


1 Introduction

We study current configurations with a number of interesting properties.
For example, a semi-infinite cylinder with the circular currents flowing on
its surface generates the magnetic field which is very similar to that of
magnetic monopole [1].

Further, we find that the semi-infinite cylinder densely covered by the
toroidal solenoids with the linear rising currents in their windings produces
electric field which is very alike to that of electric charge. Qualitatively,
these conclusions were obtained earlier in Refs. {2].

At last, the torus densely covered by the toroidal solenoids with the
linear rising currents in their windings gives static electric field which differs
from zero only inside the torus. This electric field is adequately described
by the electric vector potential (VP), rather than by the scalar one.

We consider the closed circular magnetic ring C encircling the cylindri-
cal solenoid with the constant magnetic flux in it. Suppose that initially
there is no current in C. Let this ring be cooled. At some temperature T,
the transition to the superconductive state occurrs. At this moment the
supercurrent in C arises despite the fact that C is located in the region
where magnetic field # = 0. Qualitatively this was predicted in Refs.
[3,4]. We evaluated the value of the supercurrent and the magnetic field
produced by this current. This can be checked experimentally.

2 Currents, Magnetic Dipoles
and Monopoles

The magnetic field created by the magnetic dipole 7 located at the origin
is (see,e.g.,[5]):

Sometimes in a physical literature another representation of B is used [5,6]:
B= —[—7"(mf) - ] - —m53(7 (2.2)

This difference is due to the following reason [7]. If we identify the mag-
netic dipole with the electric current flowing in the mﬁmtely small circular
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current , then VP is given by

- 1 ;
A= L(Rxf), Me=s / (Fx D)V, (2.3)
cr 2 :
A}Sp]ying to A the curl operator and using the identity (see, e.g., [8])
2 ,z; 1 zT; " 7 ‘ ‘
CZ(Ey = (6 - 358y + 6, 2.
() = 565 — 3550 + T80 )

we get (2.1). Note that in the absence of medium B=Hand D=E.
~ On the other hand, if we suggest that magnetic dipoles consist of the
magnetlc monopoles

o = / oY, / pde o, (25

then the magnetlc mductlon is obtained from the scalar magnetic potential:

-

v B’ = B‘ = —%,‘,.; 8, = Tl . (2.6)

r3

- Again, using the differentiation rule (2. 4)‘ we arrive at (2.2). This means
that different coefficients at 6°(7) terms in (2.1) and (2.2) are due to dif-
ferent definitions of magnetic dipoles..

Consider a semi-infinite cylindrical solenmd of the Ia,dms R {ormed
either of the circular currents or the magnetic current dipoles (Fig. 1).
For R — 0 the magnetic VP of a particular current lying in the z = z
plane is given by (2.3) where one should change z by z — z;.- Or, explicitly,

.R - .
e p’ F= [z2 +y?+ (2~ 20)2]1/2'

A = Agiiy,

The nonvanishing components of magnetic strength are
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The magnetic field of semi-infinite solenoid is obtained by integrating H

from zo = —o0 to zp = 0. This results in
B= =TT 4 an5(e)6(u)0(~2)] (2.8)
2

ot A — s
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Thus, an infinitely thin semi-infinite magnetized filament generates the
field of a magnetic monopole everywhere except for the position of the
filament itself. Due to the presence of the § function terms in (2.8) thus
obtained monopoles are not true ones. Similar results were obtained earlier
in [1]. :

3 Current Electrostatics

Consider a semi-infinite cylinder C densely covered by the infinitely thin
toroidal solenoids. For simplicity, consider the case when the radius of C
tends to zero. In the imit one obtains a semi-infinite filament composed
of the toroidal moments y;. The VP of a particular toroidal moment lying
at z =z is [9,10 ]

3 1 8 1
A, = pp——= g,
S o S T
A, & 1 478(z)6(z)6 =22+ 42 2
= WD @B~ )l F= VTR
To obtain the VP of the semi-infinite filament composed of the toroidal
moments, we integrate these equations from zg = —oco to zp = 0:
z oo
A= g A = pt%, A = pt[ +476(z)6(y)0(—2)], divA=0.

Let in the windings of toroidal solenoids covering the surface of C flows the
current linearly rising with time. The VP of a particular infinitely small
solenoid located at z = z is given by [9,11,12]:
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°1 + 476(z)6(z)6(z — 20)], divA =0.

922 F
Here fi; is the constant characterizing the rate of the current change. The
total VP of the semi-infinite filament densely covered .by the infinitely
small toroidal solenoids with time-dependent currents in their windings is
obtained by integrating these equations from 2z, = ~00 to z, = 0:

A = t/»it[

Azzt;l,%, A,,:tpt’%-, A,=t;1t[-;3-+47r5(z)5(y)6(—-z)], divA = 0..
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To this semi-infinite filament corresponds the static electric field

= . .Y
D=E: Ex_—-_p't_c'ﬁ) El’z'_p't_

?
crd

E, = —&[-‘%— + 4%5(2)5(y)6(—z)], divE = 0.
cr
and the singular magnetic field confined to the negative z semi-axis

d §(p}

= =1 = — 1 O(—2z)——L di -'::0--
B=H figHy, Hgy 47t 0, 0( z)dp 3mp’ wH

The resulting electromagnetic field coincides with that of the point electric

charge e = —f;/c everywhere except for the semi-infinite filament ( left

part of Fig. 2).
The equalities divD = 0, J D.dQ = 0 guarantee the absence of free
charges. '

The same electric field may be also realized via two linearly-rising cur-
rents flowing in opposite directions along the cylindrical surfaces parallel
to the z axis (right part of Fig. 2). —

Qualitatively, these results were predicted earlier by M.A. Miller [2] who
pointed out on the possibility to simulate the charge distributions by the
time-dependent currents. He referred to it as to ”current electrostatics”.
The present study may be viewed as a concrete realization of his ideas.

Another interesting configuration is the torus 7' densely covered by
the toroidal solenoids (Fig. 3) [9]. Let in the windings of these solenoids
flows the current linearly rising with time. Then, the static electric field
E differs from zero only inside T" and on its surface; the magnetic field )1
differs from zero only on the surface of C. The electric scalar potential
is everywhere zero, the linearly rising with time magnetic vector potential
differs from zero only inside T and on its surface. Vectors E and H have
the same direction, the vector H is orthogonal to them. Since divE =0,
E can be presented in the form £ = curlA.. Applying the Stokes theorem
to the contour passing through the torus hole, one gets

/ / Rdg = / Al

This means that outside the torus there is electric vector potential which
cannot be eliminated by the gauge transformation as the gauge invariant
quantity (electric field flux) [ f EdS differs from zero. There are known
attempts (see, e.g. [13] and refs. therein ) to measure the electric field
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Fig.1: The magnetic fields of the semi-infinite solenoid and the mag-
netized filament coincide with the field of magnetic monopole everywhere
except for the position of solenoid or filament.
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Fig.2: A semi-infinite set of infinitely thin toroidal solencids with lin-
ear rising currents in their windings (left part of figure) and lLinear rising
currents flowing along the semi-infinite parallel cylindrical surfaces (right

part) generate the field of an electric charge everywhere excep! for the po-
sition of the cylinder .



Fig.3: The torus T is densely covered by the infinitely thin toroidal
solenoids t (only few of them are shown) in the windings of which flows
the current linearly rising with time. The magnetic field H differs from
zero only inside t (that is, on the surface of T in the limit of infinitely thin
t), while independent of time electric field £ differs from zero inside T. The
scalar electric potential is everywhere zero. It turns out that £ = curl AL,
where electric vector potential A #£0 everywhere. The Stokes theorem
(see the text) ensures us that A, can not be removed by the gauge trans-
formation. '

IS(

_,_",,
\
: \
; :
/

Fig.4: The cylindrical solenoid with magnetic flux @4 is encircled by
the metallic ring C. When C becomes superconductive, the supercurrent
I, arises on its surface.

Fig.5: The lines with arrows mean the poloidal current flowing on the
torus surface. )



arising from the stationary currents. Maxwell’s theory negates the exis-
tence of this field. On the other hand, we have seen that there exist non-
static current configurations generating the static electric field. Excellent
measurements of the static electric fields produced by the time-dependent
currents have been reported in book [14].

4 On the supercurrent arising in a super-
conducting ring

Consider the closed circular metallic ring C encircling the infinite cyhn-
drical solenoid with a constant flux @ in it {Fig.4). Suppose that initially
there is no current in C. Let the ring C be cooled. At some tempera-
ture T, the transition to the superconductive state occurs. The following
two properties were observed experimentally [15-17] and explained theo-
retically [18-20] :

1) Magnetic field H vanishes inside C (it is, therefore, assumed that pen-
etration depth is zero);
2) The total magnetic flux trapped by C turns out to be integer { in units
hef2e).
The appearance of the supercurrent flowing on the surface of C (despite its
location in a field-free region where E=H= 0) for T' < T, was predicted
in refs. [3, 4]. Indeed, as the flux inside the cylindrical solenoid is not in
general integer, the supercurrent in C arises making the total flux to be
integer.
This supercurrent was, in fact, observed in Tonomura experiments (see
refs.[17,20] where this fact was clearly stated). It is our aim to evaluate
explicitly the distribution of supercurrent on the surface of C and the aris-
ing magnetic field.
The density of the current J, flowing on the torus C surface and providing
H = 0 inside C was obtained in [11]. Let the surface of C be given by

(p_d)2+z,2= R2
. It is convenient to introduce toroidal coordinates
sinh u sin ¢
g, P — = ge————————— = ¢. 4.1
acosh,u—cos()’ 7 'acosh,u—-cos9’ $=¢ (41)
For a given value of . the points p, z, ¢ (where p, z, ¢ are defined in (4.1)) fill
the surface of the torus with the parameters d = acoth u, R = af sinh p.
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Let u = ug corresponds to the surface of C. Then, the surface current

-providing the vanishing of i inside C is given by {65]:

Ty = 8(p — 10)(8)7t

. Co  (cosh po — cos§)°/? cos nf
- — osh
J(G) 2\/'2'7(20'2 sinh Ho E 1+ (S [ 1[2(C Po)]
~This current gives the following VP
cosh u — cosf
Ap =G sinh p
inside C{u > uo) and
Ag = Co?(cosh p — cos )2 x
1 Qnpplcosho) )
5: cos nd 1/2 ;/2(C05h ).

1+ 8o n? — 1/4 P)_, 5 (cosh o) Fu-

outside C{i: < o) . In particular, on the circle z = 0,p = d — R (that 1s,
for 4 = pg, 8 = 7) one gets

Ay = Gt 1+coshpo

sinh uo

The integral
fAd’dl = 271Cha

taken along the same circle coincides with the flux @, of the magnetic field
produced by the supercurrent J,. The total magnetic flux trapped by the
superconducting ring is the sum of the cylinder solenoid flux ®, and the

supercurrent flux &,:
hcn

: 2¢
where n is the integer nearest to 2e®,/hc. From this we find Co

27!'000. + @0

hen

= —(® — ——)/27ra

The corresponding magnetic field is given by

_ (coshp'—cos6)* 8 2 sinh A4 )

H. = asinh g 06 cosh u — cosf”’



(cosh pu — cos 6)? 8 sinh nAy
Hy = — . —( )
asinh p Oy "cosh yu — cos f

At large distances VP and field strengths fall like =2 and r~3, resp.:

2a? 1 Qn-yja(cosh ug)
¢ T sin b ! z 1+ bpo Prayj2(cosh po)

2 2
H ~ia;3—c086’ Cl, Hg~?—%sin9,~ Cl.
nr r

It turns out that the cooling of the ring C below the critical temperature
T. inevitably leads to the appearance of the magnetic field in a space sur-
rounding C.
It would be interesting to observe this supercurrent experimentally. The-
oretically, in Tonomura experiments the reason for the quantization of
the total magnetic flux trapped by the toroidal solenoid is the appear-
ance (for T < T.) of the poloidal supercurrent on the torus surface. But
the poloidal supercurrent (Fig.5) produces no magnetic field outside the
toroidal solenoid. Thus, the magnetic flux quantization observed in Tono-
mura experiments is only indirect evidence of the supercurrent existence.
On the other hand, the supercurrent arising in a circular turn embracing
either cylindrical or toroidal solencids may be observed by the detection
of the magnetic field (4.3) created by this supercurrent. There are many
experiments in which the dependence of the physical parameters (e.g., re-
sistivity) of the multi-connected sample embracing the magnetic flux (but
lying outside the region where = 0) was studied as a function of mag-
netic flux value (see, e.g., Resource Letter QIMS-1: Quantum interference
in macroscopic samples [21]). Like in Tonomura experiments, the arising
supercurrent is not measured directly, but its existence is needed for the
explanation of experimental data.
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‘Afanasrev G N:
Some Remarkable Currcnt Conhguralrons

] We mvestrgate the current conhguralrons rmrtatmg the treld of the magnetlc
‘monopole of the electrrc charge and the e]ectroetatlc field. hlllng the toroidal cavity. |

“ The values of the supercurrent arrsmg inthe’ superconductmg corl embracmg

the magnetrc ﬂux and ot the assocraled magnetrc held are evaluatcd '
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