


1 Introduction

The evolution equations play an important role both in inclusive {1] and exclusive
(2] hard processes. They describe the dependence of parton distribution functions
of DIS and the parton wave functions on the renormalization parameter u. The
main ingredients for this evolution analysis are the kernels of evolution equations.
The two-loop kernels P(z) for the DGLAP evolution equation were obtained in 3],
a more complicated two-loop kernel V (z,y) for the Brodsky-Lepage (BL) evolution
equation for meson wave functions was calculated in [4, 5]. A three-loop calculation
of these kernels looks as a tremendous problem. Recently, the results of very com-
plex calculations of the first few elements of the three-loop anomalous dimension
of composite operators in DIS — y5)(N = 2,4,6,8) that are proportional to the
corresponding moments of Fjy)(2) were presented in [6]. Sooner, these results were
applied to improve the QCD analysis of the DIS experimental data [7]. Despite this
important technical and phenomenological progress one may feel an insufficiency
because of the absence of the whole kernel in this order or, even at least, some parts
of it. Of course, the kernel possessing a physical interpretation is a more general
and appreciable object from the theoretical point of view.

A method to estimate the anomalous dimensions of composite operators in the
limit of a large number of flavors, Ny, was suggested by J. Gracey [8, 9]. It is
based on conformal properties of the theory at the non-trivial zero, g., of the D-
dimensional §-function, B(gc) = 0. The generating function has been constructed to
obtain the leading part of the anomalous dimension -y,)(NV) in the parameter Ny,
for any order n of perturbation theory (PT).
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I suggest here a method to calculate some classes of multiloop diagrams directly
for the kernel P(z) of the DGLAP evolution equation as well as for the kernel
V(z,y) of the BL evolution equation in the MS scheme. These diagrams contain the
insertion of chains of one-loop self-energy parts (renormalon chains) into the first
one-loop diagrams (see fig.1 a,b) for kernels. The kernels P, are obtained in any
order n of PT based on the analysis of these “dressed by chain” diagrams. Then,
the kernel P (or V) for diagrams with the totally dressed propagator is calculated,
the kernel appearing as a generating function to obtain the partial kernels P,y. It is
to be stressed that the method to obtain P or V does not depend on the nature of
self-energy insertions and does not appeal to the value of parameters NyTg, C4x/2 or
Cr (for QCD case) associated with loops. Another distinctive feature of it is that
the PT-improved evolution kernels are calculated in the direct and standard way by
using rather elementary methods. This is possible due to the simple structure of the
counterparts of considered diagrams. In this letter mainly the technical results are
presented in the framework of the [¢3]s model and, in part, for QCD. The solution
" to the BL evolution equation for large N; is briefly discussed too.

To develop the diagrammatic analysis of the multiloop evolution kernels, let us
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Ny
first consider a toy model based on the scalar Li,; = gZ( ¥r i) (s) model in 6

space-time dimensions ( %7, ¥; being the charged “quark”’ﬁelds and ¢ the “gluon”
one). The number of “quark” flavors, Ny, will be considered as an arbitrary free
parameter associated with the “quark” loops. This theory has much in common
with the more physically interesting QCD: it is renormalizable; its f-function has a
structure similar to that of Bgcp,
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the one-loop P, and V; evolution kernels, following from the simplest triangular
diagram in figs.1a and 1b, are proportional to the corresponding QCD expressions
for the same diagrams

aPy(z) = a(l - 2), aVu(z,y)=a (B(y > z)g +0(g > :?:)%) , (1)
where g:l—y, Z=1-z,...

The similarity of elements and the structure of the whole kernels continue to the two-
loop level [10]. It is not a gauge theory, nevertheless, due to the relevant Feynman
integrals being simple, in this model it is much easier to study the structure of
multiloop expressions.

In principle, the calculation of the evolution kernels P(z;a) [3] and V(z,y; @)
[5] is quite analogous to that of the anomalous dimensions. The major modification
is the change (kn)Y — §(z — kn) of the vertex factor corresponding to a composite
operator, k being the relevant momentum related to the incoming “quark” line, see
figs. 1a,b. In these figs., p ( §p or p) is the external momentum of the diagrams; n is
a light-like vector (n? = 0) introduced to pick out the symmetric traceless composite
operator; pn = 1. Detailed examples of similar calculations may be found in (101

2 First triangular diagrams for DGLAP evolution ker-
nel

Here, the method will be demonstrated for the well-understood example [9, 11}
of simple quark-loop insertions. Let us consider the triangular diagram in fig.lc
with an insertion into the gluon line, []; g;, where subgraphs g; are 1P1 self-energy
parts. The whole diagram T in fig.1c may be represented as a generalized product
I' = G ®Tl; ¢ where G denotes the “outer triangle” (compare to the intrinsic block
I1; g;), containing a composite vertex.

Expressions for P(z) or V(z,y) via the renormalization constant Zp in the MS
scheme (see [12]) are given by the equations [5},

Zr=1-KR(), P=-ad,(Z)=ads (KR(D)). @)

Here R’ is the incompleted BPHZ R-operation; € = (6 — D}/2 and D is the space-
time diniension: A picks out poles in &; whereis & projects out the first pole, and
Z™M is the coefficient of the first pole for the expansion of Z. If the block I[Ligis
the chain of one-loop insertions. then Exp. (2) for P may be simplified following the
definition of the R’-operation

KiR'(T) = KRG o] g) = K [G@ IIa- 11'1)g,-] =

= Py = (n +1)ek, [GQ H(l - f\"l)g,} . (3)

where the kernel P,y corresponds to the chain of n one-loop insertions into the
triangular diagram,
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C(s)B(2—-¢,2—-¢5), B(a,b)is the Euler B-function. (5)

70(9)

Here 9, = 1,(0) is the one-loop anomalons dimension of the gluon field (at Ny = 1),
the constant C'(e) = I'(1 — g)['(1 + ¢) reflects the concrete choice of MS scheme
where every loop integral is multiplied by the scheme Ffactor ['(D/2 — 1) (2 /4m)e.
Substituting (4).into (3) and performing a direct calculation (see, e.g., [L0]), one
arrives at the expression

PU)(z) = (n+ DaPo()(—aN v,)" -

Cle)(1=¢€) _oxn(7e(e)Y T+ 3G +1)e) [n) (=)
gnet 7 Z(w@)) F(1+j5)l‘(1+€)(j> J+1 (©)

ji=0

I\‘]

It is instructive to consider the properties of a set of the first eight kernels P(kl)(:»:).
Their expressions are presented in Table 1; to obtain them, the FORM 2.0 program
[13] has been used ?. The lessons are : i) the perturbation theory for kernels P(z)
looks as being improved in comparison with the corresponding set of a‘nom(e:l)ous

ne

while for the

dimensions 7,y (/). Indeed, the term in P((:))(:) leading in zis ~ In y
n

corresponding contribution to 7, (N) ~ 2% ii) one can see the factorial suppres-

sion in n of all other logarithniic terms in P((:))(:); iii) the n-bubble chain generates

¢{n) (the Riemann zeta-function) in the non-logarithmic term in P(“))(:) this
. - . . ¢ :
may point to the expansion of the Euler B-function, as their possible origin. These

properties give hints about a possible resumimation of the P((nl))(:)—series.

2 :
I am g‘reat.ly indebted to Dr. L. Avdeev who provided to me his brilliant FORM-based prograin
for expansion in e, see [14]. Note that the contents of Table 1 is limited here only by place.



Table 1 The results of the P{')(z; A) calculations, the ((n) is Riemann zeta—function, note that

(n)

the ((2) and the Euler constant yg does not appear in this expansion

(]

The partial kernels P((:g(z) (the common factor aPy(z)A™ is dropped)

1

[In(z) + g]l

1!

[in(z)+§* 20
2! )

8¢ (2 Yz
lln(z) + 8" 20In%(2) (@+2<(3))l"() 512+3<(4)_13_6<(3)

] 9 2! 81 Ir " 243
.| [n()+ &  20In°(2) (256 In’(z) (512 16 In'(z) 4096
° 51 -3 3 (81 +2( )> 2 (ﬁ+ e ) 3 ((3)) 1 3645

+8C(4) ~ 6C(5) - 3

z 8° n? 3z 2
ln{z) +§]"  20In%(z) (256+2<(3))ln()_(£+3<(4)__1_3§<(3))ln (z)+(_@%

6! 9 4 81 3! 243 2! 3645
8\ 1 16384
ssc(0) - 60(5) - ) 0D I8 oce) - 16cis) + )+ 20°0)

(in(z) + 4" 20In°(z) /256 in*(z) /512 16 in’(z) 4096
B - (B 2w) - (G - 560) T30 + (-
16384 In'(z)

2
vac() -~ 6cs) - 5) T+ (-m +100(6) - 166(6) + 46(4) + 26(3)) "2 ~ 15¢(7)

+34(6) - 8C(5) - 6634 + 33

n(z) + & 20In°(z) /256 In®(z) /512 16 In'(z) 4096
TE 9 e ;( f‘;:) i (g + %00 - 540) i+ (o
) -60(s) - 5) L4 (-3—% +100(6) - 160(5) +46(9) + 20®)) 52 — (1sc(n)

+320(6) - 84(5) ~ 6¢B)G4) + 5.C°(3) ) In(a) + TC8) = 486(D) + T4(6) + 5¢7(4)

H12(3)() ~ 166E)C(4) + 56°3)

Theorem 1 There is the closed expression for the sum of partial kernels P(l)(z A) =
0
“ZP((n)( , which is equal to PM(2;A) = aPy(z)z7%(1 — A) <%((A))>’ where
).

A = aNf’yv. The kernel P1)(2; A) is the generating function for P((n))(

This result possesses several remarkable properties.

o the PM(z; A) becomes the dominant part of the total perturbative kernel P(z)
when N, > 1. Below, the result for the kernel P1)(z; A) will be completed
by taking into account similar corrections to “quark leg” (see fig.1d), whose
contribution is proportional to (1 — 2).

e the kernel P()(z; A) is an analytic function in variable A, except for singulari-
ties at points A = 24+k+41/2, k =0, 1,..., where the function has simple poles.
The nearest singularity appears at A = 5/2, i.e., at aN; = 15, determining,
roughly speaking, the range of convergence of the PT series.

the analytic properties of P()(z; A) in the variable A are determinéd com-
pletely by the one-loop “anomalous dimension” v,(A) in D dimensions (see
Eq.(5)). The singularities of P(!)(z; A) correspond to zeros of the function
B(2 - A,2 — A) in v,(A).

Proof. One could split the sum in Eq.(6) into two parts

- y 1+ (G+1)e) (n\(=)"7 _ -)r
(et ) ,; 1+J5)F(1+5)( > Jj+1 = Sty () + F(e)Cl(e) Y

B it . (1 + je)(=)n+1-i n+1
Stnt1)(e) = [Z(F (1+(J—1)6)F(1+5)( J )} Y
(€

Yo (€)

»(0)
all “combinatorics” of the Lh.s. of (7). The first term S(, 1) in the r.h.s. of (7) does
not contribute to the pole part, by Lemma 1 Sn41)(€) < O(e™!). The expression

for P((n))(z) can be derived by the following chain of equations

Here and below we use the notations: F(¢) = , and S 41y is the sum including

£)z¢

PR = an@-ark L2 (C@Sam@ + 5] =

_ "t 1 (I—¢g)z7] (A" (d* [1-g)z
From the form of Exp.(9) it follows that the genera.tmg function for (n))(z) is
PO (z; A):

PM(z; A) = aZP(I) = aPy(2)z74(1 - A) (:“’T(z))); and the partial kernels
v

P((n))( ) appear in the Taylor expansion of P(l)(z A) in the variable A.

9)

e=0




Lemma 1 S(n+i)(e) < O(e"*) for any analytic function F(g) at point e = 0.

Proof. Let us consider the expansion of every element of the sum in S, 41)

F(e))  T(1+je)
F(e) [0+ (G — De)l(1+¢)

(10)

in powers of € up to €. Any power €™ of this expansion is accompanied by pow-
ers j', where I < m, and a coefficient that does not depend on j. Therefore, the
expansion of Siui1)(€) as a whole in the power series €™ will generate such coef-

ficients- of the powers, which are composed only of the elements proportional to
n+l

: 1 . . .
Ej‘(—)"“" (n + ) . All these elements are equal to 0 in virtue of the identity
o j ,
3=0 \

n41l .
Ej'(—)"“‘f("“) =0, if I<n (11)
j=0 J

The proof implies an obvious generalization of the elements (10), that can be con-
structed as superpositions of I'-functions depending on j only through the arguments
like 14 je, 14 (j — )¢, ... m

In a similar way one can derive an expression for the sum of diagrams in fig.1
d connected with the anomalous dimension of the quark field 73,1)(A) obtained in
the “quark-loop” approximation: Collecting the results of resummation in the main
approximation in A, which correspond to diagrams figs.1c and 1d, we arrive at the
final expression - : ’

PD(z;4) - §(1 - 27{(4) =

—a (2O [opa - - (1 - 5y LA
(i) e vttt w

Integration produces the following expression for the anomalous dimension y(N, A)
of the composite operator

TN A) = [ (PO 4) - 61~ 2)re(4) dz =

I'(4 - 24) F(N+1-A4) T(2- A)] (13
“VeT@= AT(1- APT(1+ A) [T(N+ 3 - A) “Ta-al )

Formula (13) can be obtained by another method applied in {8] to the QCD case
(see Eq.(30) below). Note, that the anomalous dimension (N = 1, A) corresponds
to the parton energy. The equality y(N = 1, A) = 0 following from the RHS of (13)
signals that the conformal symmetry is conserved.

(a) . (b)

. &
2
@-

__.‘_:_._-—-.;r__{}_—-p —O—-O—+
(c) -~ (d) (e)

P

Figure 1: The diagrams in figs. la - Id are for the scalar model (and QCDY); dashed
line for “gluons™, solid line for “quarks”; the slash on line denotes the delta function
d(z = kn), see fig.la; black circle denotes the sum of all one-loop chains; MC denotes
the mirror-conjugate diagram. The diagram in fig. le is for QUD; solid line for

quarks, dotted line for gluons.
\



3 Other triangular diagrams contributions
Theorem 2 There are the closed ezpressions for sums of partial kernels

‘ 2a =\ - Au’)(o) . . y
PPz B) = Z P((m)J (2) = aPy(2) ((z) 57;(3)) , diag. in fig.2a, (14)

m=0

P(2ﬂ)(z;B) = a Z 2 60 n) (m)( )_ aPO(Z) (2(5)_8 ‘;’w((g)) - 1) (15)

m=0

diag in fig.2a+ MC,

P®(z;B) = a Z m + 1)P2)(2) = aPo(2) (1+Bd‘;) (( )-8 L W((g))) (16)

d;(;;.o in fig.2b
Al R 4 1() -4 . L
§(1-2)y" = 8(1—-2z)a (,‘N(A)) G- A2-A4) diagr. in fig.2c , (17)

the functions P(z; B) appear as generuting functions for the corresponding partial
kernels.

Here P((m))(z) is the partial kernel with m insertions into one of the quark lin%,
74 (€) is the one-loop anomalous dimension of the quark field in D-dimension; for
this model. 7,(£) = 71,(€), 14 = 19(0) = 7,(0), B = avyy; MC denotes a mirror-
conjugate diagram. The first Eq.(14) corresponds to the diagrams in fig. 2a, where
the chain of quark self-energy parts is substituted only into the left quark line of
the triangle. To prove it, one has to repeat the way similar to theorem 1. Equation

(15) corresponds. to the sum of the diagrams in fig.2a and its MC diagrams. This -

result will be used to restore the corresponding kernel V(z,y) in the next section.
The analytic properties of the functions P(?%)(z; B), P**)(z; B) in the parameter
B are the same as for the kernel P()(2; B), they are determined by the function
v4(B). Equation (16) correspopds to substitutions of the chains into both quark
lines of the triangle in fig.2b. At least, Eq.(17) corresponds to contributions to the
anomalous dimension of the quark field from the diagram in fig.2c. The contribution
P®)(z; B) will be suppressed in the parameter B in comparison with P()(z; A), if
N; > 1, i.e, A> B. Note, however, that the N-moments of the kernels P{?:%
- 4 (N, B) decrease in N more slowly than y()(N, A) corresponding to the kernel
P!M. -Therefore, at sufficiently large N, Y@ (N, B) > y)(N, A) for any fixed
parameters A and B.

The expression for the kernel P, m(z; A, B) correspondmg to insertions of dif-
ferent one-loop parts both in gluon (n—bubble insertions) and quark {m-self-energy
part insertions) lines of the triangular diagram (see fig. 2d), is obtained as well.
This formula is similar to Eq.(6) for F,), but looks more cumbersome and is not
shown here. The partial kernels P, m)(z; A, B) can be obtained by using the FORM
program, in principle, for any given n and m. For illustration, we demonstrate here

- 4k
1 ( +MC
3\ .
r P \
: PSR VS W 4, NS
[ (a) EOR (©)

. ww.,ﬁ_._.,:s@.}"%‘_ ,

Figure 2: The dashed circle in figs.2 denotes the sum of chains of one-loop self energy
“quark” parts.



the first nontrivial kernel aPy

1 812 20 1T . 51° 31
P(l,l) = P()(Z)AB <§ [IH(Z) + 5] - ? + E [ln(z) + §:| - ﬁ

8 5] 80
- 2z + 2]+ 2 —2¢(2
2 [1n(z)+ 3] [ln(z)+ 3] + = 2( ))
in comparison with partial kernels of the same order in a, P! (= Pp,p) following

(2)
from the expression for PV and 313((22)) (= Po,2), from P2

1 81> 20 {1, 5] 31
PY) = Py(z)A? (? []n(z) + 5] - ?) , B = 3Py(z) B? (5 [ln(z) + 5] - ﬁ) .
To complete -the section, we conclude that the contributions to kernel P from any
one-loop insertions into the lines of the triangular diagram are available now.

4 Triangular diagrams for the Brodsky-Lepage evolu-
tion kernel

Here, some partial results of the bubble resummation for the BL kernels V are
presented. We obtain them as a “byproduct” of our previous results for the kernel
DGLAP P. The results, obtained here, may be used, in particular, to check the
regular calculation of the kernel V in high orders of PT.

Note, the diagrams for BL kernels differ from the DGLAP diagrams only by the
“exclusive” kinematics of the input momentum, compare diagrams in fig.1a and 1b.
So, one can fepeat the proofs of theorems 1,2 for this case. There is another far
more elegant way — to use exact relations between V and P kernels for triangular
diagrams that were established in any order of perturbation theory in [5]. These
relations work both for the [¢%]s model and QCD. I quote these propositions without
proofs. '

4.1 Let the diagram in fig.1c has a contribution to the DGLAP kernel in the
form P(z) = p(2) + (1 — 2) - C, then its contribution to the BL kernel is

’V(z,y):CO(y>$)/j I@dz+5(y_z)‘07 . | (18)

where C =1+ (z = %,y — §). From relation (18) and Eq. (12) for P() we imme-
diately derive the expression for V(1)

V(g A) = o [ Ye(0) 2\ 1 C(1-A4)
V( )(I,y, A) =Ca (m) [e(y > 113) (;) i Eé(y - z)m . (19)
10

That mav be independently verified by other relations reducing any.V to P [5, 15]
(V — P reduction)

YOz, ys 4) = CB(y > x)pé; A) - 8(y - 2)C(A) = POz 4)
PM(z; Ay =6(1 - z)z&%F(z; A) = §(1 —2)C(A), (20)

indeed, substituting Eq.(19) in (20) we return to the same Eq.(12) for P(”..L\’Iore—
over. the first term of the Taylor expansion of V()(z,y; A) in A coincides with the
results of the two-loop calculation in [10]. The contribution V! should domin‘ate for
N; > 1 in the whole kernel V, and morecover, the function v possess.cs an lmpolr—
tant symmetry. Really, the function V(z,y; A) = V) (z, y; A) - (§y)' =" is symmetric
under the change z & y, V(z,y) = V(y,z). That symmetry allows us to obtain the
cigenfunctions v, (z) of the equation

/V“’(z,y; A (y)dy = v(n; A)pa(z) (21)

ba(y) = (Gy) 3 CNy - §), here a=D,/2-3/2. Da=6-24. (22)

lere C{*)(z) arc the Gegenbauer polynomials of order «v. This form of {¥n(y)} cigen-

-functions as well as the £ ¢ y symmetry of function V(z,y) are the consequences

of conformal symmetry conservation for the sum of diagrams. under conside’ration‘
(sec the end of sec.2). Equation (21) is tightly connected with the BL (‘»VOlutfon
equation in a special case when the g-function § = 0. In this case l.l)e‘l,?l, 0(]11a,},x‘on
is simplified, the variables are separated, and the equation reduces tolluq. (.21). I'he
partial solution to the Bl equation turns out to be proportional l,.o Yo (y) in ({2)

4.2 lor the diagrams in fig. 2a plus its MC diagrams, the relation between V{22)
and P29 is [5]

i 171 -0, 1som, v 1 e [T
Vo) (z, y) = Co(y > _,,.)5 [gj_ph Nz) + _!;p(z Nz) - 51)( (5)} . (23)

Substituting (15) into (23) one arrives at the expression for V@9 (z, y)

- F1-B  g1-B | I\1-B Yo (0) T )
vt ety { [ 50505 () -5 - 0

which satisfies the same check as in the previous case. Of course, this formula does
not cover the diagrams in fig. 2b, where both the quark lines are dressed.

5 The results for QCD evolution kernels

Assertions similar to the above theorems 1,2 arc also valid for the QCI) diagrams,
their proof does not. contain essentially new elements, but looks rather cumbersome.

11



The complete rgsults for the QCD evolution kernels will be presented in a subsequent
paper. lere, at first, the QCD results for triangular diagrams in fig. 1cd in t’ho
Feynman gauge are discussed. Based on theorem 1 in the QCD version"ono ('an‘
derive the result for the sum of diagrams in fig.1c in QCD: ’ l

PU 2 A) = a,Cr25 - (1 - /1)2%2"‘ - a,CF-q(] - 2) (#(% - 1) . (25)

Here TT(2) is twi I . . :
e II(z) is twice the contribution to a one-loop D-dimensional anomalous dimen-

sion of the gluon field; :Og4 — D)/2; 11(0) is the contribution to the standard
anomalous dimension; @, = — and A = ~g,[1(0). It should be emphasized again

™
that the form of Exp.(25) does not depend on the nature of self-energy insertions

into the gluon line. One can use it for the resummation both of the quark (~ N;Ty)

and gluon (~ '(,‘,,/2) loops. Substituting into the general formula (25), the well-
lknown expressions for Il(¢) from the quark or gluon (the ghost loop is also added)
oops '

y(e) = ~8N;TrB(D/2,D/2)C(¢), (26)
o 3D
M(e) = Z*B(D/2-1,D/2-1) ("5_ 12)0(5), 27)

one obtains P{!)(z;§) for the quark-loop insertions
—s (Dg/2-1)*B(2,2)
B(Dy/2,D,/2)C (6)

0 Crd(l— ) [ B2
.Cré(1-z) (B(Dq/g,pq/z)cw)_l)’

Here D, =4 — 26, § = -a,Il,(0) = a,NfTR%,

Pq“C)(z; 8) = a,Cp2zz

(28)

and P{!'9(z;¢) for the gluon-loop insertions

P (z¢) = a,Cp222"‘R (Dg/2-1)*(D, — 1)
: 3 (3D, —2)B(D,/2 - 1,D,/2 - 1)C(¢)
10 (Dg — 1)

a,Cpd(l—2) | —
po(1=2) (3 (3D, —2)B(D,/2—1,D,)2- 1)C(e) ~ 1) (29)

Here Dy =4 — 2¢, € = —a,I1,(0) = —a,CAg.

The latter expression for Pg(“)(z; €¢) has no any. singularity in the parameter ¢ =

.5
—a,CAE < 0 due to the asymptotic freedom.

12

Consider Eq.(28) for P{*<)(z;¢) in detail. By adding the contributions from the
diagrams in fig.1d to Exp.(28), one can find that the second term there cancels in
part and the final expression turns out to be the expected “cross form” (see, e.g. [3])

PUed)(3:5) = a,Cr2 (22_5____(&,/2 SO e, [Pt (504 =0 @0)
- T0g(9) + . 0

due to the current conservation. The analytic properties of Pq(lc"‘)(z;é) in § are
the same as for its scalar analogy P()(z; A) (see theorem 1); they are determined
by the behavior of the function I1;(6) in 4, see Eq.(26). The nearest singularity of
Pq“)(z; §) in & appears at a,N; = 15/4. The moments of Eq. (30) agree with the
corresponding part of the generating function in [8] ,

1 i 2 N(D,+ N —1) (Dy/2-1)
1(N.8) = ~aCr 3 p T MY (D2~ 1 £ N) [B(Dq/2, D,/2)C(5)

A

see the first.term in Eq.(14) in [8], and ref. [11] (note that our moments differ in sign
from the definition of the anomalous dimension of composite operators used there).

To complete the QCD calculations of P we need the contribution from the last
diagram in fig.1e with the chain in the gluon line that is inserted into the composite
operator. It can be obtained in a similar way as in the previous QCD-calculations

for Eq.(25)

P (2; A) = a,Cr2 - (%ﬁl%%); -

and the expression has the “cross form” automatically, see [5]. Collecting Eq.(30)
and Eq.(32) one easily arrives at the complete QCD expression for Pq(‘)(z;é) with
the main quark-loop insertions

P (2;8) = a,Cp2- [2z"’(1 — 8+ ﬂ] Hq(O)_ 33)

1-2
+

The contribution P{")(z; §) is gauge invariant. The moments of P{()(z; 8) agree again
with the complete generating function obtained in [8] (see Eq.(14) there).

6 Conclusion

A method of calculating some classes of multiloop diagrams for the kernel P(z)
of the non-singlet DGLAP evolution equation is presented. These multiloop dia-
grams appear due to the insertion of chains of one-loop self-energy parts (renor-
malon chains) into the lines of the first one-loop diagrams for the kernel. Closed
expressions P(1:?)(z,a) are found for sums of all the diagrams which belong to two
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of the diagram classes, see theorems 1-2. These assertions are based on a simple
algebraic structure of the counterparts for the diagrams under consideration. Be-
sides, the kernels P()(z, a;} are generating functions for the partial kernels Pr(,z))(z) in
any order n of perturbation theory. The contribution P) from one of the diagram
classes would dominate in P for N; > 1. The analytic propertics of the function
P®(z,q;) in the variable q; are briefly discussed. The expressions for partial kernels
Pn,m)(2;a1,a,) for the diagrams of a “mixed class”, in any order of perturbation
theory can also be obtained by using the FORM program.

The contributions V®(z, y; a;) to the Brodsky-Lepage kernel are obtained for the
same classes of diagrams as a “byproduct” of the previous technique. When Ny > 1,
a special solution to the Brodsky-Lepage equation is derived. We emphasize, that
the method of calculating the evolution kernels P or V) does not depend on
the nature of self-energy insertions and does not appeal to the value of parameters
NiTgr, Ca/2 0or Cpg (for QCD case) associated with loops.

The method and results are exemplified with a simple [¢3]s model; some QCD
results are presented too. In particular, the kernel P(l)(z 5) that corresponds to the
diagram dressed by the main quark-loop chain is derived. The anomalous dimension
7(1)(N 4) corresponding to this kernel agrees with the generating function obtained
earlier by Gracey [8, 9]. The contribution P((z;€) from the diagrams with the
gluon-loop chain is derived in the same way. It is clear, that all the results obtained
above in the framework of the scalar model have a wider meaning and apply to the
QCD case. The latter will be considered in detail in a subsequent paper.
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Muxaunon C B A
Bmau peHopManonublx uenoqex

1 ,Bbl‘mcneﬂm BKnaubl B HCCP]HI‘IICTHB!C smpa BBOHIOLIMH P (z) L n.rm ypaBHCHMM
lIFJIAH n V(x,y) ,zmﬂ ypaBHeHuu Bponcxom—ﬂenaxa npoucxonguuue or onpe-
’neneHHblx KJ]ZICCOB IIHal‘paMM Blcmoqaloumx peﬂopmanomibxe UEMOYKH:, llonyqem,l

’3aMKH)’TblC Bblp:’:DK@HHFI IUIFI anauoa }IB)’X KJlaCCO nuarpa M \Bbl‘lHCHCHMﬂ ﬂpOB

ok

JmarpaMM B V(x,y) nonyquo}lpocroe pemeHMe ypaBHeHml Bponcxoro—ﬂel\axa

. i The conlrlblltlons lo non- mglet evolullon kernels P (z) for the DGLAP equallon
: jand V(x,y) for the: Brodsky-Lepage evolutlon equatlon are, calculated for certain

‘classes of dlagrams whlch include the renormalon chams. Closed. express10ns

\ ’Vare obtamed for lhe sums of conmbutlons assoclated w1th these/dlagram classes




