


1 Introductlon

. Q,uxte recently, we mtroduced the mmlma,l N‘ =2 supersymmetrlc exten— o
- sion of the Toda chain called £ Toda [1].. We have shown that the: N =2
supersymmetnc Nonhnear Schrodlnger (N LS) hlerarchy in the N = 2 su- o

perspace [2] possesses a discrete group ‘of integgable: Mappings’ 3] which'is
~equivalent to-the f-Toda, chain. Tts” ‘origin was nalyzed in'{4]. In contrast

. to other chains, the f-Toda cham is not.algebraically: solvable. Such type. 2
e '-_of chams has- not been conSxdered in ‘the iltereture before. - :

-The goal of the present Letter ig to_prove: the mtegrabillty of the f-Toda

% chain ‘and to_construct its genéral solution under appropr:ate boundary- '
conditions, including the condition corresponding to fixed ends. This last _
problem is equivalent to the problem of constructmg multi-soliton solutions

for ea.ch mtegrable system belongmg to the N - 2 super»NLS h:era.rchy

2 The N 2 super-NLS and f—-Toda super-'

ﬁeld equatlons N SR o

| In th;s sect:on followmg [1], we- brleﬂy descrlbe the f Toda. cham equatlons o

and’ thejr relation to the N = 2 super-NLS hxerarehy
Let us proceed w;th the N = 2 super—N LS equation [2]
2 AT,
a{ = /" 20T Df) o =T 2D(ffo), ‘e

o where f(x 0 0) and f (a: 9 0).a,re chxral a,nd antlchlral fermlonlcsuperﬁelds |

D=0, Di=0, (22)_:'

respectwely, in the N = 2 superspace w1th one bosomc z a.nd two fermi-

onic 8,8 coordinates!: D and D are the N = 2 supersymmetric fermlome '

cova,rla,nt derlvatxves

1.0 8 14
D= T 5652’ D =F 595;, , o
D*=D%=0, {D, D}_ =gfzmz”-a (@3)

IThe sign ‘~means the &ﬁ'vative with respect to 2.

The chirality condition (2. 2) reduces the number of independent compo-
nents of the fermionic superfield f (F) from four to two.

Equations (2.1), as well as each system of the equations belonging to
the N = 2 super-NLS hierarchy, are invariant with respect to the foIlowmg
discrete £-Toda transformation [1]: :

ﬁ ~ff= (m(‘ﬁ}-D"f)).'. (2.4)

This relation is the definition of mapping, i.e., the rule determmmg the.

correspondence between two 1n1t1al superfields f and f, and two final ones,
R ot

f and f The notation f ( f ) means that the index of the superfield f is

shifted by +1 (—1), i.e. fk frm1 (fk fr-1), and it denotes the action
of the direct (inverse) f Toda transformation applied to the superfield f.
The invariance of the N = 2 super-NLS hierarchy with respect to the
transformation (2.4) can be checked directly, and it means, in particular,
that the right-hand sides of eqs. (2.1) are the solutions of the symmetry
equation? correspondmg to the mapping (2.4) [1].

3 The component form and boundary con-
ditions

The N = 2 superfield form (2.4) of the f-Toda mapping is not very suit-
able for actual calculations and we rewrite it in terms of the superfield
compenents defined as

vk = Dfl, ¥, =DF|, u= Dfil, ":bk. = Dfil, (3. i)

where the index £ € Z and | means the (6,8) — 0 limit. In terms of these
components, eq. (2.4) becomes the infinite-dimensional chain of equations

(ln(ukﬂvk))- = 7/)k+1ib_k+1 - lbk_lgk, (3.2)
- (%ﬁ‘l—) "= —v P + v, (3.3)
k+1

?Let us recall that the symmeiry equation for a given system can be obtamed by
differentiation of the system with respect to an a,rbltrary parameter.



- (Eb‘“k‘“i) = uk+1$k+1 — ugdy, B (3.4)

Uk
c = (Invk) " = w1 Vker — UkVE — P | Prp + 0k Gy (3.5)

Each point of this chain contains four functions: two bosonic ux, v and
two fermionic ¥, ¥, functions. In the bosonic limit (i.e., as ¥ — 0 and
"1, — 0) it is equivalent to the usual Toda chain® [5]. This is the reason
why the chain (2.4) is called the fermionic Toda or f-Toda chain [1].

For completeness, lét us also present the component form of the global
N = 2 supertranslations : :

A 1 P o =, 1 -7 !
g Vg — €Yy e @bk—%gbk—i-evk-l-—jee?/)k s

1 L
wuk_ —up — &P+ 565@% otk - Y b eug — 566’&1);; ! (3.6)
under which egs. {3.2)-(3.5) remain invariant. Here, ¢ and € are constant
fermionic parameters. Equations (3.2)-(3.5) also possess the inner discrete
_automorphism o, (m € Z) with the properties '

CmUkOp = Uk,  OmUkOm = thm_k,
qm¢k07;1 - ¢muk7 Um¢k0;1 = 'IJ)M"‘-'C’ . (3'7)

which will be useful in what follows. Egs. (3.7) can also be easily repre-
sented in terms of the superfields and superspace coordinates

Umfkgf:al = Tm—kﬂ b'm_fko';l = fm——k:
1

Omzoy) =2, opbot =10, onlc =10, (3.8)
Let us discuss the boundary conditions which can supplement eqs.
(3.2)-(3.5). ' _
~ We call the system (3.2)-(3.5) with additional manifest N = 2 super-
symmetric boundary conditions
fo=0su=yo=0, k20, o (39)

or '
Fu=08vy=1,=0 k<M, - (3.10)

%In the bosonic limit, eq. (3.2) admits the obvious solution ug4; ~ o which, being
substituted into eq. (3.5), produces the well-known representation for the usual Toda
chain equations. : :

where M € Z,, the f-Toda chain interrupted from the left or froin the right,
respectively. The case where these conditions are satisfied simultaneously
corresponds to the f-Toda chain with fixed ends.

Application of the transformation o (3.7) to the f-Toda chain inter-
rupted from the left transforms it into the f-Toda chain interrupted from
the right, and vice versa. Due to their relation, it is sufficient to consider
only one of them; for concreteness, we discuss the f-Toda chain interrupted
from the left in what follows. As concerns the ~Toda chain with fixed ends,
1t is invariant with respect to o, or, in other words, it possesses the inner
automorphism o,

4 The integrability of the f-Toda chain in-
terrupted from the left

In this section, we construct the recurrent procedure for solving of the
f-Toda chain equations (3.2)-(3.5) with the boundary conditions (3.9).

4.1 The conservation laws

Our first goal is to resolve the £-Toda chain interrupted from the left. In
other words, we assume that the boundary condition (3.9) is satisfied and
vo, P, are arbitrary functions. The problem consists in expressing, using
the {-Toda chain equations, all of the functions uz, v, ¥ and Pratk>1
in terms of the functions vy and %,, as well as a number of additional
constants which can arise in integrating the equations.

Let us start with a discussion of the conservation laws which are rele-
vant to the problem under consideration.

By a direct check, one can verify that the following set of conservation -

laws: ( B
Vg - -, :
Chm1l = UpUk_1 — ’%%4 + ey, - (4.1)

takes place at each value of k, where ¢ is an arbitrary constant. However,
there is a simpler way to check this statement by rewriting (4.1) in the
superfield form '

- Dﬁ(fkfiml‘DTk—l) - _ﬁD(fka—lﬁfk)
Dfyy Dy

Ck—1

(4.2)



using eq. (2.4) and definitions (3.1). The last equality of formula (4.2)
demonstrates that ¢ is a constant (i.e., it is the integral of r_notiori), because
it is both the chiral and antichiral -superﬁeld, ie. Dep = Dep = 0. The
action of the transformation o,, (3.7) interchanges different integrals in
accordance with the following law:

Umckd;l = Cmkel- (4.3)

Using the conservation law (4.1), eq. (3.3) for the fermionic function
ty, can identically be rewritten as '
(Uk—lff)k) !
1

('Uk——) " — v [egor —

'ébk—lak—l

Vg—1-

) e = —er 1tk (4.4)

From eq. (4.4), we observe that if we want to express i as a functional
of the chain functions u;, v;, 1; and 1, defined at the previous (from the
left} points of the chain (i.e., at i < k — 1), it is necessary to solve a linear
equation of the second order with the coefficient functions that also depend
on the functions of the previous points of the chain. If we could find such
an expression for iy, all other independent functions ¢, u; and vy of
the {-Toda chain could also be obtained in a recurrent way as functionals

of the previous points of the chain. Indeed, using eqs. (3.4), (3.5) and.
conservation law (4.1), one can easily obtain the corresponding formulae

for the functions 4, , vy and ug:

e =(ven (L) ey ) e + G B,

Vg1 Vg1
v =1 (—(Invg—y )" + up1vk_1 + PPy

~ et P )/ (k1 + wkT?::l“)“iEkq - ¢k"¢.k—ll)3
. 'U'k)=(ci;—-] + %E}c—.—l — ety )/ V-1, (4.5)

respectively.
Thus, the crucial problem is the solution of eq. (4.4) for ¥ by some
recurrent procedure. This task is solved in the next subsection.

4.2 The integrable factors

The aim of this subsection is to construct the recurrent procedure for
solving eq. (4.4) for an arbitrary chain point.

Let us assume that the homogeneous part of the second order equation
(4.4) possesses a bosonic integrable factor tte. This means that after multi-
plication by g, the corresponding equation may be represented as a whole
derivative. Following this line, let us rewrite eqs. (4.4) in the following
equivalent form:

!

;2 —'»b Py ! )__‘
(T_)F_‘i_l(”kpl_") ) _yk_l{_(i"_—l) +#k[uk—1_(v_k;i%i)!]}¢k

= —Cr1 e Prr. o (4.6)

Equating the coefficient of the function ¥y in the Lh.s. of eq.(4.6) to zero,
we obtain the following equation: )

(#k )= ke — (%l) am (4.7)

Vig—1

for the integrable factor gx. At k = 1, it has an obvious solution =1

because, in this case, its r.h.s. becomes equal to zero due to the boundary
conditions (3.9).

If the integrable factors are restricted by eqs. (4.7), eq. (4.6) for the
function i becomes

pit 'Uk—ﬁbk) ,

i _
vt i )= =kt (4.8)

and one can easily integrate it,

_ HE f V1 f ’ Vg—1
o= e [ [ 4B " ), ()
where Ok and f are fermionic constants of integration, and one can find
the explicit expression for 1 if all other parts of formula (4.9} are known.
The appearance of these additional constants is a qualitative difference
of the f-Toda chain in comparison with the integrable chains investigated
before. ' '

Concerning eqs. (4.7) for the factors u, they can be resolved in recur
rent form with the following answer:

( i ) P’ (vk~1¢k) p (gk—l

Vi1 Cr—1 HE V-1

Hht1 = Vpog ), op= 1. (4.10)



Indeed, this can be checked by direct substitution, taking into account
the f-Toda chain equations (3.2)-(3.5). If the integrable factor g, satisfies
eq.(4.7), the factor pry1 (4.10) satisfies the equation

Hktt. (411)

(EES_L:)J — [uk _ (¢k¢k) r]
k (43

This verification can be simplified if one uses the following convenient
identity:

1 ;Ek—l Py E N
GrlenmiCa2) ) |
=[Uk~(¢zzbk)'}vk1(%)'*%—1(% !, (4.12)

which can easily be checked.

Let us stress that the integrable factor pgyy (4.10) is the functional of
the chain functions defined at the previous (from the left) points of the
chain, thus, the same important prdperty is also satisfied for the furction

i (4.9).
To consider the case of the f-Toda chain interrupted from the right with

the boundary conditions (3.10), one can simply apply the transformation -

om (3.7) to formulae (4.4)(4.12). Without additional comments, let us
present expressions for ¢, and their integrable factors

—c /dz
uk+1

_ _ — o
Br ~os, i ¥ ;o Uk,
L) (Y (Y gy e (.14
Uk Cr  Ugp Hi .

/dzﬂk%bkﬂ +ﬁk[dz @], (4.13)

Froy = dpy(

‘where #&; and B, are fermlonlc constants, which will be useful in what
follows. :

"Thus, the following proposition summarizes this section.

The solution of the f-Toda chain interrupted from the left is given by
recurrent relations (4.9), ({.10) and (4.5).

5 The integrability of the f-Toda chain with
fixed ends

" In this section, we construct the recurrent procedure for solving the f-Toda

chain with the boundary conditions (3.9), (3.10).

5.1 New form of the f-T(;da chain

Let us introduce the new basis Gk, Tk, € and &, in the space of the f-
Toda chain functions uy, vk, ¥r and v, defined by the following invertible
transformation:

k
9k = H(u8”3~1)1 ro =v, Tk =vk |](Uvs1),

s=1

_ _ a _ k k o
o = o, € = Yy, H(us”s—l): & = "/’k/H(us”s—l): _ . (51)
s=1

sw=1

% _ eo— = o & .
U= Ue=Te, v = Yo =2Ep V= (}f’ e = &gy, (5.2)

where k = 1,2,..., M. In this case, the boundary conditions (3.9) and
(3.10) are transformed into the followmg conditions: :

q==86=0, - (5.3)

ri =&y =0, (5.4)

respectively. In the new basis, the f-Toda chain equatmns (3.2)-(3.5) have

the following form:

(lng;) "= &€, (Ingw) ' =0, (5.5)
R L VIR Y RERVARY SV —(%) = E—;, (5.6)
=(rj1§ ') = i + ri-1€j-1, | ' (5.7)



& ,-=E.J-+1 £

~(Inro) "= 2 — ¢ ' E,,
To

e r - _
—(lnr;) " = ;—JH - T'jil' ~ &t " i — G .(5.9)

Hereafter, the index j liesin the following ranrge 1<7<M-—1.
‘The substitution of the transformations (5.1), (5.2) into (3.7) at m = M
_gives the inner automorphism oy, °

-1 qn -1 qn
MOy = ——, CMTEO g — 3
. C QM—k TM k=1
o G -
ombiay = ‘;‘M", ombroy = ambm—i, (5.10)

for egs. (5.5)-(5.9). :

It is interesting to note that the functions gx, &3 and £, are completely
decoupled from egs. (5.7), (5.8) and (5.9), which form a closed set of
equations for the functlons ro, T 53 and ;f Moreover, taking into account
the corollary from eq. (5.5) that ¢as is an arbitrary constant, one can
conclude that the transformations (5.10) are also closed for them. However,
this is not the case for the N = 2 supersymmetry transformations (3.6},
which, for egs. (5.5)-(5.9), have the followmg infinitesimal form:

qu‘” H(eés Ts—1 +€€ ) b :7

Ts—1 Gs—1

. ) . 5
B RS LR S L L f"q % (5.11)
k

7
Tr—-1 Gk Tk-1

where egs. (5.5) have been used.
We call eqs. (5.7)-(5.9) the restricted f-Toda chain. If some of their
- explicit solutions are known, one can also easily obtam the solutions of

egs. (5.5)-(5.6) for g;, &ar and £,

(r :§3+1)

Gia1 = c0;/(1 — =R G ),

(r 0€1)

@ =cof(1 — —"&, +&& "), (5.12)

10

+ aa,

—fdzmj—l [dz‘wﬁt{ml +ﬁM/dzr,\;ﬁ1
& = —fdzrofdzi—; +Eo[d2?‘0 + o, (5.13)

~

where apr, @ and fGu, B, are the fermionic constants of integration and
we have used the conservation laws (4.1) expressed in terms of the new
functions gx, ¢, & and £, (5.1), (5.2).

Let us introduce the new bosonic function x;

ro = exp(zp), r; =exp(z;), exp(—z_) = exp(zpy) =0, (5.14)

which is usually used in the case of the bosonic Toda chain and is more
suitable for the systemn under consideration. In this case, the restricted f-
Toda chain equations (5.7)—(5.9) and their inner automorphism o become

& 425" & = Gexpla; —zia) = =€ (5.15)
fj "o z; ’ Ej r Ej eXp(-‘L‘J' _ C'Jj—l) = —‘Ej+l= . (5.16)

"+ exp(z —z0) — & ' & = 0, . B
z; "+ exp(zpr — z5) —exp(a; — zim1) = G & — §& =0, (5.17)

OCMTOOR; = —TaM-1, ' OMTjOy = —TM—j-1,
_— T = - —1
améion = Epr—jr omEony = €My, (5.18)

respectively. In what follows, we concentrate on the analysis of these equa-
tions and prove their integrability.

5.2 The general assertion

In this subsection, we briefly discuss the general problem of integrating a
system of ordinary differential equatlons containing both unknown fermi-
onic and bosonic functions.

Althought this is not crucial for the general discussion, for definite-
ness, we assume that the system consists of the second order differential
equations for M bosonic and 2(M — 1) fermionic independent functions, as

11



takes place for egs. (5.15)-(5.17). In this case, its general exact solution
must include 2M bosonic-and 4(M — 1) fermionic mdependent constants,
of course, if the system is integrable.

Let us analyze the qualitative structure of this exact solution in more-

detail.

Evidently, the exact solution is a polynomial with respect to fermi-
onic constants for any function involved in the system. It is well known
that the bosonic (fermionic) functions are even (odd) polynomials and any
fermionic constant enters a monomla.l representmg the product of fermionic
components only once?.

It is instructive to treat this exact solution as the result of some it-
eration procedure or as a result of calculations in the framework of some
perturbation theory, where the role of perturbation parameters is played by
the fermionic constants, and different orders of perturbation calculations
are in one-to-one correspondence with different degrees of the monomials,
i.e., with the different numbers of fermionic components composing them.

Now we will analyze the qualitative structure of different orders of
perturbation calculations in the framework of such a perturbation theory.

The zero-order approximation to the exact solution corresponds to the
general solution of a pure bosonic system, which can be derived by taking
the bosonic limit of the initial systemn. All of the bosonic integration con-
stants parametrising the exact solution of the initial system must arise in
this order of perturbative theory.

The first order approximation corresponds to the general solution of
a linear fermionic system, which can be derived by substituting the zero-
order approximation for bosonic functions into the initial system linearized
with respect to fermionic functions. Similarly to the case of zero-order
approximation, all fermionic integration constants parametrising the exact
solution of the initial system must arise in this order of perturbative theory.

The second-order correction corresponds to the solution of a linear
bosonic system with the following structure: its homogeneous part is the
symmetry equation® of a zero-order bosonic system and its inhomogeneous
part is what remains after the substitution of the zero and first orders of
perturbative calculations into the initial system and rejection of the mono-

“Let us recall that each polynomial is the sum of monomials composed of the prod-
ucts of different fermionic components and, by definition, its degree is the number of
components of its maximum monomial.

12

mials of all degrees but monomials of the second degree.

The homogeneous part of a fermionic system, corresponding to the
third order-correction to the exact solution, coincides with the fermionic
system of the first order-approximation and its inhomogeneous part is given
by perturbative decomposition of the initial system using the functions of
the first and second orders of the perturbative calculations, and so on.

To close this general discussion, let us stress that the homogeneous part
of a system corresponding to any even (odd) order-correction to the exact
solution coincides with the system of the second (first) order-approximation
and neither new bosonic nor fermionic independent parameters appear in
any order starting with the second order of the perturbation calculations®.
We would also like to emphasize that by construction, such a perturbation
theory is convergent and it gives the exact solution: the perturbation series
is interrupted due to the fermionic nature of the perturbative parameters

* because a limited number of monomials can be composed using a finite set

of fermionic constants (i.e., the solutions of the first-order approximation).

Now let us formulate the assertion with respect to the initial system:

if the equations of the zero and first orders of the perturbation theory
are ezactly integrable, the initial system is also integrable, at least m the
quadratures.

The proof is given in a few words. ,

If the equations of the zero (first) order of the perturbatlve theory are
exactly integrable, the corresponding symmetry equation is also exactly
integrable. Indeed, one can derive its 2M (4(M — 1)) linear-independent
solutions by taking the derivatives of the general solution of the zero (first)
order equations with respect to its 2M (4(M — 1)) bosonic (fermionic) in-
dependent constants. As follows from the previous discussion, the problem
of resolving equations corresponding to any other order of the perturbative
calculations reduces to the problem of resolving the inhomogeneons sym-
metry equation, but the last problem is an exactly solvable one. Indeed,
if the general solution of some linear homogeneous system is known, like
in the case under consideration, then, by applying the well-known method
of varying the arbitrary constants, one can algorithmically construct the
solution of the corresponding inhomogeneous equation, at least, in the
quadratures. Thus, all the orders of the above-discussed perturbation cal-

5Clearly, having arisen, they can always be eliminated by redeﬁnmg the para.meters
of the zero and first orders of the perturbation calculations.

13



culations can be resolved in explicit form.

5.3 Solution of the restricted f-Toda chain

The purpose of this subsection is to apply the above-developed regular
algorithm of integrating a system of ordinary differential equations con-
taining both unknown fermionic and bosonic functions to the restricted
£ Toda chain equations (5.15)-(5.17).

Following the line of section 5.2, let us represent the functions Zo, T,
¢; and § as a perturbation serles,

2(M—-1) 20 _ 2(M-1) t
2
S w Z.w.ﬁ» !
I:O ’

2M 1) -

E (21 1)’ - Z (21 1) (5.19)

where the perturbation parameters coincide with the 4(M — 1) fermionic
constarits of the first-order approximation to the general solution. Here,
the functions mg 2 (21) (.f (41 and 5(2Hl ) are the 21 (2{ + 1) order
corrections to the zero (ﬁrst) order approximation. The fermionic character
of the decomposition parameters guarantees that this series is interrupted,
starting with the 4(M —1)+1 order. As result, such a perturbation theory
is convergent and gives an exact resuli.

. Substituting decompositions (5.19) into eqs. (5.15)-(5.17), extracting
terms of the same order, and equating their algebraic sum to zero indepen-
dently for different orders, one can obtain the complete set of perturbative
equations corresponding to the presented perturbation theory.

Here, we demonstrate that the conditions of the general assertion in
the previous subsection is satisfied for the restricted f-Toda chain, i.e., it
is exactly integrable. '

The zero order bosonic system coincides with the usual one-dimensional

Toda chain [5]

.and

(0) H

(0) "

_|_ exp( ( ) (U)) — O

+ exp(z; © ) — m( )) - exp(z; ) _ 50_)1) =0, (5.20)

which is exactly integrable. Its general solution is weill known and can be

14

represerited in the following form [6]:

M
Det;
T‘(()O) = exp(m‘()o)) = Eai exp(biz), exp(z (0}) (1) 561:1
_ j

=1

, (5.21)

where a; and b; are arbitrary constants, and D¢t; is the jth principal minor
of the matrix
{0) Tl()O) ' ?‘(()0) "

!
T(()(’) ' T((,O) " T‘(()O) "

7.[()0) " Vr‘gﬁ) " 1"(()0} A (522)

The first order fermionic systems have the following form:

. €M 1y 50 1 e 2P0+ e =0, (5.23)

— € explal? -

i f

i =(1
sj Yo mgﬂ) ' 65 b f(l) exp( (0 _ (U) )+ §J+1 = (. (5.24)

These equations are also exactly integrable and using the results of section
4.2, one can easily generate their general solutions. Thus, substituting
transformations (5.2),,(5.14), as well as solutions (5.12), into relations
(4.9), (4.10), (4.13), and (4.14), and rejecting terms nonlinear with respect
to the fermionic fields, we get the following recurrent formulae®:

(1) _ OB exp(ai?)) f Q)
£ = exp(—a f de 2l (0)2 dzp e

ex (0}
+ﬁjf L) -+ aj],

| #50)2
ph =0 =20 0 W0 =1, (5.25)
1) RONSE dz exp(—2{") 0y £1)
;| =explz; )i [ —_(o)z—"fdz#j Eiti
Hy
)]
exp(—z; )
+7, [ d 40)2 e
ﬁf’.].’ P"}O) ‘ (0) ' Egﬂ)’ E(O) =1 (5.26)

6Here, we have rescaled the fermionic constants ot" expressions (4.9} and (4.13).
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for the exact solutions of egs. (5.23)-(5.24). Thus, foilowing the general
assertion of section 5.2, we conclude that the restricted {~Toda chain is also
integrable. ' .

Now we show how to construct the solutions of the perturbation equa-
tions for all other orders of the perturbation theory with respect to the
4{M — 1) fermionic constants «;j, 3;, @;, and Ej of the first order solutions
(5.25), (5.26).

For the perturbation equations of the 2/ ({ > 1) and 2/ — 1 ({ > 2).

orders, we have

Iézt) 1" + ( (2:) 21)) exp( {Uj rgﬂ)) — X(SZI),
{ i} i
27+ (o) - ) explely — o)
— (@~ 2f™}) exp(a{” — ai%)) = XM, (5.27)
K ‘]ﬁ K ] .

6(2( 1) U_l_ (U) I E(Ql E

_glot- ‘)exp( (0) 2O )+§(2f LR (5.28)

—=(2t—1 -=(2-1) ,
g‘g | _ m-550) i 65 )

24— i =(2i- ‘
-—_g- I)e)(p(m(ro) (0) o+ tf(? D= uf’_zl 1}, (5.29)

N a+1

respectively. Here, the functions X((,ﬂ) and X}w (Egzz"l) and E;-zl__l)) are
defined by the following relations:

2(M 1) ’
Z Xﬂ)=“~exp($1*$0)+fl ¢
!_
+H(1+ 21—z — 217 + 20”) exp(z{” 1‘50)%
My
2
X; = Z X:( = —exp(z;p1 — z;) +exp{z; — ;1)
i=1 7

+ein G &G E]

1+ 240 — 25— 505331 + 3’ ) exp(a gg-)l 5'750))
—(1+a; —2j-1 — (0) + ﬂ? )exp( @ 5'35'0—)1)
HM~1) "
—_— —(2{-1 4]
= Y 2= e g
=2

i6

“tions zgy 7

+€;(exp(z; — z;- 1)~ eXP(‘T(O) 20—)1)):
2(M -~ 1)_(”_1) © .
;= 2 5 =y )]

=2

+;(exp(z; — z5-1) — exp(zi) — z())), | (5.30)

(1%

respectively, and they are the sum of the monomials of 2{ (2/ — 1) degree”.
Let us stress that the inhomogeneous parts of perturbative equations
(5.27)-(5.29), corresponding to a given order n, depend only on the func-

(2m) (.2’“)’ 6§2r+1) nd §(2I+ ) of the previous orders of perturbative

calculations (l.e., at m < (n —1)/2 and { < (n — 2)/2). Thus, we have a
consistent perturbative theory.

If we set the inhomogeneous parts of perturbative equations (5.27)
equal to zero for any even order of the perturbative theory, they coin-
cide with the symmetry equations® for the Toda chain (5.20). Thus,
in this case, their 2M linear-independent solutions yf at each point k
(k=0,1,..., M — 1) of the chain are given by

s Oz

(5.31)
where the capital Greek letter-indices run over the range A, @ =
0,1,...,2M — 1, and Ax = {a1,...,am,b1,..., b} (see eq. (5.21)). To
use the formalism of varied constants for the solution of inhomogeneous
equations (5.27), it is necessary to solve the linear system of the first order
differential equations :

2M—
z yref(z) ' =0, z _x® ()

with respect to cf\zt)(z), where cf\m(z) are 2M bosonic parameter-functions.
Then, the solution of egs. (5.27) for the function a;ﬁf” has the following
form:

{2” Z y“cm(z (5.33) .

" 7It is implied that the perturbative decomp051t10ns {5.19) of the functions =g, z, &;
and ‘f, must be substituted into the r.h.s. of relations (5.30).

17



Let us introduce the 2M x 2M matrix ’Pg defined as

Pe=w', Pha=ul (5.34)
Then the solution of the system (5.32) can be represented in the form
M-1
€)= [z 3 (X, (5.35)
m=0

where P~1 is the inverse matrix for the matrix P (PP = Ppp-tl = g
and expression (5.33) for 2{*) becomes

3,'(20 _ ﬂf-l pA d =l _73—-1 m.X(2f) 5.36
k= M4k 32( a2, (5.36)
A=0 m=0

Taking the sum over all orders of the perturbative theory and using rela-
tions (5.19) and (5.30), we have the following exact expression for z:
i 2M-—1 M-t
=2+ 3 P, f dz 3 (P10 X, (5.37)
A=0 m=0
One can invert the above-developed perturbation scheme and consider the
relation (5.37) as the equation for z;, and take it as a starting point.
Then its iteration (5.19), together with the iteration of the corresponding
equations for the fermionic functions £; and Ej (see below), is interrupted
starting with the 4(M — 1) + 1 order and gives the exact solution for Tk
The odd-order-perturbative equations (5.28), (5.29) can be integrated
in the same way as described for the case of the even-order equations
(5.27). Without going into detail, let us present only the expressions for
the functions 6}(.21—1) and 5521—1), '

2(M—1) 65(1) . 2AM -1} ag(l)
- - =(2(-1) 5 (2-1)
5(21 1) — 2 C(2I 1) z), é' — W z), 5.38

Where Fﬂ' = (al)"')aM—ljﬁli"'D/GMkl)) rﬂ — (a-l)---1EM-1H—6—1,'--7BM—1)
(2 =1,2,...,2(M — 1)); cgl_l)(z) and Egl_l)(z) are 4(M — 1) fermionic
parameter-functions that are solutions of the following linear system:

2(M-1) 35(,1) 2AM—1) Bf(-l)
Z _3_6(21_1)(z) ] Z (=2—) C(Zl—l)(z) 1 =(2-1)
g ® ’ g @ 3 K
Q=1 =1
Z(M—l) 6‘&'(1) . 2{M—1) BE(I)
i (21-1) r_ 3 i =(2i-1}) 1 =(2-1)
o (2)'=0, ()2 V() = ZHY. (5.30)
ﬂgl ol ﬂz=:1 al'g J
18

To close this subsection, we would like bricfly discuss a slightly modified
version of the perturbative theory for the odd-order perturbative equations
(5.28) and (5.29). ‘ . .

To do this, let us represent the differential equations (5.28) and (3.29)
in integral form. Thus, multiplying them by the integrable factors ,ug-ﬂ) and
ﬁgo), respectively, using the equations ‘

Q 0)
(exp(—i) p® ) " = exp(—21%) 1.

(exp(:cg-o)) p.g_o) = cxp(.’t;?ﬂd ﬁg-o) _ (5.40)

for the factors, taking the sum of all perturbative orders. and using rela-
tions (5.30), egs. (5.28)~(5.29) can be identically rewritten in the form

(0)
2 exp{z;_ ; —
. (exp(—$§tl)1) ﬂgo) ("—E(‘@';"“ij) )= PE'U)("‘fjﬂ + =;).

i
RGNS B _
(exp(a®) 7 (ERL S de )y o EL 4Ty (s
7

which can be easily integrated. As a result. we have the desirable integral

. form of eqs. (5.28)-(5.29) given by

(©) .
explai’)) —
¢ = exp(—aioy )] f d—%-,w— [z =6 +2))
. Hy
(0)
exp(z:’,)
i [T .
My '
(v)
- . exp(—u; ") _ - -
£ = exp(f’v’go})ﬁgm[f e ((0)21 fd:;.z}”’(—{m +25)
B _ ,
+0; f dz—exP(w;J ) +aj]. _ (5.42)
Fi

Simple inspection of eqs. (5.42) shows that their solutions can be con-
sistently obtained by iterating with respect to the fermionic constants of
integration «;, 3;, @; and Ej in the framework of the above-discussed per-
turbative scheme.

Thus, all the orders of the perturbalion calculations can be resolved in -
explicit form,
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5.4 Example: the M = 2 case

To illustrate the general formulae of the previous subsedion, here we con-
sider the simplest example of the restricted f-Toda chain with fixed ends
at M = 2. : &
In this case, eqs. (5.15)~(5.17), boundary conditions (5.3), (5.4), (5.14),
as well as perturbative decompositions (5.19), have the folowing form:
& " +zo &= & expla - zp) = 0,
£ —xy ! El - £y explzy — x0) =0,

zo "+ exp(z; —z0) — & ' £, =0,

z " —exp(z) —x0) ~ £ &, = 0; (5.43)
o=¢, = exp(—z_y) = exp(zs) = 0; . (5.44)
zo=2) + i +al", o = 42 g L),
= =) (3
="+, =8+, | (5.45)
respectively. _ ' _
According to formulae (5.21), the zero-order functions z{” and £\ are _
given by -
exp(a:é,oj) = a1 exp(byz) + az exp{byz), _
exp(z{”) = ~ayas(by — by)* exp(z(by + by) —a{"). (5.48)

Substituting them into egs. (5.25)~-(5.26), taking into account eqs. (5.44)
and integrating the obtained expressions, we obtain the following results:
69 = 812" "+ e exp(—al?),

—51} =3,z | & exp(z™) B (5.47)
for the first-order functions ¢ and EE”. ' '
According to formulae (5.30), we have

X = €0 ED, X g0 g0

20 = 6 o)+ 6P - o) exp(al® — 20,

= =8 o B o) cxp(al? — ol

¥

_ 1 : 1, =
X5¥ =~ (@l — o) exp(al® — 2f®) 4 £ FD 4 ¢ ED

. 1 . —={3 =(1 I
X = S — o exp(a® — o) 4 ) B 11 e D1 (5.45)

20

for the inhomogeneous parts of perturbative cquations (5.27)-(5.29); cor-
responding to the higher order corrections. Iterating egs. (5.42) and (5.37)
in consecutive order, step by step, we obtain the following expressions:

3382) = "%-(.31?1 = @ )37(10) f— 0131 exp(é;v((,m),
o = :‘21“()6’11—8_1 — oy )ud) 4 jlﬁ_l (fxf)(ﬂisb)) (5.49)
for the second-order functions, |
& = =SB (exp(—a) 4 oham (G explel® - o) by,
&Y = —avm By exp(@® o) — bib) — L Fy(exp(s)) ! (5.50)
tlor the third order functions, and, at last. )
o = —aff = Jab TG en(r? - o) - bb) - (51)

for the fourth order functions.

6 Conclusion

Tn the present Letter, we proved the integrability of the Toda chain with
fixed ends or interrupted from the left (right) and proposed an algorithmic
method for constructing its explicit solutions. Many interesting questions
arise in this connection. What is the group-theoretical foundation of this
result and its connection with the representation theory of supergroups (su- -
peralgebras)? Is it possible to construct a superintegrable two-dimensional
generalization of the f-Toda chain? Is it possible to represent the -Toda
chain with fixed ends in the Lax-pair or Hamiltonian {orms? This last
question is a very important in connection with the problem of its quan-
tization. In the case of the usual Toda chain, all these questions have the
answers and the authors hope to find their solutions for the case of the

f-Toda chain in future publications.
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