
Lagrangian does not possess such·a symmetry. 

And what about introducing the dual symmet~y in theory from 
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the very beginning in a standard manner, having' chosen the dual 
invariant as a Lagrangian?· ';rhe obvious objection to this idea is that 
the motion equations are badly nonlinear. Nevertheless, it will be 
seen further that the inserted dual symmetry models are of interest. 
For example, there may be an opportunity to interpi-et the nonlinear 
dual theory as a linear Maxwell theory with source. In this case the 
original theory nonlinearity is hidgeU: into the so11rce. Non-Abelian 
fields can be considered according to a similar scheme. 

On the· other hand,· the dual-covariant electrodynaniics equations 
.may well be interpreted as linear equations of the electrodynamics 
with magnetic charge. Transition from the picture with ele~trical 
charge to the picture with magnetic one is provided by means of 
local dual tninsformation. Local dual angle arises in. the theory in a 
natural way: A similar angle (phase, .complexion) was discussed by 
C. Misner an:d J.'·Wheeler [6]. . . 

Establishing the dual· group in Gravitation enables us to speak 
about gravita.tional instantons as solutions to ·the duality equations 
like it happens in the Yang-Mills theory. Moreover, the instanton 

. sector is here far richer than in the Yang-Mills case si:Oce ther~ are 
two i,rreducible representations of the dual group. In addition this 

. fact gives new opportunities to obtain ne~ gravitational equations, 
to construct the Lagrangians. 

2 Dual Symmetry in Electrodynamics 

2.1 The Dual Transformations 

In the modern form the dual transformations were introduced by 
Rainich [5], and Misn~r and Wheeler [6]: 

F~v = FJJv cos 0 + *FJJv sin() = e*~ FJJv, 

. I F. . . () F *(} F. * FJJv = - JJV sin + * pv cos() = e * pv, 

where *-Fpv = 1/2cJJvpuppu. 
.(1) 
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,In view of formal similarity of the dual conjugation operator and 
imaginary unit and because of the fact. that the transition oped.tor 
from F to F' looks like turning in some plane as well, it ·becomes· 
evident that transformation(l) is referred to as the dual turning .. 

The pure Maxwell electrodynamics •equations with the· conven-. 
tiona! quadratic, Lagrangi.an 

£ = gFilV Fpv - g~2 

prove to be invariant under the transformations (1) while the· La­
grangian itself does not possess the inyariance! That is, there is no 
symmetry but this points out that the symmetry might be realized 
nonlinearly (cmppare with spontaneous symmetry breaking),. Well~ 
known as th~ugh,this rather unusual fact .did not claim due attention 
of the theorists. 

Meanwhile, the authors of the book [1 ], pl<_tying on in variance of 
equations but ignoring the Lagrangian. noninvariance, try to intro­
duce the "conservative" dual current what seems to us to be not 
quite correct. • 

It would be quite in spirit ofJ1le modern. approaches to consider 
the Lagrangian with the explicit dual symmetry. It is known there . 
is the only dual invariant which is also Lorentz one. It has not been' 
considered (as far as I know) as a Lagrangian what is quite dear 
-it wovld lead to the badly nonlinear motion equation; Neverthe­
less it is of interest to consider the model of pure electrodynamics 
with dual-invariant Lagrangian, first, in virtue of the unusual and 
very· nice properties of the model and, second, ~ince this essentially 
nonlinear theory may well. relate in· SQme way both to the Maxwell 
electrodynamics and to the magnetic charge problem .. 

One can obtain the only dual-invariant expression as follows. Let 
us consider a complex quadratic form 

F2 +i*FF. 

This form is usually regarded in complexifying F-space. It is invari-:. 
ant under the complex orthogonal transformatiqns 0(3, C) [7]. With 
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respect to the dualgrou'p_'(l) th,eform transforms asJollows: 

F
2+ i * FF .· (F'2 + i* F'F.')e2i 0 • 

' . 
First, this formula establishes isomorphism b~tween the dual rota-· 
tions and the ordinary· phase transformations. Second, it is getting 
clear that the transformatio~s (1) are not ~ subgroup of 0(3, C). 
That is, th~ complex orthogonal transformations should not mix up 
with the dual ones. Now it is quite clear that 

(F2
)
2 + ( *FF? = inv. 

It is the, only expression to be invariant under either the Lorentz or 
· the dual transformations. Occasionally, it should be noted that for 
any component ~w = f 

f + i * f = (!' + i * f')ci0 
-:----+ f 2 + * f 2 

= inv. 

Let the Lagrangian of the pure dual electrodynamics be ch9sen 
as'follows: 

£ = \/(F2)2 +.(*FF)2. 

Vari<{ti~nal principle brings about the equations 
' : '" -, 

· (. . . F 2 ,, .·*FF , ). 
FJlV + *F'IV . ' = () 

. . . . vf(F2 )2 + (*FF)2 V(F2)2 + (*FF)2 lV. • 
,_ '' ' 

It is seen that the local angle ~ determined by electromagnetic 
·strength at the point of space-time appears: 

·.F2 

cos~ = v(F2)2+ ( *FF)2 ' 
*FF· 

sin~= V(F2)2 + (*FF)2 

And now the motion equations can be written jn a-shorter form 

(F11v cos~+ *p;..v sin~)w = 0. 

Denoting 

F 1w cos cp + *ppv sin~ = e*rp(.X) ppv, 
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one can rewrite these equations in a more elegant way: , 

(e~_rp(x)p/-tv)w., 0. (2) 

Adding the identity · :~~ ·' 

* F 1W:v = 0, (3) 

we obtain the complete system (set} of dual electro-dynamics equa-
tions (2),(3) which is essentially non-linear. ' 

. . 

2.2 ·Transformation Properties of the Model 
• under the Dual Group 

Further it is written down how some vahies transf()nn. 

F -*Opt 
JlV = C JlVl . *~'~ = c-*0'* P;w, (4) 

cos~ = cos(~'+ 20), sin~ = sin( <p'. + 20), 

*'~'F *0 ( *'~''F' ) (5) c , .1~v ~ e e . ~ JW • 

All these formulae could b~ ;obtained directly. We ca~1 see tJ{c-~t the 
left-hari:d sides of the systeri1 (2),(3) tdinsform irt v~trious ways. The 
left'-hand ~ide of (3) transforms like, ( 4), i.e.,' co~gradiently with;re­
spect to the field ~IV· As seen from (5), the left-hand sidc·of.(2) 
trar1sfonns hy'nieans of invert trai:lsformation, i; c. contra;_gradiently 

with rPspect to ~IV· 

0 

;2.3. · Dual E~ectrodyJ?.amics ~s a Ma~well, 
System with Source , . 

O~e can rdwdte the set (2),(3) otherwise;·just resolving ~l1e fitst 
of the equations with respect to F"v ;: · · · · · · · · 

• >• • •• - , : 

F 11v - ,, :(p/.lv tan,,- *F11v) _:.J· 11 ·' , ,v- r,v r - ' (6) 

*ppv,v = 0. 
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One can consider such·representation of (2),(3) as a way to break 
down the symmetry -since both sides of (6) transform in different· 
ways . Thereby, the .equation (6) takes the form of the Maxwell 
equation with source. Let us suppose that the nonlinear set {6) has 

. a solution of the form 
-

Fo~ = E"' ~ 
r' j 0 ~.0 ( ~) , r ~ oo. 

Then perhaps the notation of the right-hand side of (6) as a current 
could be justified. It will be noted that genuine central-symmetry 
field m~kes the right-hand side of· (6) to be equal zero. That is 
all right. But it would be better to find an asymptotically central­
symmetric solution. 

Going on to. speculate on this matter, it could be noted that . 
quantization of charge which is effective in such a theory would arise 
as a result of quantizing the nonlinear field theory. 

2.4 Instantons in Electrodynamics 

Instantons in electrodynamics are known to be absent because of 
the gauge group topology triviality. Although the term "instanton" 
·should be made more precise. 

Let us notice the motion equations are satisfied if the condition 

FJlv cos <p + *FJlv sin <p = 0 (7) 

is fulfilled. Let it be called the generalized instanton equation. Why 
. instanton it will be seen later when discussing an analogous equation 

in the non-Abelian theory. It is convenient to denote a = F 2, b = 
*FF. Then, projecting (7) ~nto F, one obtains a2 + b2 = 0, or, on 
account of the reality of the fields *F and F, a . 0, b = 0. Thus, the 
electrodynamical instantons are, e.g., plane waves. 

;: 

6 
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2.5 The Local Dual: Tran~formations 

Appearance of the angle cp(x) in a natural manner prompts· to 
introduce the space-time point-dependent dual transformations. ,So 

Fllv _:_,e*'P Fllv . (8)' 

To go further, it is necessary to know what is *F? Its definition is 
introduced as follows. Fo.r any function f to be given on F -space the 
dual conjugation procedure is 

* f(F) =!(*F): 

Then, for example, 
* FJlv(F) = FJlv( *F). 

Noticing that 

cos cp( *F) =--cos cp, sin cp( *E':) :__ , sin cp, 

we find by means of (10) "!'; 'J 

. * FJlv = FJlv sin cp __:. *-FJlvcos(p ---: ....:.e*'P * F~v·' 
' - . ' >;' '_, . 

Now one can easily prove the properties' 

For· instance, 

cos <p 

(F2f + ( *FF)2 = (F2
)

2 + ( *FF)
2

, . 
I • • ~ e• ' • ,· \ 

cos <p =;= r;os c.p, Sill <p .. , Sill <p. . . 

:f2 

V(F2)2 + {>~<FF)2 
F 2 ( cos2 c.p--: sin2 c.p) ·+ 2( *FF) sin c.p cos <p · · 

y'(F2) 2+ (*FF)2·: 
- . cos c.p cos 2c.p + sinc.p sin 2cp -: cos cp. 

• 0 • 
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Taking into accountc(9), (Hl) and (12), one can invert the formulae 
(8),(11): ' 

F. *'PF.- *<PF.-pv = e pv = e pv, F. - *'P F.- - *<P F.-* pv - -e * ·pv - :-e * pv· (13) 

Now the system (2),(3) can be written in terms of the tensor Fpv · 

F-pv -0 
. ,v- ' ( e*<P * F~-'v) . = 0, 

- . ,v 
~~ 

and admits, like the set (6), to be written in the form 

*ppv v = j~-',. 
' 

F-pv -0 
,v- ' 

· where f is formally a magnetic charge current. 
In conclusion write down the relation 

C*atp(,*"'F. - e*(l-a)cpp· . 
· JW- pv, 

where a is any number. The property to be expressed by the formula 
is due to the definition (10) and makes it difficult-to introduce "par­
tial" ~ocal transformation, by means of which one could have both 
eleCtrical sources and magnetic ones. 

The transformations (8),(11) and (13) arc rather similar to dis­
.crete ones by its properties .. Do they fonit a group? What is deeper 
sense of the field F and its prototyp<; F? 

3 Duality in Non-Abelian Theory 

3.1 The Lagrangian and Motion Equations 

The dual-invariant Lagrangian for non-Abelian fields can be cho­
sen in the form 

.C = y'(TrF2)2 + (Tr(*FF))2, 

'- where the-fields FJIV and the .potentials Ap take values in Lie algebra 
of some group. The dual transfoi~ations . 

F' F. (} F : . . (} *oF pv = pv COS + * pv Sin = e pv, F -*Opr 
pv = e JIV' 
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F ' F. (} F. . . (} *o F. F. -*o F' * pv = * pv COS - .pv SlU = _e * pv, * pv = e * pv. 

are the sameas in the electrodynamics. Again for convenieric·e nota~ 
tions are introduced: 

a= TrF2, b = Tr(*FF), 
a 

<:OS<p = Ja2 + b2' sin<p = 

F~-'v = F 11v cos <p + *ppv sin <p = e*'P ppv. 

The motion equations are 

FI-'V +i[F~-'v A]= 0 
lV ' v . 

These equations are far more nonlinear than the Yang- Mills ones. To 
know transformation properties of these equations one need to know 
how the vector-potential Ap transforms. This is the ol<(prohlem [1]. 
Pe~haps it wo1Ild be useful to apply gauge transformations. 

. . . : ~ 

3.2 The Instantons 

The motion equations will he satisfied , the <pndition 

·p,,,;· ~ ptv·~:o~-,~ + ~pw'sin ~ = 0 
. . 

... ·: (14) 

having been fulfilled. Any solution tothisequation_will.bereferred to 
as_a generalized instanton. Itis not difficult to see that the Belavin­
Polyakov-Schwartz-Tyupkin (BPST) instanton, [8r obeys the equa­
tion. Really, the DPST instanton is. the sol~tion: to the (anti-)self-
duality:equation ,(the spac~-time is pseudo-Euclidean) . . · 

*Fpv = ±iFpv· 

Projecting this and also the equation (14) onto Fpv with tr<t,cing 
· results in 

b = ±ia, v'a2 + b2 = 0. 
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Since in the non-Abelian case 'thefields are complex in the general 
~ase a, b =/= 0. Taking into accou11:t the duality equation, the equality 
(14:) can be written in the form 

b =·±ia, ±i(b =f ia) Fpv = O. 
J(b +.ia)(b- ia) 

J t is fulfilled for the (anti-)self..:dual fields because the degree of zero 
over the fraction bar is higher than below bar. 

One can show that conventional Yang-Mills equations will be 
satisfied if together with (14) takes place the condition 

*F~-'v(tan <t?)w = 0 

which is valid for the (anti-)self-dual fields. 
Non-:self-dual solutions were searched Jar in [9] by means of gen­

eralization of the duality equations. It'is the equation (14) that may 
well be regarded as such a geuera:lizatio:r,:t. To find new solutions to 
the equation (14) is au important task. . 

1l DuarSymmetry in Gravitation 

4.1 Some Notations 

First one needs to introduce sci me notations and recall some facts 
writing them in the form convenient to use further. 

Curvature tensor RpvptT in gravitation is the analog ofthe electro­
magnetic strength. ~here are two channels {two pair of indice·s) not 
to be quite independent for which the dual conjugation operation 
can be introduced. So 

. : . 1 
*Rijkl = 2EijmnRmnk/, 1R mnE 

R*ijk/ = 2 ij mrik/, 

The properties can be easily verified: 

* * R = R * * = - R. 
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It is convenient to rewrite a number of known properties of the ' , 
curvature tensor in terms of the right-handed and/orthe left-handed . . . 

dual-conjugated tensor. 
The circular transposition identity is rewritten in the form 

RpvplT + RJ.IlTVp + RpplTV = 0. ~ *R~ = o· and/or R*~ = 0. 

The Bianchi identity 

RpvptT;6 + Rpv6p;tT + RpvtT6;p = 0 · 

can be written as follows 

*RpvptT;v = 0 and/or R*pvp lT;tT = 0. 

However 
R *JJ vptT;v =/= 0 and/or * Rpv/;tT =/= 0 .. 

Often one considers the so-called twice dual curvature tensor 
(TDCT) [10] 

R - lE Rn/Jor6E. . * *pvptT. :- 4 pvn/3 '"'fOptT· 

Using the expression for the antisymmetric E-syinbols product m 
terms of the Kronecker 8-symbqls [11]; it is not difficult to express 

. TDCT in terms of the curvature tensor: 

R 
~v _ Rfl.v + r:pRv + r:pRv r:pRv. r:VRJ-1 +. 1 R( r:v r:p .. r:p r:v) * * ptT - - ptT vtT P vp tT- vtT P- vp tT 2 vpvtT- vpvtT • 

(15) 

4.2 Dual Group in Gravitation 

By means of TDCT the curvature tensor in a natural and invari­
ant manner is expanded into a sum of two· irreducible parts 

RpvptT = RpvptT + SpvptTl ,. 
·where 

1 
RpvplT = 2(Rp'vplT- *R*pvplT), 

. 1 
SpvplT = 2(RpvptT + *R*pvptT)· 

11 



The properties may easily be proved :to take place (sometimes no 
indices notations are used): 

For instance, 

*R=R*, 
S = -S*, 

*R*=**R=R**=~R, 

*s* = s = - * *s = -s * *· 

1 ~' 1 . 
*R = *-(R ~ *R*) = -(*R+ R*) = R*, 

2 2 . 

1 1 . 
. *S = ~2(R+ *R*) = 2(*R- R*) = -S* 

· etc. Since the tensors n and S t:ransform simply in dual conjugat­
ing, the notations can be somewhat improved. We take into account 
that among the left-handed and right-handed dual-conjugated ten­
sors (~.g., *n,.n*) the independent tensor is alone. 

* * *R=R*=R, *S = -S* =S. 

, Using, the explicit expression for the TDCT, (15) one can write 
. down the explicit 'expressions for n .and s . . 

Rp.vpu = 

Sp.vpu 

1 ·, . ' . •' ' 
RJwpu + 2 (g,,~Rvp + YvpRJ<<T - YJ<pRvu - Y~uR1,p) 

R 
+4(9p.p9vu - 9p.u9vp) 

Cp.vpu +.~ (gp.p9vu -:- YP.,<T~~p_),. 
1 
2 (gp.pRvu + YvuRp.p - 9p.uRvp - 9vpRpu) 

R . ..· 
+4(9p.u9vp- 9p.p9vu), 

where Cp.vpu is conformal Weil's tensor. It is also easy to obtain 

R 
-n P. = -gvu, 1'\:p.v u , . 4 
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(17) 

r 

l 

R 
Sp.vp. IT -. Rvu -· 4Yvu, : S p.v- 0 . . p.v . -:- .· . 

Now one gets ready to introduce a dual group in gravitatio11. Let 
us consider the transformation 

R -t R' : R' = e*"Re*/3 . , ) (18) 

where a and f3 are independent dual angles. More· precisely,. the 
somewhat symbolic notation (18) means 

R' = Rcosa co~f3 + *Rsin.acos/3 + R*cosa sin/3+ *R* sina.sinf3. 
(19) 

Quite clear, the transformations of kind (19) form an Abelian two­
parameter group. 

Next, one finds that the tensors R;S transforrr~ s'imply when acted 
by the group (19) 

n' = e*(<>+/3)1(_ = Re*(<>+/3) ' S' = e*(<>-f3)s = se-*(<>-B) 
I • ! , • ,' • (20). 

and. actu~ily. reali~e an irreducible representation' of the. dual gro~ip 
in gravitation. . . . . . , . 

By am~logy w,ith the d1~al ClectroHyna~li(:s, il.s' a ~;<insequence '~f 
. (20) we irlnnediatcly ohtaiiJ. two <lual gravitati(mal in~ariants: · 

' - •' ' ,_ ; .. . ' ',. ' . !} ' 

. II= ('R~) 2 + ckn)2
,' [2 :- (S2

)
2 + (SS) 2

. 
' , •; _,.. . 

Hcr{R2 = R_P.VP<TR_JlVpu-etc. Perhaps, it would be far more convenient 
to use the linear combinations of these invariants which are expressed 
in terms of this curvature tensor: 

J1 = (R2
)

2'+ (*RR)2 +:(RR*)2 + (*RR*)2
, 

J2 ·= R2(*Rih) -.{*RR)(RR*}; . . . .. 

where in reality 

I 

*RR = RR*, *RR* = R( *R* ). 
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4.3 The Gravitational Instantons 

4.3.1 · Discussion 

The current state of the gravitational instantons question seems 
to be somewhat intricate: Penrose's [12] instantons (nonlinear gravi­
tons) are the (anti)self-dual complex solutions to Einstein's equa­
tions. Hawking introduces the instantons as Euclidean solutions to 
Einstein's equations with finite action [13]. This matter is reviewed 
e.g. in [14]. In either event gravitational instanto~s are related to 
solutions to Einstein's equations in the Euclidean space 

Rpv = A9j.tv 

and should obey the (anti-)self-duali_ty equat-ions to be understood 

as follows 
*Cpvprr = ±Cpvprr, 

where Cpvprr is Weil's tensor. 1 ' As seen, for example; from non­
Abelian theory, the instantons, to a certain degree, do not depend on 
dynamics. They rather display deeper.kinematic-topological proper­
ties. For Einstein's gravitation it is not the point. 

It is not worth~hile to relate i~stantons to any' dynamical equa­
tions, to Einstein's ones in particular. These equations, as distinct 
from Yang-Mills ones, place too hard restrictions on the curvature 
tensor from the point of view of the (anti-)self-duality properties. 

·Let. us call asgravitational instantons the solutions to the duality 
:equations in pseudo-Euclidean space for the tensors n and S 

* S= ±iS. * n=±in, (21) 

These equationii are quite equivalent to the duality conditions in the 
Yang-Mills theory. Of course, the R-space is real and the equations 
(21) are reduced to 

Rpvprr = 0, Spvprr = 0. (22) 

1Thls point has been cleared up to me by A. Popov. 
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So, th~ real gravitational instantons are determined by. the equations 
(22). To avoid ffiisunderstanding it should be emphasized that the 
equations (22) must not be regarded 'as a system (set). 

Written in another form, such equations are given in the book [15]. 
and they were obtained otherwise. Solutions to these equations 
(which are not obtained and a~e not presented in the bo~k) ar~ re- . 
ferred to as twice (anti-)self-dual ones, which are similar to usual 
instantons by their properties. 

It foll?ws from our approach that they are usual gravitational 
instantons. 

Next a few central-symmetry solutions are shown. 

4.3.2 The 4-central-symmetric solutions 

The Metric Choice. Let us look for the solutions to (22). as 
a metric of the form 

ds2 ~ ev(p)di? - p2 [d¢2 + sinh?¢(drP· + sin2Bd¢2)], 

.where 
ds6 = dp2

- p2[d¢2 + sinh2 ¢(d02 + sin2 Od¢2
)] 

is a 4-spherical fiat metric. Calculating the curvature tensor gives 
fo~r nonzero (diagonal) components of: the tensor Rpv and six nonzero . 
(diagonal) components of the tensors Rj.l~prr· 

nJlVPCT = 0. Six components of the equation that do not turn 
into identities reduce to the only one of the first order 

. ' 2 . 
· ,v'(p) = -(1- ev) 

p· 

The equation is easily solved: 

ev(p) = _i_ 
p2 __: r;· 

The metric is getting fiat if p ---+ oo o~ C == 0. 
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Spvpu = 0. Six components of the.equation not to. be reduced to 
identities reduce to a differential first order equation alone. 

which has the solution 

2 
v'(p) = -(ev- 1), 

p 

v 1 e--.-. - 1..;_ Cp2 • 

I 

If p ----t 0 or C = 0 the metric gets flat. 

Rpv = 0. Einstein's equations in empty space have a trivial so-
. lution only: ev = 0. This merely emphasizes the fact that the gravi­

tational instantons are poorly compatible with Einstein's equations. 
The solutions described in this section are -quite analogous to the 
spherical-symmetric BPST's instanton [8]. 

4.3.3 The Static Central-Symmetric Solutions 

The Metric Choice. We search for a solution as follows (the 
metric is just as in,Landau ~nd Lifshits [11]): .. 

ds2 = cv(r)dt2 - e>.(r)dr2 - r 2(dfP + sin2 fJdq/). 

. As a result of the curvature tensor calculation it turned out to COllSist 
of four n~nzero (diagonal) components of the, tensor R1w and six 
nonzero (diagonal) ones of Rp~pu· 

Rpvpu = 0. Six equations not to be reduced to identities reduce 
to the only differential equation of the second order 

"( ) 2 ( : ) A = v, v r = 2 e - 1 . 
r 

This is a rather nontrivial equation. It can be exactly solved [16]. 
The solution is represented in two forms: . 

c2 · [c J ev = -fr2 sin-2 v4(r ~ C2) 
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I· 

or c2 
· · [c : · J 

ev = -fr2sinh-2 ~(r- C2) . 

With the constant C equal to zero, the solution becomes more simple: 

v . • r2 
e :___ 

(r- C)2' 

This solution is asymptotically flat at r ----too and for a small r: 

ev rv r 2 

' 
T_----tO. 

Spvpu = 0. Six equations not to be identities reduce to the only 
. equation of the second order 

A= -v, 

which is solved simply: 

v"(r) + v'2(r) = ~(1- e-v), 
r 

v. 1 c· 2 c2 
C :== + IT + -. 

.r 

It is seen that 'this solution contains Schwartzschild's solution (if 
Ct = 0). For large r the' first metric coefficient goes to infinity, what 
points out that the metric may be closed. · 

4.3.4 Generalized Instantons 

By analogy with the dual electrodynamics and non-Abelian the­
ory, the generalized. instantons are defined as follows (it is not a 
system of equations): 

. * ' ·' . 
Rpvpu cos cp+ Rpvpu sin <p = 0, (23) 

* 
Spvpucos'l/J+ Spvpu sin,'l/J = 0, (24) 
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where 

a' b 

c 
COS 'lj; = I c2 + dn l 

2 * a=R, b=RR, c= s2 
' 

* d=SS. 
·' 

It follows from (23),(24) 

a 2 + b2 = 0, c2 +d2 = 0 

or a ·= 0, b, = ;0,-c = 0, d = 0. The instantons R = 0 -and S = 0 
are easily seen to obey the equations (23),(24). Perhaps,·there exists 
some way to complexify R-space, so that the instanton notion in 
gravitation would be mare comprehensive as it should be in non­
Abelian theory. 

4.4 The Gravitation Equations 

If there are tensors that possess the basic symmetries of the cur-
. vature tensor, metric and the energy-momentum tensor of matter, 
n~w· gravitational equations could be constructed. Let us· begin from 
the trivial but visual example. It is p~ssible to construct tensor by 
means of the metric and the energy-momentum tensor.which has the 
curvature tensor symmetries. The following ~quation is postulated: 

. RJ.IV{JO' = const(gppTVO' + !JvCTTJlp- 9pCTTvp .-.9vpTJ.l.O' ). (25) 

Is this equation good or bad? It is bad as it follows from below. Let 
the energy-momentum tensor be concentrated. at finite range of the 
'space. Out of the range the equation is given by 

RpvpCT = 0. 

Thus, the equation (25) predicts the absence of gravity wherever the 
matter is absent. 

18 

Let us try o~ce more,tofud.the gravit~tiorialequation using the 
twice anti-self-dual part of the curvature tensor 

Rj.wpCT = A(gJlpTvCT + 9vCTTJlP :- 9pCTTvp--:- fJ_vpTJlCT ). (26) 

One can show that in the long run the equation reduces to the con­
formal flat Nordstrom's theory [17]. Really, reducing it with respect 
to the indices 11 and p and taking into account (17), w~ obtain · 

1 . 
4Rgv0' . A(2~v0' +9v~T). (27) 

One more reduction gives 

R=6AT. (28) 

Expressing TvO' from (27) and substituting it to (26), also taking into 
account (28),(16), we find eventu~lly 

· R R 
RpvpCT = CpvpCT + 12 (gp;9vCT- 9pCT9vp) = 

12 
(gp~9vCT - 9pCT9vp)· 

Thus, CpvpCT = 0. Together with (28) this equation is a formulation of 
Nordstrom's conformal flat theory [10] which, for example, predicts 
no deviati~n of light .in the gravity field. 

Being consequent, we have to try constructing. an equation by 
means of the tensorS: ' . . · · . 

*S~vpCT .. B(g~/TvCT +9vCTTJlp·- 9pCTTvp -gvpTpcr)· 

One can show that this equation reduces to 

· . .. R R BfT! 
JlV - -:f9JlV. • 2 .L JlVl T=O. 

It would be of interest to consider'the system: electromagnetic field 
, . I -·' . . . 

- gravitation ~tarting from these equations rather than .the Maxwell-
Einstein ones. 
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4.5 Duality and Variational Principle irt . 
Gravitation 

We concerned the dynamical aspects just in the previous sub-
. section trying to construct gravitational equations by means of the 
dual-symmetric parts of the curvature tensor only. It is of interest 
to''establish a variational principle ~hich is compatible with·duality, 
say, in the way to ?e similar to tlie dual electrodynamics variational 
principle. As has been noted, Einstein's equation, and consequently, 

. Hilbert's variational principle are poor compatible with duality. 
However, direct attempt to create a gravitational theory with the 

dual symmetry to be involved faces troubles. 
Let us treat maintaining the analogy to electrodynamics. It is 

known that the quadratic Lagrangian electrodynamics equations are 
dual invariant. In the gravitational case that all would h.ave been 

' t I ~ ' ' 

analogous if t~e equations 

R,tv/;u = 0 ,R*pvpu;u:=O (29) 

had taken place. Dut for the quadratic in R Lagrangian. one obtains 
the equation 

R 1,(vp) ";rr = 0 (30) 

rather than the first one of (29). Christoffel's syinbols' are ~itggeste;l 
to berefated to metric in the {tsu~l way but co!m~C.:tic>r1s <tre varied 
rather than the metric. However, the left-hand side of (30) is iden­
tically zero on account of the cir~ular transp~sition identity. Thus 
we have no variational principle leading to the equations (29) and at 
this point the analogy to. electrodynamics already vanishes. : 

Perhaps, one should consider nonsymmetric connections intro­
ducing in this way torsion. \In ,any case this would enable one to 
avoid the equation (30). None forbid however to compound the dual­
symmetric objects. by means oLthe tensors.'R. and S. In effect this 
hqs been done in the s~bsection about the gravitational i~~tant<ms. 

. It is 'possible also to use directly two gravitational dual invariants. 
We have to repeat, however, that besides the problem to ch~ose the· 

·2o 

Lagrangian, there is another difficulty. If the basic dynamical vari­
ables are symmetric connections related to-the metric in ·the usual 
faShion then the dual invariant Lagrangian theory will be. ugly in 
view of (30). 

5 Conclusion 

In the paper an attempt to consider the. consequences of the the­
ory with the incorporated dual symmetry has been made. The,d1ial 
symmetry in gravitation has be~n investigated as well. Such an ap­
proach to gravitation has not appeared before. The ·dual ele~tn)­
dynamics is the elegant nonlinear mod~l which might be related to 
the linear Maxwell electrodynamics. The local dual. angle arises in 
a natural fas~ion in this theory. This angle enables introducii:1g the 
local dual transformations .. By means of these transformations the 
theory may be reform~tlated in terms of the magnetic charge. The 
equations have been considered the solutions .to which were referred 
to as the generalized instantons (for the BPST-instanton obeys these 
equations). Nontrivial gravitational instantons have been fo'und. Ir­
reducible representations of the dual group in gravitation giye ·~ew 
opportunities to establish new gravitational equations. The ·prob­
lem related to variational principle notion for the dual-symmetric 

' ' 

gravit~1tion has been· discussed. 
The tasks of interest ~hould be noted. 

e Searching for solutions to the dual el~ctrody~amics and non­
Abelian theory (the instantons ~ well). The probiem ,to find 
the asymptotically central-symmetric solutions is of great im­

,portance. 

• The transformation property in the nbn-Abelian theory (in par­
ticular for vector-potential) uncle~ the dual group; 

• Establishing the dual.:symmetric variational principle in grav~ 
itation. Perhaps, the torsion should be included in the,theory 

. to obtain self-consistent theory. 
\' 
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