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The ghost-pole problem in the behavior of a running coupling, being an obvious prop
erty of the geometrical progression, spoils a physical discussion of the RG-summed per
turbative QCD results in the infrared (IR) region. To avoid it, one uses some artificial 
constructions like the "freezing of the coupling" hypothesis. 

Here, we are going to revive an old idea of combining the RG summation with an
alyticity in the Q 2 variable. It was successfully used in the late 50's for examining the 
QED ghost-pole issue [1, 2]. Quite recently, it has been proposed for applying to the QCD 
case [3]. 

The QED effective coupling a( Q2
) being proportional to the transverse dressed-photon 

propagator amplitude according to general principles of local QFT satisfies the Kallen
Lehmann spectral representation and, therefore, is an analytic function in the cut complex 
Q2 plane. 

The "analytization procedure" elaborated in papers [1, 2] consists of three steps: 
( I) To find an explicit expression for °'RG( Q2) in the Euclidean region Q2 > 0 by 

standard RG improvement of a perturbative input. 
(II) To perform the straightforward analytical continuation of this expression into the 

Minkowskian region Re Q2 < 0, Im Q2 = -f. To calculate its imaginary part and to define 
the spectral density by PRa(a, o:) = ImaRa(-a - it, o:). 

(III) Using the spectral representation [see Eq. (2) below] with PRG in the integrand 
to define an "analytically-improved" running coupling Oan( Q2

) in the Euclidean region. 
Being applied to a(Q2

) in the one-loop ultra-violet (UV) QED case, this procedure 
produced [2] an explicit expression with the following properties: 

(a) it has no ghost pole, 
(b) as a function of o: at the point o: = 0 it possesses an essential singularity 
exp(-371" / o: ), 
( c) in the vicinity of this singularity for real and positive o: it admits a power expansion 

that coincides with the perturbation one (used as an input), 
( d) it has the finite UV limit a( oo, o:) = 31r that does not depend on .the experimental 

value o: ~ 1/137. 
The same procedure being applied to the two-loop QED case yielded [2] a more com

plicated expression with the same essential features. 
In the QCD case, to apply this technique to the strong running coupling, one has to 

make two reservations. 
First, as far as here a,( Q2

) is defined via a product of propagators and a vertex 
function, there is a question about validity of the spectral representation. Happily, this 
point has been discussed in paper [4]. As a result, one can use the Kallen-Lehmann 
analyticity here, as well. 

Second, in QCD, the running of coupling is, generally, connected with the running of 
gauge. For simplicity, we assume that the MS scheme is used ( or the MOM scheme in the 
transverse gauge) when a, is not influenced by the running of gauge. 

To construct an analytic effective coupling in the QCD case, we start with the leading
logs expression 

( 1) 

with a(Q2 ) = a,(Q2)/41r and /30 = 11 - (2/3)n1 , the one-loop coefficient, and with the 



spectral representation 

_ 2 _ _ du - · l 1"" p(u,a) 
aan( Q ) - 7r O 17 + Q2 - If (2) 

According to step (II) of the outlined procedure, we define the spectral function in the 
one-loop approximation 

a2/3o7r 
(1) ( ) = 2 /3, )2 ' Pna u,a (l+a/30 L) +(a 01r 

O" 
L = In 2· 

µ 
(;J) 

Note that the RG invariance of ilan defined via Eq.(2) is provided by the scaling property 
of the spectral function 

p(u/µ2,a) = p(lnu/A2
), A2 = µ 2exp(-1/a/30 ). (-1) 

Substituting p~b into Eq. (2) we get (3] 

a~(Q
2

) = ;o [1nQ~/A2 
A

2 

] + A2 -Q2 ' (5) 

where we used the QCD scale parameter defined as in Eq.(4). However, to identify a 
with a(µ 2 ), the running coupling value at Q2 = µ 2 , we have to change this definition for 
A2 = µ2exp[-¢(a(µ 2)/3o)], where the function ¢(z) satisfies the equation z = l/<p(::) -
1/[exp(¢(z)) -1]. 

It is clear that the "analytic" coupling constant, Eq. (5), has no ghost pole at Q 2 = /\.2, 
and its IR limiting value ai1l(O) = 41r / /30 depends only on .group factors. Numerically, for 
n 1 = 3, we have ai~(O) = 41r /9 ~ 1.398. 

Usually, we are accustomed to the idea that theory supplies us with a set of possible 
curves for a,( Q) and one has to fix the "physical one" by comparing with experiment. 
Here, Eq. (5) describes a family of possible curves for Oan(Q2) forming a bundle with the 
same common limit at Q2 = 0 as it is shown in Fig. 1. 

Another important virtue of Eq. (5) is that the analytic behavior in the IR domain is 
provided by a nonperturbative contribution~ exp(-l/a/30 ). . 

To analyze the two-loop case, let us start with a<2l(Q2) written down in the form 

1 
a~b(Q

2
) = /3ol + /3obiln(l + I/bi) ' 

l = In Q2 
A2, (6) 

where b1 = /Ji/(/30 ) 2 and /31 = 102 - 38/3n1 is the two-loop coefficient. This expression 
corresponds to the result of exact integration of the two-loop differential RG equation 
resolved by an iteration and generates a popular two-loop formula with In l / l 2 t~rm. 

For the spectral density, we get 

with 

l(L) 
/3oP~b(L) = R2(L) + J2(L)' 

O" 
L = In A2 

R(L) L + b1 In , I ( 1 + tr + ( ~ r 
J(L) b1 +L 

7r + b1arccos J(b1 + L)2 + 7r2 

2 

. (7) 

(8) 
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Figure I: 1'/n bundle of a11alyfic solufio11s. The c-un•rs (a) and (b) an fllf 1-loop 011-
alytic a, for A =:200 Me V and 400 Ale F, respectivtly; the CltrtJcs (c} and (ti) show /ht 

corresponding perturbative result. 

Now. to obtain ai";!(Q2 ). one has to substitute Eq. (7) .into tlw r.h.s. of Eq. (2). 
How<'V<'r, the integral expression thus obtained is too complicalt>d for prt'~<'nt ing in an 
explicit form as the integration result differs from the used input. a~}; not only by t lw pol,· 
term "subtracting" the ghost pole (as in the one-loop case), but also by au integral along 
the unphysical cut O < Q2 < A2exp(-bil "born" by the log-of-log deprndenc<'. For a 

quantitative discussion we have to use numerical calculation. 
Nevertheless, for a particular value at Q2 = 0 we can make two important statements. 

First, the IR limiting coupling value O'an(O), generally. does not dqwnd on t lw seal<• 

parameter A. This is a consequence of HG invariance (compare with Hef.[5]) and in om 
case follows directly from Eq.(4). Second. the IR limiting coupling vahw is ddi1wd h~
the one-loop approximation, that is int.he two-loop case coincides with the om•-loop ms,·: 

ni~}(O) = ni,~l(O) = oan(O). 
To obtain a simple proof for the two-loop case, it is convenient t.o expn•ss t lw ditr,·n·11n· 

a/,~(O) - ni~l(O) via the imaginary part of the integral 

6 
_ [ d:: ln(l + ::) 
- le :: :: + ln(l + ::) 

(!)) 

with the contour C defined by -oo <Re::< +oo. Im::= -1r/b1 • As far as tlw i11tq.!:r.i11d 
is an analytic function in the half-plane below the contour C. W<' rn11cl11d,· that ...l = ll. 
Note also that the universality of ita11 (0) follows dirC'Ct.ly from tlw pro<·cdun· of" rn11sl ruct i11µ; 
the analytic coupling. lnde<'d, our two--loop input Eq. ((i) has tlw ghost poll' at (J"1 = .V 
and the unphysical cut mentioned above. The analytiza.tion proc-Pdurc n•mon·s t h<'s,· 
parasitic singularities by two compensation t.Prn1s. ThC' !.<'rm that remo\"<'S t Ill' pol,· µ;in·, 
the cont.rihut:ion tla(O)pole = l/(2d0 ). The scrnnd I.Prill that co111p,·11satcs tlw cul can 11<· 
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Figure 2: "Higher loop stability" of the analytic solution. The normalization point i.s 011 

the T lepton scale o,(M;) =0 .. 'J,{. Practically, thP curve oi~l(Q2 ) coincides with oi7,l((22 ) 

and we do not plot it in the figure. 

expressed via the discontinuity of function (6) on this cut and presented as 

1 [ 00 dz 
~a(O)cul = f3o lo (z + 1 - In z)2 + 1r2 , 

(10) 

which equals 1/(2(Jo) and we again obtain the universal value of Uan(0) = 1//30 • Thus, in 
contrast to perturbation theory, where the many-loop corrections change the IR behavior 
of the running coupling significantly, our analytic coupling has a stable IR limit. The 
analytization procedure removing all unphysical singularities leaves us with the physical 
cut which is mainly described by the one-loop contribution. 

Note also that the universality of the value of llan(0) is not simply a matter of approx
imate resolution, Eq. (6), of the exact RG solution - it has a deeper ground. This fact 
can be established in a more general context, e.g., by considering the analytic properties, 
given by the analytization prescription, in the complex 1/ a-plane. The details of this 
reasoning are rather lengthy and will be published elsewhere. 

Thus, the Oan(0) value, due to the RG invariance, is independent of A and, due to 
the analytic properties, independent of higher corrections. This means that the causality 
(=analyticity) property brings the feature of the universality. 

Here, we mean also that the whole shape of the &an( Q2
) evolution turns out to be 

rPasonably stabk with respect to higher corrections. The point is that the uu'iversality 
of iYan(0) practically gives rise to stability of the ai~(Q2

) behavior with respect to higher 
corrertion in thP whole IR region. On the other hand, this stability in the UV domain is 
a reflpction of the property of asymptotic freedom. As a result, our analytic model obeys 
approximatP "higher loops stability" in the whole Euclidean region. Numerical calculation 
(pnforrned in the MS scheme for one-, two-, and three-loop cases with n1 = 3) reveals 
that oi7

1
l((J2) diffors from ai~l(Q2

) within the 10% interval and ai~(Q2
) from ai~!(Q2

) 

wit hi11 t lw I 'I. limit. This fact is df'monstratcd in Fig. 2 
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It seems that the IR stability is an intrinsic feature of a non~analytic (in.a,) con
tribution. To illustrate this thesis, consider a recent IR modific<lotion, aB( Q2), for the 
QCD running coupling by Badalian and Simonov [6]. Ttfse' a~thors have studied a 
non-perturbative contribution to the QCD running coupling on the basis of the general 
background formalism using nonperturbative background correlators as a dynamic input. 
They came to the conclusion that these effects can practically be described by introduc
ing an effective gluonic mass MB = /2-iu defined by string tension u into all "gluonic 
logarithms": In Q2 -+ ln(Q2 + Mi). This means that a(Q2

) essentially slows down its 
evolution (i.e., freezes) around Q ~ MB. Their numerical estimate gave MB ~ 1.5 GeV. 
In practice, this yields the difference between one-- and two-loop results in the IR region 
of 15% order. 

In our calculations, we used n1 = 3 as an average quark number. This seems to be 
reasonable in the low energy region Q < 2GeV ~ me. For a more realistic description of 
the a,( Q) evolution in the whole Euclidean domain, one should .take into account quark 
thresholds. To this end, one usually applies a matching procedure, changing abruptly the 
number of active quarks at an "effective" threshold Q = tm9 with some matching para
meter t ~ 1. Evidently, any procedure of that sort violates the Q2 analytic properties. 
On the other hand, these properties could be preserved by the "smooth matching" algo
rithm devised [7] on the base of an explicitly mass-dependent RG formalism ascending 
to Bogoliubov. This algorithm has been recently used [8] for the precise analysis of the 
a,(Q) evolution in the 3GeV < Q < lO0GeV inte_rval. 

In the present context it could be applied also in the Q ~ A domain. However, this 
would change the &an(Q2

) behavior in the "very low Q" region only slightly as far as the 
limiting &an(0) value depends on ,80 (nj) with the effective quark number nj related to 
the ghost-pole position A. As it is generally accepted on the base of DIS data, in the MS 
scheme An,=3 (2 - loop) ~ 250--;- 350 MeV which is quite above of the strange quark mass. 
This means that the use of value nj = 3 is justified. 

Analytic properties of the running coupling are important from the point of view of 
phenomenological applications, for example, for the description of the inclusive decay of 
the T lepton. To this end,-one usually transforms the initial expression for the R,. ratio 
to the integral form in the complex q2-plane (see, e.g., [9]). This transformation based 
on analytic properties mentioned above which are _violated in the standard perturbative 
consideration and maintained within our method. Note also that referring to "low-Q" 
data, like those of r-lepton decay, one should distinguish between QCD scale AMS in 
the usual RG solution taken in the MS scheme and A an corresponding to our analytic 
expression. For instance, iri the one-loop case, to the a,(M;} = 0.34 there correspond 
A;n = 280MeV as compared with 11.rs = 230MeV. . 

The idea that the QCD running coupling can be frozen or finite at small momenta 
has been considered in many papers (see, e.g., the discussion in [10]). ·There seems to be 
experimental evidence in favor of this behavior of the QCD coupling-in.the IR region. As 
an appropriate object for comparison with our construction, we use .the average 

A(Q) = b LQ dka,(k2
) (11) 

that people manage to extract from jet physics data. Empirically, it has been claimed 
that this integral at Q ~ l --;- 2 GeV turns out to be a fit-invariant quantity. For it there 
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is an estimate: A(2 GeV) = 0.52 ± 0.10 (11). Our results for A(2 GeV) obtained by the 
substitution ai~ and a~ into Eq. (11) for some values of the running coupling at the 
normalization point µ2 = M; are summarized in the Table. 

oan(M';) 0.34 0.36 0.38 

A1-loop(2 GeV) 0.50, 0.52 0.55 

A2-loop(2 GeV) 0.48 0.50 0.52 

Note here that a nonperturbative contribution, like the second term on the l.h.s. of 
Eq. (5), reveals itself even at moderate Q values by "slowing down" the rate of o.(Q) 
evolution. For instance, in the vicinity of the c and b quark thresholds at Q = 3 GeV 
it contributes about 4%, which could be essential for the resolution of the "discrepancy" 
between "low-Q" data and direct Z0 measurement for a,(Mz). 

In this letter, we have argued that a possible way to resolve the ghost-pole problem for 
the QCD running coupling can be found by imposing the Kallen-Lehmann Q2-analyticity 
which reflects the causality principle of QFT. The analytic behavior in the IR region is 
restored by a nonperturbative contribution. The procedure of constructing the analytic 
running coupling is not unambiguous (12). We have considered the simplest way which 
does not require any additional parameters and operates only with A or a value of the 
coupling at a certain normalization point. The requirement of analyticity yields significant 
modification in the IR and intermediate domains and leads to the universal value of 
Oan(O). In this paper we have obtained the analytically-improved result Oan( Q2) for the 
QCD running coupling that turns out to be quite stable with respect to higher-order 
corrections for the whole interval of Q2 and agrees with low energy experimental evidence 
for the IR-finite behavior. 

Our construction does not contain adjustable parameters. This is due, in particular, to 
the convergence of a nonsubtracted spectral integral, that is, with the asymptotic freedom 
property. Here, analyticity plays the role of a bridge between regions of srriall and large 
momenta. The idea that "analyticity is the key factor relating high energy to low energy" 
has recently been emphasized by Nishijima (13) in the context of connection between the 
asymptotic freedom and color confinement. However, in our ·approach this connection is 
not so direct. If, e.g., we admit (see Ref. (14)) the possibility of a UV fixed point for the 
QCD effective coupling at some small value of a, $ 0.05, then we arriv_e at a modification 
of the UV behavior with a power instead of (In u )-2 decrease of the sp~ctral function. So, 
in that case we can also use a nonsubtracted spectral representation. ' 

As far as it is difficult to present an explicit analytic expression for oi~(Q2
), for the 

need of QCD practitioners, we propose an approximate formula. It can be obtained by 
the method of subtraction of unphysical singularities if one takes into account the explicit 
expression for the term that removes the ghost pole and an approximate expression in the 
form of the first term of the power expansion for the term that removes the unphysical 
cut. The corresponding expression reads 

a -(2J(Q2) a -(2) (Q2) 1 1 A
2 

C 
poa ~ poana + 2 1 _ Q2/A2 - Q2 t, (12) 

where ii~&(Q2) is defined by (6) and, for n1 = 3, C1 = 0.035. Expression (12) ap
proximates the two-loop analytic coupling with an accuracy less than 0.5% in the region 
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2.-'5 :\ < Q < :3..5 A, practically coincides with the exact formula for larger values of mo
menta. and. therefore, can be used in the analysis of many experimentat data. If there 
is necessary to consider a very small momentum, like Eq. (11). we suggest another ap
proximal<' formula which can be written in the form of Eq. ( 5) with substitution. in,tt>ad 

Q2 
/, \ 

2
• the expression exp(ln Q2 

/ A 2 + b1 In Jln2 Q2 /.\2 + 4rr2 ). For Q 2'. .\. the accuracy 
of this approximation is less than 5% and yields only :3% error into the . ..\(2Ge\") Yalue. 
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W11pKOB Jl.B. II COIIOBUOB H.JI.- . : . . . E2-97-133 
AiiaJ111T11'leCKaJ1 MOlleJih /IJlll 6el)'!Ueii Ktmcra11n1 CBll.311 :KXJl 
c y11irnepcaJJ~HhlM JHa'le1meM a., ~O) · · · · '._, 1. • 

06cy~aeTCll ~OJIY4el1HOO He)laBilO IIOBOC, .MQlleJlb~oe BblpaJKe11iti: a.n (Q:) )Ill; 6ery1ueii K011:,a11n,1' 

°CBll3H. KBaHTOBOH ~pOMO/lllll~HKll C pery~llpllblM ni:meile,i'11eM B ~6.n;C~II MarJbJX Q2.· Haicie,m<ie 
~3 °CTa11uapr1ioro aCHMDTOTH'leC'Kll·CB060iumi:o BblpaJKeHllll ·. nYTeM m1noiKe1111J1. Tpe6oea111u1 a.HaJJIITH'I: 

. 11oci-11 6e3 KaKllx~111160 Jlonon1111TeJ1hHblX ciio601i11h1x napaMeTpoe, ono _o6nanaeT CJ1euy10lllHMH ·oc_o6e11-
H?CTll_Mif: _ I) 'ymrnepCaJJbHhlM 'npe)le!lbllhlM 3Ha'leHHeM .a.n (0) ='41t( Po~ 1,4, KOTOpoe. orpe)le.ill!eTCll 

Jllli'iih o6Ul~IMII CllMMeTpllHllh(Mll QlaKTOp;i;m, He 3aBl!~llT OT 3KcnepHMellTaJl~llhlX, oue_HOK Ha 6erym11ii 
J~Pllll. a:' (Q2) II. Ha. r.iacw~a611hlii -n~paMeTp A II OK,a3hmaeTCll CTa6mi'hllLIM OTIIOCHTeJJhlla' nonpaa~K 
• .• .f , 1 , • : ' , " • ' ~·' ,"' , I , ,. 

· eucw11x nopll)lKOB; 2) CTa611J1hHOCThIDnoee)le11m1_e\mcjipaKpa~11oii o6pcrn no ornowei11110 K :.qxf>eKT~I: · 
06yCJ1oi11e1111uM i.t11orcmeme11hlMH BKJIMaMn; 3) cornacoemrnoCTblO ·MelKJly JKcnep11MeHTaJihHhlM 311a-

4e1111e1,1 · a~n (M~) -~ ~11TerpaJ1blio11 .xapaKTep~~T~KOH nosel1e1111S1 a., (Q2) B imcjlpa~pac11011 06nlcT11, 

. ll3BJ!t;KaeMOii 113 CTpyiiHhlX )la!UlhlX: / /, . J , • ' 
~ '- . . ' '' 

' Pa6ora BhlllO/llleHa ~)la6oparnp1111 Teopern<iecKoii Ql11311KII 11r.i:H'.H.EoroJ1106~~~ mum, 
• I • ·, J • ·• 

.j 
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Shirkqv D.v·:·add Solovtsov'I.L. . . · ·. , .· . . .. · E2-97-133 
Analytic Model for the QCD Running Coupling ,with Universal a., (0) Value . ., 

•• • IL ' I • • • • •. \ • • \ 

· We disc.uss
0

the new model expression a. (Q2) rec~nily obtained for the'QCD·running'~oupli~g· 
.,. , .. , _,_: . . , an . ._,, • ,> . . .. • . . ·, : . _.· , 

y.ith_a regular ghost-free behavior in the ,,low Q2» region. Being deduce_d from the standard «asymp!otic-
. ,, • •· ' • • • 2 I _' • •· ' . • , . I ' ' .•, 

•. freedom» expression by imposing the Q -analyticity -. without any adjustable parameters ,_ it obeys 
nice feat11res: t) The l!niversal limiting value aan (0) = 47t /Po'~ {4 :expressed only via group· symmetry : 

' ·-- \ ,: • 1, ' . . ' • . _· ' .-_ •' ' ---

factors and independent' of experimental el>timates ori'the running coupling a (Q2) ·(of QCD'-scale 
. ., . . ,' .. ' • .• .f, ' 

param9t~r A): This value t~rns.ciut t~ be_ stable wfth ~~spec'. to hig)ier order correcii~ns; '2) Stability of IR 

behavi.o[ wiih respect to higher-lo~p effects: 3): Coherence between'the exper,im~ntal a~11 _(M;) _value 

. ~~d in!egral information on IR a (Q2) behavio~ a~ axtract~d froril jet physics d;ta. . . 
. . • ·, . · .• ' • ,f . ~ '' . . ' - . i 
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