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1 · ·· Introdu~tion 
L 

I . 

Quite recently, we introduced the minimal N = 2 supersymmetricexten­
.. sion of the Toda chain called fcToda [1]. We have shown that the N = 2 

· supersymtn,etric Nonlinear Schriidinger • (NLS) hierarchy in the N = 2 su­
per~pace J2] pos~esses a disc~ete grou~ ?f inte&J-.a;blen'laP.pings (3] which~is 
eqmvalent to the f-Toda cham. Its ?ngm was l'nalyzed m [4] .. In contrast 

' . to other ch;tins, the f~Toda chain is not algebraically solvable. Such type 
of chains has not been considered in the literatuie before. 

. The goal of the present Letter is. to. prov<l the integrability ofthe f-Tocla 
chain and' to construct its g~neral solution ·undet. appropriate boundary 
conditions, including the condition corresponding' to fixed ends. This last 
problem is equivalent to the problem of constru~ting multi-soliton solutions 

for each integrable system belonging to the N = 2.super'NLS hierarchy. . . . -

2 The N = 2 super~NLS. and f-Toda 
field equations 

super-

In this section, following [1], we· briefly describe th~ f-Toda chain equations· 
and their relation to the N = 2 super-NLS hierarchy. 

Let us proceed with the N = 2 S!lpercNLS equation [2] 

~{· = f "+ 2vw Df), ·a:=-r + 2DCJ7D7J, (2.1) 

where f(x, 0, 0) and 7(x, 0, 0) .are chiraland antich,iral fermionicsilperfields, 

Df = [}, D 7 = 0, (2.;1) 

respectively, in the N = 2 superspa~e with one bosonic z and two fermi­
onic 0, 0 coordinates1

; D arid D are the N = 2 supersymmetric fermionic 
covariant derivatiVes 

,{) 1-& - {) 1 {) 
D = -- -0-, D = ~- ~0-ao 2 az . ao 2 az' 
'z-z ·~.a._ 
D = D = 0, {D, D} = --{) =~.a. . z (·2.3) 

1The sign 1.~mea.n~ the derivative with respect to z. 
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The chirality condition (2.2) reduces the number of independent compo­
nents of the fermionic superfield f (7) from four to two. 

Equations (2.1), as well as each system of the equations belonging to 
theN= 2 super-NLS hierarchy, are invariant with respect to the following 
discrete f-Toda transformation [1]: 

,_,_ +-

!1-Jl = (ln(Df D7)) 1
• (2.4) 

This relation is the definition of mapping, i.e., the rule determining the 
correspondence between two initial superfields f and 7, and two final ones, 
t-- t-- t- --)o 

f and f. The notation f (f) means that the index of the superfield f is 
<- -> 

shifted by +1 ( -1), i.e., fk = fk+I (fk = fk-d, and it denotes the action 
of the direct (in.verse) f-Toda transformation applied to the superfield f. 
The invariance of the N = 2 super-NLS hierarchy with respect to the 
transformation (2.4) can be checked directly, and it means, in particular, 
that the right-hand sides of eqs. (2.1) are the solutions of the symmetry 
equation2 corresponding to the mapping (2.4) [1]. 

3 The component form and boundary con­
ditions 

The N = 2 superfield form (2.4) of the f- Toda mapping is not very suit­
able for actual calculations and we rewrite it in terms of the superfield 
components defined as 

Vk = D7k!, 1i)k = D7kl, Uk = Dfk!, 1/Jk = Dfkl, (3.1) 

where the index k E Z and I means the (0, 0) --t 0 limit. In terms of these 
components, eq. (2.4) becomes the infinite-dimensional chain of equations 

(ln(uk+lvk)) 
1 

= 1/Jk+I'iJk+I -1/Jk'iJk, 

1/Jk+i I) I ,/, . .J, 
- (-- = -vk+I'Pk+l + vk'!'k, 

Uk+l 

(3.2) 

(3.3) 

2
Let us recall that the symmetry equation for a given system can be obtained by 

differentiation of the system with respect to an arbitrary parameter. 
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Y,l 
'f'k ,- - -

- (-) = uk+17/!k+!- uk,Pk, (3.4) 
Vk 

-(In Vk) 11 
= Uk+JVk+J- UkVk- 7/Jk+1 

1 
1fk+1 + 7/Jk 1 'f.. (3.5) 

Each point of this chain contains four functions: two bosonic Uk, Vk and 
two fermionic .Pk, 'fk functions. In the bosonic limit (i.e., as 7/Jk ---+ 0 and 
'f.---+ 0) it is equivalent to the usual Toda chain3 [5]. This is the reason 
why the chain (2.4) is called the fermionic Toda or f-Toda chain [1]. 

For completeness, let us also present the component form of the global 
N = 2 supertranslations 

- I 1 - I 
Vk ---+ Vk - cl/Jk - 2ccVk , 

- 1 
Uk ---+ Uk - f!,Pk 1 + 2cf!Uk 

1
, 

- - 1 -
.pk ---+ .P. + ev• + 2e:e,Pk 1

, 

1 I 

.P• ---+ .P• + cuk - 2e:e.P• (3.6) 

under which eqs. (3.2)-(3.5) remain invariant. Here, e: and e are constant 
fermi<.>nic parameters. Equations (3.2)-(3.5) also possess the inner discrete 

automorphism O"m ( m E Z) with the properties 

-1 
O'mUkO'm = Vm-k, 

-1 -
O'm1/Jkum = 1/Jm-k' 

-1 
O"mVkO"m = Um-k 1 

- -1 
O"m'lj;kum = 'lj;m-k, (3.7) 

which will be useful in what follows. Eqs. (3. 7) can also be easily repre­
sented in terms of the superfields and superspace coordinates 

-1 - - -1 
O"mfkum = J m-b O"mf kum = fm-k, 

-1 () -1 -() -() -1 0 
O"mZO"m = z, O"m O"m = 1 O"m am = . (3.8) 

Let us discuss the boundary conditions which can supplement eqs. 
(3.2)-(3.5). . 

We call the system (3.2)-(3.5) with additional manifest N = 2 super­
symmetric boundary conditions 

fo = 0 {} uo = .Po = 0, k 2: 0, (3.9) 

or 
7 M = 0 {} VM = 'fM = 0, k -::: M, (3.10) 

3In the bosonic limit, eq. (3.2) admits the obvious solution Uk+l '"""' .1.. which, being •• substituted into eq. (3.5), produces the well-known representation for the usual Toda 
chain equations. 
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where ME Z+, the f-Toda chain interrupted from the left or from the right, 
respectively. The case where these conditions are satisfied simultaneously 
corresponds to the f-Toda chain with fixed ends. 

Application of the transformation O"M (3. 7) to the f-Toda chain inter­
rupted from the left transforms it into the f-Toda chain ·interrupted from 
the right, and vice versa. Due to their relation, it is sufficient to consider 
only one of them; for concreteness, we discuss the f-Toda chain interrupted 
from the left in what follows. As con.cerns the f-Toda Ghain with fixed ends, 
it is invariant with respect to·aM, or, in other words, it possesses the inner 
automorphism O"M. 

4 The integrability of the f-Toda chain in­
terrupted from the left 

In this section, we construct the recurrent procedure for solving of the 
f-Toda chain equations (3.2)-(3.5) with the boundary conditions (3.9). 

4.1 The conservation laws 

Our first goal is to resolve the f-Toda chain interrupted from the left. In 
other words, we assume that the boundary condition (3.9) is satisfied and 
vo, 'fo are arbitrary functions. The problem consists in expressing, using 
the f-Toda chain equations, all of the functions uk, vk, 7/!k and 'f. at k 2: 1 
in terms of the functions v0 and 1i}0 , as well as a number of additional 
constants which can arise in integrating the equations. 

Let us start with a discussion of the conservation laws which are rele­
vant to the problem under consideration. 

By a direct check, one can verify that the following set of conservation · 
laws: 

(vk-11/Jk) 1
- - 1 

Ck-1 = UkVk-1 - .Pk-1 + l/Jk.Pk-1 
Vk-1 

(4.1) 

takes place at each value of k, where ck is an arbitrary constant. However, 
there is a simpler way to check this statement by rewriting (4.1) in the 
superfield form 

Ck-1 = DD(fk]k 1Dlk r) = 

Dfk-1 

5 

DD(fk]k_175 !k) 
Dfk 

(4.2) 

If 
I 
J 
I~ 
i 
Iii I 
;~ ,, 



l 
I, 

using eq. (2.4) and definitions (3.1). The last equality of formula (4.2) 
demonstrates that ck is a constant (i.e., it is the integral of motion), because 
it is both the chiral and antichiral superfield, i.e. Dck = Dck = 0. The 
action of the transformation <rm (3. 7) interchanges different integrals in 
accordance with the following law: 

-1 ' UmCk(Jm = Cm-k-1· ( 4.3) 

Using the conservation law ( 4.1), eq. (3.3) for the fermionic function 
lj;k_ can identically be rewritten as 

( (vk-11j;k) '), [ (1/Jk-11jjk 1), ]·'· ,1, - Vk-1 Uk-1- <.pk = -Ck-1 <rk-1· 
Vk-1 Vk-1 

( 4.4) 

From eq. (4.4), we observe that if we want to express 1/Jk as a functional 
of the chain functions u;, v;, 1/;; and Jij, defined at the previous (from the 
left) points of the chain (i.e., at i :s; k- 1), it is necessary to solve a linear 
equation of the second order with the coefficient functions that also depend 
on the functions of the previous points of the chain. ·If we could find such 
an expression for 1/Jk, all other independent functions ljjk> Uk and Vk of 
the f-Toda chain could also be obtained in a recurrent way as functionals 
of the previous points of the chain. Indeed, using eqs. (3.4), (3.5) and 
conservation law ( 4.1 ), one can easily obtain the corresponding formulae 
for the functions ?fjk> Vk and uk: 

- ;;pk:_1' , - (vk-11/Jk) '- - ' 1/Jk =( -Vk-1(--) + Uk-1lj;k_.)j(ck-1 + lj;k-1 - 1/Jklj;k-1 ), 
Vk-1 Vk-1 

. ( ( )" ,-Vk =Vk-1 - In Vk-1 + Uk-1 Vk-1 + lj;k ,Pk 

,- )/( (,Pkvk_.) '- - ') 
-lj;k-1 1/Jk-1 Ck-1 + lj;k-1 -lj;klj;k-1 ' 

Vk-1 

. (lj;kVk-1) 1
- - ') 

Uk =(Ck-1 + lj;k-1 -lj;kl/Jk-1. /vk-1, 
- Vk-1 

(4.5) 

respectively. 
Thus, the crucial problem is the solution of eq. ( 4.4) for 1/Jk by some 

recurrent procedure. This task is solved in the next subsection. 

4.2 The integrable factors 

The aim of this subsection is to construct the recurrent procedure for 
solving eq. {4.4) for an arbitrary chain point. 
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Let us assume that the homogeneous part of the second order equation 
( 4.4) possesses a bosonic integrable factor /ik. This means that after multi­
plication by /ik, the corresponding equation may be represented as a whole 
derivative. Following this line, let us rewrite eqs. ( 4.4) in the following 
equivalent form: 

( pk
2 

(Vk-11/Jk) ') '- Vk-d-(/ik ') '+ /ik[Uk-1- (V'k-1lPk-1)' ]},Pk 
Vk-1 J.lk Vk-1 Vk-1 

= -Ck-1/iklj;k-1· (4.6) 

Equating the coefficient of the function Wk in the Lh.s. 
we obtain the following equation: 

of eq.( 4.6) to zero, 

( /ik '), _ [ (Wk-11jjk-1),] -- - Uk-1 - · Jlk 
Vk-1 Vk-1 

(4.7) 

for the integrable factor /ik· At k = I, it has an obvious solution p 1 = 1 
because, in this case, its r.h.s. becomes equal to zero due to the boundary 
conditions (3.9). 

If the integrable factors are restricted by eqs. (4.7), eq. (4.6) for the 
function lj;k becomes 

( /ik
2 

(Vk-11/Jk),), _ . ,/, . 
-- - -Ck-IJlk'f'k-1 
Vk-1 /ik (4.8) 

and one can easily integrate it, 

/ik J Vk-1 J J Vk-1 lj;k = --[-Ck-1 dz--2 dzpklj;k-1 + f3k dz--2 + crk], 
Vk-1 /ik /ik 

(4.9) 

where ak and fA are fermionic constants of integration, and one can find 
the explicit expression for 1/Jk if all other parts of formula ( 4.9) are known. 
The appearance of these additional constants is a qualitative difference 
of the f-Toda chain in comparison with the integrable chains investigated 
before. 

Concerning eqs. (4.7) for the factors Ilk, they can be resolved in recur­
rent form with the following answer: 

( /ik) 1 /ik
2 

(Vk-11j;k), (Jijk-1), flk+l = Vk-1 -- - -- -- , 
Vk-1 Ck-1 Jlk Vk-1 

/i1 = J. (4.10) 
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Indeed, this can be checked by direct substitution, taking into account 
the f-Toda chain equations (3.2)-(3.5). If the integrable factor flk satisfies 
eq.(4.7), the factor flk+l (4.10) satisfies the equation 

( flk+l ') '- [ (1fJk1/)k) 'J -- - Uk- -- f-lk+l· 
Vk - Vk 

( 4.11) 

This verification can be simplified if one uses the following convenien~ 
identity: 

(_l:_(vk-1(1/Jk-l)')')' 
Vk Vk-l ' 

= [uk - ( 1/Jk?Fk) ' ] Vk-1 ( 1/)k-l) '- Ck-1 ( ?Fk) ', 
Vk Vk-1 Vk 

(4.12) 

which can easily be checked. 
Let us stress that the integrable factor flk+ 1 ( 4.10) is the functional of 

the chain functions defined at the previous (from the left) points of the 
chain, thus, the same important property is also satisfied for the function 
.,pk ( 4.9). 

To consider the case of the f-Toda chain interrupted from the right with 
the boundary conditions (3.10), one can simply apply the transformation 
t:rM (3.7) to formulae (4.4)-(4.12). Without additional comments, let us 
present expressions for ?j;k and their integrable factors lh 

- Jik · 1 Uk+l 1 - -1 Uk+I 1/Jk = --[-ck dz--=-z dzJ.ik.,Pk+l + fh dz--=-z + ak], 
Uk+l flk - flk 

( 4.13) 

- _ ( Pk )'+-J.ik
2
(1/Jk+l)'(Uk+l-;jjk)' 

11-k-1 - Uk+l -- -- -- , 
Uk+I Ck Uk+I J1k 

PM-! = 1, ( 4.14) 

where ak and (Jk are fermionic constants, which will be useful in what 
follows. 

Thus, the following proposition summarizes this section. 
The solution of the f- Toda chain interrupted from the left is given by 

recurrent relations (4.9}, {4.10} and {4.5). 
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5 The integrability of the f-Toda chain with 

fixed ends 

In this section, we construct the recurrent procedure for solving the f-Toda 
chain with the boundary conditions (3.9), (3.10). 

5.1 New form of the f-Toda chain 

Let us introduce the new basis qk, rk, ek and ~k in the space of the f­
Toda chain functions uk, Vk, 1/lk and ?j;., defined by the following invertible 
transformation: 

k 

qk = Il(usVs-I), To= Vo, 
k 

rk = Vk Il(u,v,_!), 
s=I s=I 

k 

~o = 'Fo, ~k = '1/)k IT (u,v,_!), 
k 

ek = .Pk/II (u,v,_!), (15.1) 
s=l s=l 

qk T'k - -
Uk = --, Vo =To, 

Tk-1 
Vk = -, -ljJO = eo, 

qk 
'1/)k = ~k 

q.' .Pk = ekqk, (5.2) 

where k = 1, 2, ... , M. In this case, the boundary conditions (3.9) and 
(3.10) are transformed into the following conditions: 

qo =eo= 0, 

rM = ~M = 0, 

(5.3) 

(5.4) 

respectively. In the new basis, the f-Toda chain equations (3.2)-(3.5) have 
the following form: 

(In q;) ' = e;(;, (lnqM) ' = 0, (5.5) 

-(rM-leM '}' = rM-1eM-!, -(eo')'= ~~, 
ro ro 

(5.6) 

-(r;-,e; ') '= -r;e; + r;-,e;-" (5.7) 

9 
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-( ~j ') ' ~ ~j+l - ~j , 

Tj Tj Tj-1 
(5.8) 

(I ) " TJ < ' E - nro =--~,1 f.:.I, 
To 

" Tj+l Tj < 'c c.E ' -(lnT;) = -----.- <.j+t <.;+I-"'"' . 
Tj Tj-l 

. (5.9) 

Hereafter, the index j lies in the following range 1 :S j :S M - I. 
The substitution ofthe transformations (5.1), (5.2) into (3. 7) at m = M 

. gives the inner automorphism 17M, 

qM -1- ~-, 
17Mqk17M - qM-k 

~M~k -1- --, 17Mekl7 M - qM 

for eqs. (5.5)-(5.9). 

qM -1- --
CTMTkCTM - TM-k-I 

- -1 
17Meki7M = qMeM-k, (5.10) 

It is interesting to note that the functions qk, eM and ~O are completely 
decoupled from eqs. (5.7), (5.8) and (5.9), which form a closed set of 
equations for the functions To, r; e; and~;· Moreover, taking into account 
the corollary from eq. (5.5) that qM is an arbitrary constant, one can 
conclude that the transformations (5.10) are also closed for them. However, 
this is not the case for the N = 2 supersymmetry transformations (3.6), 
which, for eqs. (5.5)~(5.9), have the following infinitesimal form: 

k -, II(-' , e. , l q, uqk = - 6~:, 8 Ts-1 + £-- --, 
s=l Ts-1 qs-1 

, _ -c , + qkoqk <c _ _ + ~koqk 
UTk - -£r.,k --, U<,k - E:Tk --, 

Tk-1 qk 
. £ _ ekoqk, (5.11) 

oek '= Tk-1 qk 

where eqs. (5.5) have been used. 
We call eqs. (5.7)-(5.9) the restricted f-Toda chain. If some of their 

explicit solutions are known, one can also easily obtain the solutions of 
eqs. (5.5)-(5.6) for q;, eM and ~0> 

I (r;e;+,) '- - ') 
q;+l = c;q; (1 - e; + e,+le; , 

r; 

(ro6)'- -' 
q, = eo/(1 - eo+ e,eo ), 

To 
(5.12) 
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eM=- I dz-
1

- ldzrM-IeM-1 +13M I dz-
1
- + <>M, 

TM-1 - TM-1 

- I I ~I -I eo = - dzTo dz To + l30 dzro + ao, ( 5.13) 

where <>M, a 0 and 13M, (]0 are the fermionic constants of integration and 
we have used the conservation laws ( 4.1) expressed in terms of the new 
functions qk, Tk, ek and ~k (5.J), (5.2). 

Let us introduce the new bosonic function xi 

ro = exp(xo), r; = exp(x;), exp( -x_l) = exp(J:M) = 0, (5.14) 

which is usually used in the case of the .bosonic Toda chain and is more 
suitable for the system under consideration. In this case the restricted f­
Toda chain equations (5.7)~(5.9) and their inner automorphism 17M become 

ej "+ Xj~l ' e; '- e; exp(.1'j - Xj-1) = -ej-1· (5.15) 

~; "- x; '~; '- ~; exp(:r,- x;-1) = -~,+', (5.16) 

Xo "+ exp(Xt- Xo)- e1 '~I = 0, 

Xj "+ exp( Xj+l - Xj) - exp( Xj - X j-tl - ej+l ' ~j+I - ~l, ' = 0, ( 5.17) 

-1 -1 
O'MXoCTM = -XM-1, . O'MXjaM = -XM-j-1, 

-1 - - -1 
17Meji7M = eM-j> 17M~,aM = eM-j, (5.18) 

respectively. In what follows, we concentrate on the analysis of these equa­
tions and prove their integrability. 

5.2 The general assertion 

In this subsection, we briefly discuss the general problem of integrating a 
system of ordinary differential equations containing both unknown fermi­
onic and bosonic functions. 

Although! this is not crucial for the general discussion, for definite­
ness, we assume that the system consists of the second order differential 
equations forM bosonic and 2(M -I) ferrnionic independent functions, as 
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takes place for eqs. (5.15)-(5.17). In this case, its general exact solution 
must include 2M bosonic and 4( M - 1) fermionic independent constants, 
of course, if the system is integrable. 

Let us analyze the qualitative structure of this exact solution in more 
detail. 

Evidently, the exact solution is a polynomial with respect to fermi­
onic constants for any function involved in the system. It is well known 
that the bosonic (fermionic) functions are even (odd) polynomials and any 
fermionic constant enters a monomial representing the product of fermionic 
components only once4

. 

It is instructive to treat this exact solution as the result of some it­
eration procedure or as a result of calculations in the framework of some 
perturbation theory, where the role of perturbation parameters is played by 
the fermionic constants, and different orders of perturbation calculations 
are in one-to-one correspondence with different degrees of the monomials, 
i.e., with the different numbers of fermionic components composing them. 

Now we will analyze the qualitative structure of different orders of 
perturbation calculations in the framework of such a perturbation theory. 

The zero-order approximation to the exact solution corresponds to the 
general solution of a pure bosonic system, which can be derived by taking 
the bosonic limit of the initial system. All of the bosonic integration con­
stants parametrising the exact solution of the initial system must arise in 
this order of perturbative theory. 

The first order approximation corresponds to the general solution of 
a linear fermionic system, which can be derived by substituting the zero­
order approximation for bosonic functions into the initial system linearized 
with respect to fermionic functions. Similarly to the case of zero-order 
approximation, all fermionic integration constants parametrising the exact 
solution of the initial system must arise in this order of perturbative theory. 

The second-order correction corresponds to the solution of a linear 
bosonic system with the following structure: its homogeneous part is the 
symmetry equation2 of a zero-order bosonic system and its inhomogeneous 
part is what remains after the substitution of the zero and first orders of 
perturbative calculations into the initial system and rejection of the mono-

4 Let us recall that each polynomial is the sum of monomials composed of the prod­
ucts of different fermionic components and, by definition, its degree is the number of 
components of its maximum monomial. 
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mials of all degrees but monomials of the second degree. 
The homogeneous part of a fermionic system, corresponding to the 

third order-correction to the exact solution, coincides with the fermionic 
system of the first order-approximation and its inhomogeneous part is given 
by perturbative decomposition of the initial system using the functions of 
the first and second orders of the perturbative calculations, and so on. 

To close this general discussion, let us stress that the homogeneous part 
of a system corresponding to any even (odd) order-correction to the exact 
solution coincides with the system of the second (first) order-approximation 
and neither new bosonic nor fermionic independent parameters appear in 
any order starting with the second order of the perturbation calculations•. 
We would also like to emphasize that by construction, such a perturbation 
theory is convergent and it gives the exact solution: the perturbation series 
is interrupted due to the fermionic nature of the perturbative parameters 
because a limited number o(monomials can be composed using a finite set 
of fermionic constants (i.e., the solutions of the first-order approximation) .. 

Now let us formulate the assertion with respect to the initial system: 
if the equations of the zero and first orders of the perturbation theory 

are exactly integrable, the initial system is also integrable, at least in the 
quadratures. 

The proof is given in a few words. 
If the equations of the zero (first) order of the perturbative theory are 

exactly integrable, the corresponding symmetry equation is also exactly 
integrable. Indeed, one can derive its 2M ( 4( M - 1)) linear-independent 
solutions by taking the derivatives of the general solution of the zero (first) 
order equations with respect to Its 2M (4(M- 1)) bosonic (fermionic) in­
dependent constants. As follows from the previous discussion, the problem 
of resolving equations corresponding to any other order of the perturbative 
calculations reduces to the problem of resolving the inhomogeneous sym­
metry equation, but the last problem is an exactly solvable one. Indeed, 
if the general solution of some linear homogeneous system is known, like 
in the case under consideration, then, by applying the well-known method 
of varying the arbitrary constants, one can algorithmically construct the 
solution of the corresponding inhomogeneous equation, at least, in the 
quadratures. Thus, all the orders of the above-discussed perturbation cal-

5Clearly, having arisen, they can always be eliminated by redefining the parameters 
of the zero and first orders of the perturbation calculations. . 
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culations can be resolved in explicit form. 

5.3 Solution of the restricted f-Toda chain 

The purpose. of this subsection is to apply the above-developed regular 
algorithm of integrating a system of ordinary differential equations con­
taining both unknown fermionic and bosonic functions to the restricted 
f-Toda chain equations (5.15)-(5.17). 

Following the line of section 5.2, let us represent the functions x 0 , Xj, 

(; and e; as a perturbation series, 

Z(M-1) 

Xo = "' x(ZI) L., 0 , 
/::::0 

Z(M-1) 

(; = I: (j'l-1), 
1=1 

2(M-l) 
X·= "' (21) 

J L Xj l 

/::=0 

_ 2(M-l) 

(; = z::: el-l) (5.19) 
1=1 

where the perturbation parameters coincide with the 4( M ~ I) fermionic 
constants of the first-order approximation to the general solution. Here, 

. (21) (21) (21+1) -(21+1)) the functwns x 0 and x; ((; and C are the 2/ (2/ + !) order 
corrections to the zero (first) order approximation. The fermionic character 
of the decomposition parameters guarantees that this series is interrupted, 
starting with the 4(M ~1)+1 order. As result, such a perturbation theory 
is convergent and gives an exact result. 

Substituting decompositions (5.19) into eqs. (5.15)-(5.17), extracting 
terms of the same order, and equating their algebraic sum to zero indepen­
dently for different orders, one can obtain the complete set of perturbative 
equations corresponding to the presented perturbation theory. 

Here, we demonstrate that the conditions of the general assertion in 
the previous subsection is satisfied .for the restricted f- Toda chain, i.e., it 
is exactly integrable. 

The zero order bosonic system coincides with the usual one-dimensional 
Toda chain (5] 

x&0
) 

11 + exp(x\0 ) ~ x&0
)) = 0, 

x(O) 11 + exp(x(o) ~ x(o)) ~ exp(x(o) ~ x(o) ) = 0 
J J+l J J J-1 ' (5.20) 

which is exactly integrable. Its general solution is well known and can be 
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represented in the following form [6]: 

M 

r&o) = exp(x&0l) = Z::a;exp(b;x), (o) ~ i Det;+ 1 
exp(x; ) ~ (~!) n , (5.21) 

eti i=l 

where a; and b; are arbitrary constants, and Dei; is the jt.h principal minor 
of the matrix ( ,. (0) , r(O) 11 ro ro 0 

l (0) , r&D) 11 rbo) m ro ... 
r&o:) II 

r(o) "' r(o) "" 
0 0 

The first order fermionic systems have the following form: 

,(!) 11 + (o) , c(l) , ~ c(ll ( .(o) ~ .. (o) ) + ell) ~ 0 ~1 x
3

_ 1 ~.., 1 ~., 1 exp .r
1 

x
1

_ 1 ~, 1 _ 1 -
1 

t(l) 11 ~ (0) 't(!) , ~ t(l) ( ,(0) ~ ,(0) ) + t(l) ~ 0 
~.., 1 x1 ~.., 1 c.,

1 
exp x

1 
J:,

1
_ 1 ..,

1
+1 - . 

( 5.22) 

(5.23) 

(5.24) 

These equations are also exactly integrable and using the results of section 
4.2, one can easily generate their general solutions. Thus, substituting 
transformations (5.2),. (5.14), as well as solutions {5.12), into relations 
(4.9), (4.10), (4.13), and (4.14), and rejecting terms nonlinear with respect 
to the fermionic fields, we get the following recurrent. formulae(): 

c(l) ~ (~ (o) ) (o)[~ J [~ exp(>:)()),) J d' (o) <_(I) 
~j - exp x3_ 1 Jli c ~ (0)2 "'Jli "-j-t 

/1) 

J 
exp(xj()),) · 

+/3; dz . 
10

, 2 + cr;J, 
/1; 

(o) ~ (o) , ~ (o) , (o) (OJ ~ I 
J..lj+t - f.lj xi-1 f..-lj ' J-lt - ' 

' .(0) 
<(') = ( (o))~(o)[~ J d exp( ~xi ) J d ~(o) <11l 
""J exp x3 f-11 Z -(0) 2 Zf-11 I,.J+I 

/1; 

~ J exp( ~xj0l) ~ 
+/3; dz ~("'' + cr;], 

/1; 
~(o) ~ (OJ , + (o) , ~(OJ _(o) ~ I 
J.LJ-1 - f-13 XJ f-lJ ' f-lM-1 -

{5.25) 

( 5.26) 
6Here, we have rescaled the fermionic constants of expressions ( 4.9) and (4.13). 
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for the exact solutions of eqs. (5.23)-(5.24). Thus, following the general 
assertion of section 5.2, we conclude that the restricted f-Toda chain is also 
integrable. 

Now we show how to construct the solutions of the perturbation equa­
tions for all other orders of the perturbation theory with respect to the 
4( M- 1) fermionic constants o:;, fi;, a;, and 73; of the first order solutions 
(5.25), (5.26). 

For the perturbation equations of the 21 (I 2: 1) and '21 - 1 (I 2: 2) 
orders, we have 

{21) "+ ( (21) {21)) ( ,(0) ,(0)) - )('(21) x 0 x 1 - x0 exp x 1 - x0 - 0 , 

{21) " + ( {21) (21)) ( (0) (0)) 
xi xi+I- xi exp x 1+ 1 - x 1 
-(X(21)- X(21)1) exp(x(O)- X(O) ) = X(21) 

3 )- J ]-1 J ' ( 5.27) 

,(21-1) , + (o) , ,(21-l) , 
~1 X 1-t s3 

_,(21-l) ( (0) - (0) ) + ,(21-1) - :;-{21-l) 
~.., 1 exp x3 x1 _t <.., 1-t - ~1 ' ( 5.28) 

<(21-1), _ x(o), <(21-1) , 
<.,) J .... ) 

_c(21-1) ( (D) - (0) ) <(21-1) - '5(21-1) 
~., 1 exp x1 x3 _ 1 + <., 1+1 - ......... 1 ' (5.29) 

respectively. Here, the functions X~21 ) and xj'll (:=::j21-l) and :=:j21- 1)) are 
defined by the following relations: 

2(M-1) 
XD = E X~21) =- exp(xl - XD) +~I , ~I 

1=1 

+(1 +X! - xD- x(D) + x~D)) exp(.x(Dl- x~D)), 
2(M-!) 

- "' {21) ( ( ) X;= L- X; =- exp Xj+l- x;) + exp x;- x;_ 1 

1=1 

+~j+l , ~j+l + ~j ~j , 

( 
(D) (D)) ( (D) (D)) + 1 + Xj+! - Xj- Xj+! +X; exp Xj+!- X; 

( 
(D) (D) ) ( (0) (D) ) - 1 + Xj - Xj-I - Xj + Xj-I exp Xj - Xj-I , 

2(M-1) 
-::. = "' -::(21-1) _ ( (D) _ . ) 't.' 
..... 1 _ L.....J .._.3 - X 3_I XJ-l <,3 

1=2 
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' 

+~;(exp(x;- x;_I)- exp(xjD)- x\~1 )), 
2(M-1) 

'5. = "' '5(21-1)- -( (D)- --), <., 
...... 3 _ L.....J ......... 

3 
- X

1 
x3 1..,

1 
1=2 

- ( ( ) ( (D) (D) ) ) +ej exp Xj- Xj-1 - exp Xj - Xj-1 , (5.30) 

respectively, and they are the sum of the monomials of 21 (21-1) degree7 • 

Let us stress that the inhomogeneous parts of perturbative equations 
(5.27)-(5.29), corresponding to a given order n, depend only on the func-
. {2m) (2m) c{21+1) d <(21+1) f h · d f b ' tlons x0 , xi , C,j an S.j o t e prevwus or ers o pertur atlve 

calculations (i.e., at m::; (n- 1)/2 and I ::; (n- 2)/2). Thus, we have a 
consistent perturbative theory. 

If we set the inhomogeneous parts of perturbative equations (5.27) 
equal to zero for any even order of the perturbative theory, they coin­
cide with the symmetry equations2 for the Toda chain (5.20). Thus, 
in this case, their 2M linear-independent solutions Yt at each point k 
(k = 0, 1, ... , M- 1) of the chain are given by 

~ (D) 
uxk 

A- - ' Yk - iJAA 
'\ 

(5.31) 

where the capital Greek letter-indices run over the range A, <l> = 
0,1, ... ,2M- 1, and AA = {a~, ... ,aM,b~, ... ,bM} (see eq. (5.21)). To 
use the formalism of varied constants for the solution of inhomogeneous 
equations (5.27), it is necessary to solve the linear system of the first order 
differential equations 

2M-1 

E Ytc~1\z) '= 0, 
2M-I E y~, c~l)(z), = Xk21) (5.32) 

A=O A=O 

with respect to c~l)(z), where c~1\z) are 2M bosonic parameter-functions. 
Then, the solution of eqs. (5.27) for the function x~21) has the following 
form: 

2M-1 
(21) _ "' A (21)( ) xk - L....J Yk cA z . (5.33) 

A=O 

71t is implied that the perturbative decompositions (5.19) of the functions Xo, Xj, ej 
and ej must be substituted into the r.h.s. of relations (5.30). 
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Let us introduce the 2M X 2M matrix P~ defined as 

p~ = y~ ', p~+k = y~' (5,34) 
Then the solution of the system (5,32) can be represented in the form 

M-1 
c~''(z) = J dz L (P-I )A' x£;1), (5,35) 

m=D 

where p-l is the inverse matrix for the matrix P (P-1P = pp-l = I) 
and expression (5,33) for x~211 becomes 

2M-1 M-1 

x~21) = L P~+k j dz L (P-1):\X£;'1. (5.36) 
A=O m=O 

Taking the sum over all orders of the perturbative theory and using rela­
tions (5.19) and (5.30), we have the following exact expression for Xk: 

2M-l M-l 

Xk = xi01 + L P~+k j dz L (P- 1
):\ Xm- (5.37) 

A=O m=O 

One can invert the above-developed perturbation scheme and consider the 
relation (5.37) as the equation for xk, and take it as a starting point. 
Then its iteration (5.19), together with the iteration of the corresponding 
equations for the fermionic functions e; and e; (see below), is interrupted 
starting with the 4( M - 1) + 1 order and gives the exact solution for Xk. 

The odd-order-perturbative equations (5.28), (5.29) can be integrated 
m the same way as described for the case of the even-order equations 
(5.27). Without going into detail, let us present only the expressions for 
h f . d21-1) d <(21-1) t e unctiOns r.,j an ..,j , 

2(M-11 a•(l> _ 
<(21-1) = "' _>;_ (21-1)( ) >, L.. ar Cn Z ' n=I n 

2(M-1J a<<!J 
<(21-1) - "' _<;_·;_-(21-1)( ) ..,. _ 6 -en z, 

J n~l arn (5.38) 

where ro = (al,···,aM-1,{3t, ... J3M-d, fn = (Cil, ... ,CiM-hjJp···JJM-1) 
(f! = 1,2, ... ,2(M- 1)); c~l-l)(z) and c~'- 1 \z) are 4(M- 1) fermionic 
parameter-functions that are solutions of the following linear system: 

2(M-!J ad!J 2(M-!J ad!J 
"' _>_;_ (21-1)( ) '= 0 "' (-'-;-) ' (21-1)( ) '= :::(2/-1) L.. ar Cn z ' L.. ar Cn z ~, ' il=I n O=I n 

2(M-!J a?.1J 2(M-!J a<(!> 
"' _,_, -(21-1)( ) '= 0 "' (-'-' ) ! -(21-1)( ) ' = o:;(21-1) (5 39) L.. a- Cn z ' L.. a- Cn Z ~, • . n~1 I'n n~1 I'n 
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To close this subsection, we would like briefly discuss a slightly modified 
version of the perturbative theory for the odd-order perturbative equations 
(5.28) and (5.29). 

To do this, let us represent the differential equations (5.28) and (5.29) 
in integral form. Thus, multiplying them by the integrable factors 11\

01 
and 

JI]0
), respectiv~ly, using the equations 

(exp( -x)ll)1) 11\01 ' ) '= exp( -.r)ll),) 11\
0

1. 

(exp(xJ0
)) 7JJ0

)' ) '= cxp(xjll),) 71)01 (5.40) 

for the factors, taking the sum of all pert urbativc orders. and using rela­
tions (5.30), eqs. (5.28)-(5.29) can be identically rewritten iu the form 

(OJ 
( ( 

(o)) (o)' exp(x;-tl , ) , (OJ _ exp -Xj-1 11; ( (O) e;) = 1'1 ( -eJ-1 + .::;). 
11; 

(OJ) 
(o) -(o)' exp( -x; - ' ' - -toJ - '=' (exp(x; ) 11

1 
( -(o) e) ) - 1'1 ( -e;+t + ~J (5.41) 

11) 
which can be easily integrated. As a result. W<' have the desirable integral 
form of eqs. (5.28)-(5.29) given by -

(o) (o) j exp( .r\ll)') ;· - to) - -e; = exp(-x;-1)11) [ dz (<>)' d~!l) ( -(,_, + .::)) 
Jlj 

J 
exp(x)"!1) 

+f3i dz (o)' + o:3 ], 

11; 
(U) 

- _ (o) _(o) j exp( -:r1 ) j _-(o) - '=' e;- exp(xj )11; [ . dz ' "-1'; ( -~J+l + -Jl -(OJ 
l1j 

- j exp( -x\
0

)) _ 
+f3j dz -(o)' + O'j]. 

11; 
( 5.42) 

Simple inspection of eqs. (5.42) shows that their solutions can be con­
sistently obtained by iterating with respect. to t.he fennionic constants of 
integration O'.j, {3j, fij and 7Jj in the framework of the abovt;-discussed per­
turbative scheme. 

Thus, all the orders of the perturbation calculations can be resolved in 
explicit form. 
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5.4 Example: the M = 2 case 
To illustrate the general formulae of the j>I'CVious subsection, here we con­sider the simplest example of the restricted f-Toda chain with fixed ends at M = 2. 

In this case, eqs. (5.15)-(5.17), boundary conditions (5.3), (5.4), (5.14), as well as perturbative decompositions (0.HJ), have the following form: 
6 "+ Xo '6 '-1;1 exp(:r, - :ru) = 0, 
( 1 "- x, '(1 '-(1 exp(x1- xD) = 0, 
x 0 "+ exp(x1 -xu) - ~~ ' ( 1 = 0, 
X1 "- exp(x1 -.xu)- 6 ( 1 '= 0; (5.43) 

~D = ( 2 = exp( -x_t) = cxp(x2) = 0; (5.44). 

X - x 10l + x 121 + x 141 x - x(D) + x12l + x141 Q- 0 0 Q: I- I I I' 

6 = ~pl + ~~3), 1;, = I;~')+ 1;~3), (5.45) 
respectively. 

According to formulae (5.21), the zero-order functions x~D) and x(
0
l are given by 

exp(x&01 ) = a1 exp(b 1z) + a2 cxp(b,z), 
exp(x\01 ) = -a1a2(b1 - b2)' cxp(z(b 1 + b2)- x~D)). (5.46) 

Substituting them into eqs. (5.25)-(5.26), taking into account eqs. (5,44) and integrating the obtained expressions, we obtain the following results: 
d1l = /31x\D) '+ n 1 exp( -x~Dl), 
-(1) - (D) , _ ( (0) ~ 1 = f31x 0 + a 1 exp x 1 ) (5.47) 

. . (1) -(1) for the first-order functwns ~1 and ( 1 . 
According to formulae (5.30).' we have 

X f2J _ ,(lJ , c(ll xf2J _ c<•J .-PJ , 0 - 1.:.1 ':.1 ' l - 1:.1 ':.1 ' 
-:::-(3) _ c(l) ' (2) , + t(l)( (2) (2)) ( (D) (D)) ...... 

1 - -~:. 1 x0 ~., 1 x1 - .r0 exp x1 - x0 , 
:=(3) _ t(l)' (2), +til)( (2) (2)) ( (D) (0)) '-'1 - ':.1 XI f:.l XI -:-- Xo exp Xl - Xo ' 

xJ•l = -~(x\2)- x~2))2 exp(x\"l- x~")) + ~ll) '1;~3) + ~~3) ';;;•), 

X}4) = ~(x\2)- X~2))' exp(x\0)- x&D)) + (\1) 1;\3) '+ ~~3) 1;\l)' (5.48) 
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,, 

for the inhomogeneous parts of perturbativc equations (5.27)--(5.29), cor­responding to the higher order corrections. Iterating eqs. (;i..12) and (5.37) in consecutive order, step by step, we ohtain the following expressions: 
(2) I (B -

6
· . _ to), .,..1 ( · (o)) Xo =:; -2-, 1 1 - CttOt):r 1 - a 1 ~ 1 exp -x0 : 

(2) I (/3 -/3 - ) (OJ ' i - ( (0)) Xt =2 1 1 -atOJ:r0, +- 1o,expx 1 ( 5.49) 

for the second-order functions, 
(3) . I f3- ( ( (D))) ' ·J - 1 . (0) (0) ) ~1 =-2<>1 t/3

1 exp -xD +n 1.,n,(;lcxp(.r1 -:r0 )-6162 , 
<(3) _ (3- ( I ( (D) (o)) b ) 1 I _ -3 (OJ . , ) ,

1 
= -<>t<>t 1 2exp X1 - x 0 - ,b, - 2' ,n, 1(<'xp(.r 1 )) (5.50 

for the third order functions, and, at last. 
141 (4) I /3 _ 7i l tot !Dl) b xD = -x1 = 2<> 1 ,a, : 1( 2 exp(.r 1 -.1:0 -61 2 ) (5.~1) 

for the fourth order functions. 

6 Conclusion 
In the present Letter, we proved the integrability of the f-Toda chain with fixed ends or interrupted from the left (right) and proposed an algorithmic method for -e:onstructing its explicit solut.ious. ?vlany int.crcst.ing questions arise in this connection. What. is th<> group-t.hcoretical fou11dation of this result and its connection with the repres<'lltation theory ofstqH'rgroups (su­peralgebras)? Is it possible to construct. a ~upcrintcgrable t.wo-dirnensional generalization of the f-Toda ch<tin'! Is it possible t.o repn's<'llt the f-Toda chain with fixed ends in the Lax-pair or Hamiltonian l(mns'1 This last question is a very important iu coJt!lcdion with the problem of its quan­tization. In the case of the usual Toda chain, all these questions have the answers and the authors hope to find !.heir solutions for t.h<' case of the f-Toda chain in future publications. 
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