


1. Introduction

The homogeneous scalar field, generating elementary particle masses in unified theories, is based
on the lliggs potential. The physical motivation for this potential as a consequence of the first
symimetry principles is unclear and the existence of this potential leads to a number of difficulties
in cosmology. Among them are the great vacuum density (1], monopole creation [2], domain
walls [3]. These difficulties are overcome in the inflationary models based on the assumption
of minimal scalar - gravity coupling [4]. The Higgs potential, as well as the minimal coupling,
break the principle about conformal invariance of gravity - matter interaction [5]. If we take into
consideration this conformal symmetry principle, it is necessary to switch off the Higgs potential
and to introduce a conformally invariant scalar field-gravity interaction [5]). As a result, the
only source of conformal symmetry breaking is the Einstein gravity itself.

In the present paper, we shall show that the Einstein gravity theory with a conformally
coupled scalar field can replace the Higgs potential under the assumption of homogeneous matter
distribution. We shall also find the scalar field value from the Friedmann equations for the
homogeneous Universe with a Friedmann-Robertson-Walker metric (FRW).

2. The Higgs effect without the Higgs potential in the FRW
metric

We begin from the U(1) theory with the Lagrangian

1(4,8) = 0 + A0l = ZEalAP*(A) = Viriaellél) 1)

with a complex scalar field ¢ = |¢|exp(iex). The Higgs effect consists in i) the absorption of
the angular component of the scalar field by the transformation

L(A'$) = 0,/810%11 + 2167 ALAY — 2 Fuu(A)FP(A') — Virigga(l9) )

and in ii) the npnzero vacuum value of the scalar field module which follows from the Higgs
potential.

For computing this vacuum value one commonly minimizes the Lagrangian (3) without
interaction ‘

Lo(A',¢) = 8,]4|0"|¢] — l (AP (A') Viiggs(141)- (4)

Our idea is to consider just this theory ( 4) w1thout the Higgs potential (Virigq5(|¢]) = 0) but in
the presence of the Einstein gravity theory with a conformally coupled scalar field
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To find minimum of the action with the Lagrangian (5), we express it in terms of the conformal
invariant variables (marked by (c))
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extracting the space-scale factor [6]

a=[Pg]'/e. (7)

The space components of the new metric g,) satisfy the constraint 1/ (3)g(c) =1 by the definitions
(6) and (7). Lagrangian ( 5) has the symmetric form with respect to a and ¢, with \/—g() = N
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The supposition about the homogeneous distribution of the field A’ can lead to homogencity of
both the scale factor a and scalar field ¢, as the motion equation for scalar field repeats the one
for ‘the scale factor.
To get the homogeneous sector of the theory (8), it is sufficient to use the isotropic version
of the FRW. metric _
(ds)? = a®(z, t)[N¥(z, t)dt? — dz?], (9)
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In order to calculate the homogeneous scalar field ¢, we restrict ourselves to the case of constant
positive space curvature (1) k¥ = 41 with a volume V(3 = [ d?25%(2) = 2%} and consider
harmonic excitations of the vector field A’, in this space, with harmonics w; described by the
action k
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The substitution of (10) and (11) into the Lagrangian (8) leads to the action
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This action describes a set of oscillators evaluated in respect to the invariant conformal time
dn = NOdt (see Appendix) with conserved energy densities
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connected by the constraint (Einstein - Friedmann equation §WH /§N? = 0)
— Per +P?§+pR:0 (14)

The geometrical observables of the Friedmann Universe, in comoving frame of reference, arce
constructed by using the inverse conformal transformation (7) of the dynamical variables and
coordinates, including the Friedmann time interval dty = apdn and distance Dy = agD. [6, 7).
The evolution of the cosmic scale a(tr), in the considered case, coincides with the one of the
Friedmann Universe filled by radiation
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with the Hubble constant
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The scalar field ¢. repeats this evolution (16)
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While the initial scalar field |¢] defined by eq.(7) is equal to a constant
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"T'he value of this scalar-field, which follows from the Weinberg-Salam theory [o] ~ 10°GeV.
allows us to estimate the value of the relation of energy densities of the scalar field (pg) and the
expansion of the Universe (p., ):
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Recall, that the Higgs potential leads to the opposite situation (see [1})
phss = 10%p,,. : (22)

The howmogeneity of the scalar field (as the consequence of the homogencous distribution of
matter) excludes monopoles [2] and domain walls [3].

3. Weinberg-Salam model cosmology without Higgs potential

We consider the Einstein theory supplemented by the conformal invariant part of the Weinberg-
Salam theory

<4)1z(q) .w,,,
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where Wi, 5 depends on the entirety of fields {(")1"} with conformal weights (n): gravitational
(9) ng = 2; , vector (A, 3) nap = 0; spinor (e,v) n,, = —:;‘; the doublet of the scalar fields
(¢) ng = —1 with a module |¢|

¢ = | {4l ( " ) omy oy A =1



the angular components of which (ny, na) are absorbed by the vector field (W, Z):
2, .2 .
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where (E);‘-gc;\.) is the Fock covariant derivation in metric g,,, G, is the Yang-Mills tension for
A% b, is U(1)-tension for 13,.

As we have scen in the previous section, the central point in the derivation of the dynamics
of the cosmological model from field theory is the relation between the geometric observables
in the Einstein theory (23){™F} and the dynamical observables {{*) F,,} of the Lagrangian (or

Hamiltonian) approach to the cosmological model of the expanding Universe
NP = (M pgtn : (27)

for which the integrals of motion are found [6, 7]. This relation can be formulated in the form
of a principle about the conformal invariance of dynamical variables {(*}1,}. In the same way
the dust mass in the Friedmann Universe M appears from the electrodynamical action

Mp = rr:,/dsz\/g(:’hz;z/) = m/dazasz/;zp =m < ny > Vg, (28)

as an integral of motion (Mp = 0), if ¥ = a=3/2y,.
Due to the conformal invariance the action Wy, ¢ does not depend on the scale variable (a).
Let us calculate the homogeneous scalar field in this theory (23) in the suppoqmon about
the homogeneous distribution of all matter fields in the Universe. The action Wy, ¢ does not
change the evolution of the cosmic scale factor (16) and can lead only to the additional terms
in the energy density of the scalar field of the type of (28),

/)¢:pg_¢c<"j>+¢z<"g>v (29)

associated with the fermion and boson ”dusts” at rest, the masses of which are formed by the
homogeneous scalar field itself. Here pg, < ny >, < n,f > are phenomenological parameters
which determine the solution to the homogeneous scalar field equation. For the case considered
we have

2 1
oc(n) = p;/‘w;] sinwyn + <ng>uwy 2(1 - coswgn), (30)

where 37 is defined by eq.(17), w3 = 1/r{+ < nf >.
If the dust term dominates and wy # l/r(,, the WS-particle masses (¢./a) become dependent
on time. A photon radiated by an atom on an astronomical object (with a distance D to the
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Earth) at the time g ~ D remembers the value of this mass at this time. As the result, the red
shift and the Hubble law, in the comoving frame of reference, is defined by the product of two
factors: the expansion of the Universe space (a) and the alteration of the elementary particle

masses (¢./a)
(¢°) Pe- (31)

Finally, for the unified theory version of the homogeneous Universe we got the red shift Z and

the Hubble law beltr) d
c\LF c
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If < n? >= 0 and dust dominates, Ho = t;l. If < n >3 1/r we got the oscillator-like behavior
of the red shift which can immitate the large scale structure of the Universe [8].

Z(D)= (32)

4. Conclusion

We tried to describe a homogeneous scalar field in the Weinberg-Salam theory, unified with
Einstein gravity, starting from the assumption that the only source of conformal invariance
breaking (on a classical level) is the Einstein gravity. This means that the investigated version
of unified theory does not contain the Higgs potential and is based on the conformal invariant
scalar field - gravity coupling. In such a theory the homogeneous scalar field is calculated from
the Friedmann equations for the homogeneous Universe. As a result, one of the versions of the
physical realizations of Mach’s principle appears, namely that the mass of elementary particle
forming the matter are determined by the distribution of this matter in the Universe.

Some new consequences of the investigated version of the unified theory are a somewhat
different Hubble law for the dust Universe and the cosmological evolution of elementary particle
masses in the comoving reference frame. Such a mass evolution can lead to a gradual (in a cos-
mological scale) decrease of the relative distance between the gravitating objects. The principle
of conformal invariant interaction of matter fields with the Einstein gravity and the conventional
Fricdmann assumption of homogeneous matter distribution lead to very small energy density of
scalar field and exclude the monopole creation and domain walls.
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Appendix

The actions of homogeneous models considered here can be represented in the Hamiltonian form

W*”(;;,,,«;,F):/0 +2Pp — N%—H, + Hp) (A1)

where
P2 2
Vir )+ Viry Ve = V(s)

Hp depends only on a set of the field harmonic excitations in the FRW metric space, and it
does not depend on the cosmic scale a.

The reduction of the constrained (A.1) to an equivalent unconstrained one can be fulfilled
by the canonical transformation to the new cosmic variables [6, 7, 9]:

(Pzna) d (H7 T’) H {Pava}(n,n) =1 {Pava}(l'l,n) =1, (A3)

H, = (A.2)

8 ’

so that the cosmic part of the constraint —H, + Hr = 0 converts into a new momentum 1l:
H, =1I. This equation represents a map of the circle (A.2), in the old phase space, into a line,
in the new phase space. There are two maps of this type

Y 1
P =44/Vipll cos; ;a9 == (P)H sm —3 (A1)

Thus, we got two actions instead of (A.1):

wh = /0 { Dy ZPF — NO(-TI + Hp))} (A.5)

In this version of the theory the equations of motion for II

§W. :
Tni =0 = +dn= Nt (A-6)

determine the invariant parameter of the dynamical evolution of the variables in the theory in
the sector of the Dirac observables F' and the equation for N0 gives the 1lamiltonian for such
an evolution.

Wy
3N,

As a result we receive the equivalent (A.5) dynamical system without constraints

n(t)
erd = /0

In this approach, we can see that the new cosmic variable becomes invariant time of evolution
in the sector of the Dirac observables.

=0 = II=Hf (A7)

dF
dy ; PFE; T Hp] . (A.8)
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