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1 Introduction 

Dedicated to the memory of 
D. V. Volkov and V.I.Ogievetsky 

As was shown in [1], gravity can be realized as a nonlinear realization of the four 
dimensional diffeomorphism group: The consideration was based .o~ the fact that 
infinite dimensional diffeomorphism group in four dimensional space can be .repre­
sented as the closure of two finite dimensional_ groups - _conformal.and affine [2]. As 
a consequence of such representation of the diffeomorphism group, the basic field in 
this consideration was the symmetric tensor field of the second rank - the metric 
field 9m,n, which corresponds to symmetric generators of the affine group. 

The generalization of this approach to the case of superspace was given in [3]. 
In the present work we consider nonlinear realization of the whole infinite dimen­

sional diffeomorphism group of the arbitrary (super)space. Among the coordinates 
parametrizing the group element (coset space) in such realization there are present 
usual coordinates of the (super)space. The (super)vielbein and (super)connection 
are naturally represented as the functions of other coordinates of the coset space. 
The structure of the connection in the purely bosonic case is such that the corre­
sponding torsion is zero. In the· superspace only some components of the torsion, 
namely Tb~ and Tff"I, vanish automatically. 

2 Bosonic space 

Firstly we consider the case of the usual D - dimensional bosonic space with the 
coordinates sm,. m = 0, 1, ... , D - 1. The generators of the corresponding diffeomor­
phism group regular at the origin can be written in the coordinate representation 
as 

,(2.1) 

All of this generators can be naturally ordered in accordance with their dimen­
sionality (dim sm = +1): 

(2.2) 

With the help of the representation (2.1) one can calculate the commutation relations 
between the generators of the diffeomorphism group and after that we can forget 
about the auxiliary coordinates sm. ,The only we will need is the following algebra: 

[pm1,m2,.,.,mnm, pk1,k2,,,.,kzk] = (2.3) 
I n ·, · 

i L li!;pm1, ... mn,k1 .. ,k;_1ki+l·••,k1k _ i L[i';:i pm1, .. ,m,-1m,+1 00 ,mn,k1 .. ,,k1m· 

i=l j=l 

Let us consider the following parametrization of the group element: 

(2.4) 



All parameters in the expression (2.4) are symmetric with respect to the permutation 
of lower indices as a consequence of the symmetry _properties of the generators (2.1 ). 
It is convenient to take the element of the finite dimensional group GL(D), generated 
by P;: 1

, as the last multiplier in the expression (2.4). The rest of the factors in (2.4) 
are ordered with respect to the dimensionality of the generators. As a consequence, 
the product of factors to the right from arbitrary one form a subgroup of the diffeo­
morphism group. Such structure of the group element simplifies the evaluation of 
the variations 8¢1

11 , ••. ,ln under the infinitesimal left action 

G' = (1 + it:)G, (2.5) 

where f = fmpm + fmm 1Pm1m + fmmi,m,Pm1,m2m + ... belongs to the algebra of the 
diffeomorphism group. The coordinates in (2.4) transform through the infinitesimal 
transformation parameters fm mi ,m,, ... ,m. and coordinates wich are placed to the left 
from given ones in parametrization (2.4): 

8xm = 8xm(E,xt 8</>nni = 8</>nn1(E,xm,ef>\1), 
I I i k D<p I I ::::: D<p I I (E, X • ef> k k ), .... 1, 2 li 2 ' 1, 2 

(2.6) 

(2.7) 

The only exception is the transformation law for ¢~
1

, which includes only E, ,rm and 
¢~

1 
itself. At this stage it is natural to consider all parameters as the. fields in D -

dimensional space parametrized by coordinates xm. 
Step by step one can evaluate the variations of all parameters of the coset. The 

general method of calculations is as follows. To find the variation 8¢1
11, ••• ,ln we have 

to solve the equation 
(1 + if)e;,i,n = e;,i,n+i5t/>" (1 + ii:). (2.8) 

where, for the brevity, ef>n = ¢>' 11 ,. .. ,l"P11 •···•1"1 and parameter f contains the generators 
with n and more upper indices. Correspondingly, i: contains the generators with n + I 
or inore upper indices. Both of these parameters contain P;:'. 

From (2.13) it simply follows: 

ie-it/>" teit/>" = e-it/>" Seit/>"+ ii:. (2.9) 

Both right and left part of this equation can be written in terms of multiple commu-
tators 

. " e-i,J," - 1 
e-•t/> I\ f = 'ef> I\ 8</>n + f, 

i n 
(2.10) 

where, for simplicity, we use the notation 

-i,J," /\. _ 1 [ • ,1.n I 1 [ • ,1.n [ • ,1.n II e t - E + 1 -i.,, , f + -21 -i.,, , -i.,, , t + .... 
1. . 

(2.11) 

The equation (2.10) is the basic equation for 8ef>n and f. 
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The simplest transformation law have the dimension-one coordinates xm. They 
transform as the coordinates of the D -dimensional space under the reparametriza­
tion: 

8:rm = Em(x) =Em+ E:;:1xm1 + f:;:1m2Xm1Xm2 + ... . {2.12) 

Here Em(.r) is infinitesimal function of the coordinates xn . . This is a consequence of 
first among the relations (2.13): 

(l + if)eixmPm ::::: e:(xm+6xm)Pm(l + it), 

in which 8xm is given by (2.12) and: 

- 1 a mpm1 + 1 a mpm1,m2 + f= 1 m 1f m 21 m 1m2f m .... 
1. . 

(2.13) 

(2.14) 

The next parameters in the coset have three indices and transform as a Cristoffel 
symbol: 

oem oen oen 1 o2em 
8ef>mm1m2 = o:rn ef>n m,m, - oxm2 ef>m m,n - oxm1 ef>m nm2 + 2 oxm1oxm2 .(2.15) 

In general the transformation law for parameter with n lower indices will contain the 
term with n-th derivative of infinitesimal parameter Em(x). 

· Only variations of the last parameters ef>n ni need the separate consideration. To 
find them one have t~ evaluate the expression 

',i.n P."I Oem(x) k •,i.n P."I 
8( e' ... nl " ) = i----P e' ... nl " 

oxk m 
(2.16) 

The simplest way to do this is to use the matrix representation for the generators of 
GL(D) group: 

(pn, )' = i8n1 s' n k k n· (2.17) 

In this representation the element of GL(D) grour> is the exponent of the matrix¢';:: 

(eit/>"n1p,:'1)i = (e-"')i = EL. (2.18) 

It is convenient to consider the matrix Ei instead of¢';: because its transformation 
law is very simple: 

8E1 - &m(x) 
k - - --E' oxk m· (2.19) 

It means that the Ei transforms as the covariant vector with respect 'to its lower 
index. Simultaneously, its upper index is inert. This is the transformation law of the 
vielbein. 

The fact that Ei is endeed the vielbein becomes evident if we consider the Car­
tan's differential form 

0 _ a-idG _ ·nap ·ob oa ·ob oa1a2 
H - . - ZH a+ ZHa'b + ZHa1a2'b + ... , (2.20) 
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which simultaneously with its components ( na, nb, ... ) is invariant with respect to 
the left transformation (2.5). We emphasize the fact of invariance by using the 
letters from the beginning of the alphabet for indices. The explicit expressions for 

the components of the n -form are: 

n° = E:;_dxm, 
nb = - E'f:' dE:;, - 2dxk </>kn Eb E:;,, 

n,:c = ( d<f>'{'n - dx1 </>1/i <l>in + 
+dx1<f>:<f>i1 + dx1</>'!J,<f>/n - 3dx1<f>'I'n1)E:;,Et E;', ... • 

(2.21) 

(2.22) 

(2.2:3) 

The first of this forms is exactly one-form vielbein. The physical meaning of its index 
a becomes clear if we consider the right gauge transformation belonging to GL(D) 

G' = G{l - ih(x)} = G{l - ih,:(x)P!} 

Vielbein one -form E 0 = na transforms as the vector 

8E0 = hi,Eb 

(2.24) 

(2.2,5) 

of this GL(D), which can be considered as the gauge group in the tangent space. All 
n -forms with higher number of indices transform homogeneously as corresponding 
tensors. The only exception is the differential one-form (2.22) which transforms 

inhomogeneously: 
an;, = h:nb - n~hb - dhi,. (2.26) 

This is exactly the transformation law of the connection one-form and f21: is the 
natural candidate for the connection in the absence of any other tensors of second 
rank, which could be, in principle, added to the connection. So, the "minimal" one­
form connection is given by (2.22) in terms of vielbein E':r, and Cristoffel symbol <f>i:n· 
The corresponding curvature two -form 

Ri, = df!i, + n:nb 

transforms as a tensor of second rank. 
Due to its definition, the n -form satisfy the Maurer-Cartan equation 

dn + n An= o, 

or, in components 

df2° + n,:nb = 0, 
dDi, + n~nb + 2n,:cnc = 0, 
dnbc + ndnt + n,:dn~ + n:dnt + 3f!bcdnd = 0, .... 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

The lefthand side of first of these equations (2.29) is the covariant differential of the 
vielbein with the connection nb. The fact of its equality to zero means vanishing of 
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the corresponding torsion. Second equation represents the curvature two-form (2.27) 
in terms of vielbein and fl-form with three indices 

Ri = -2n;:,JY. (2.32) 

The rest of equations express coYariant differentials of fl-forms in terms of other 
fl-forms. 

The following expression for the action . 
~ J Ra 1 ba,na, nav -::> = b T/ ll ... l£ t.a,a, ... ap (2.3:3) 

lt'aCls to Einstein - Gilbert action 

S = j dD.rj=gH. 11111 _ l/"b£111 En g - a b • (:2.:3-!) 

after elimination of <f>i:~ with the help of its equation of motion in terms of g"'". Sonw 
comments are needed here .. Up to now the gauge group in tangent space. considered 
as right transformations (2.24), was group GL(D) of general linear transformations 
in 
[) - dimensions. In principl<', one can construct action, invariant und<'r tlw whole 
GL( D) gauge group. for example J H'.; R,: in four dinwnsions. Tlw prc·sr·1m• in the 
action (2.:J:3) of two constant tensors - absolutely antisymmetric knsor E,, 1,,, ••• <lfl and 
tangent space flat metric 17°b = diag(I°, I. ... , 1, -1) means that the imiariance group 
of the action (2.33) is the subgroup of GL(D), namely, the group SO( D - l. l ). 
So, the choice of the gauge group in the tangent spare depends on the structure 
constants in the artion, which ran break (,'L(D) down to its subgroup. 

3 Superspace 

As a generalization of the approarh we consider the diffeomorphism group of the 
superspace with coordinates sM, from which D coordinates s"'. 111 = 0.1. .... D - l 
are bosouir and Da coordinates 17 1', /I = l. 2 ..... Da are grassma1rn. Both num­
bers D and De from the wry beginning arP arbitrary. The grass111a1111 grading of 
the coordinates g(sm) = 0, g(s1') = 1 means the standard commutation relations: 
sM sN - ( -1 )9(sM)9(sN) sN sM = 0, or, for the brevity, sM sN - ( - I yi1.v .-s.-;.'1 = 0. Tlw 

genera.tors of the algebra 

pM1 ,/\12, .... 111,./1/ = -i.~M, SM, ~111,. __.!!__ 
"" fisM. (:U) 

have the following dimensionalitiPs: 

I 
dim P,,. = -1, dim P,, = di111 P'',., = --, 

:2 
di111 P"''"' = di1n P'" ,, = dim !"' 11

'
2

111 = 0. (:l.:2) 

I . JYl'11'2 _ d' pm11, _+I /'· ['"'•1'1 _ d' /'"'' •111 - + ( '1-111 Jl - l111 111 - 2· ( /Ill Jl - 1111 l1l - ••••• 
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Some of th<' generators are bosonic and others (with halfinteger dimensionality) -
fermionic with grassmann grading O or 1 correspondingly. The same grading O or I 
corresponds to bosonic m or fermionic 11 indices. The algebra of the generators ( 3.1) 
is graded algebra: 

pM, ,11,1, •...• Mn M pN, ,N,, ... ,N. N - ( -1 )(M, + ... +Mn+,H)(N, + ... +N.+N) pN, , ... ,N. N p!vl, ..... Mn M = 
k 

·", N( l)M(N1+ ... +N1-1lpM1 ... MnN1 ... N,_,N,+1••·N• (.3 ·J) 
IL.,UMt - fl.'- •·• 
I=! 

n 
-i L DNMI ( -1 J<-'l,f1 + ... +Mn+M)(Ni + ... +N.+N)+N(Af1 + ... +Mt-I) pN, ... N.M, ... M,_, M1+1 ... Mn .\f • 

l=l 

It is convenient to parametrize the group element in the form 

G = KH, (:Lt) 

where 

A' = eixmPmeiOµPµeiuM M1M2pM2M1 M eiuN N1N2N3pN3N2N1 N ... , (3.5) 

H = ei1/,,mµp"meitp" npn,.,eiuk,plkeivPuP(lp (:3.6) 

The element H belongs to the finite - dimensional subgroup OL(D, Dr;) of the su­
perdiffeomorphism group and its parameters have dimensions: dim i;,mµ = 1/2, 
dim <pvn = -1/2, dim Uk/= dim vP,, = 0. The coset I(= G/H is parametrized 
by infinite number of the parameters with dimensions: dim ;rm = 1, dim 0µ = 1/2, 
dim ttNN1N2 run from 0 to -3/2 etc. 

Consider the element of the diffeomorphism algebra 

Mp + M pM1 + Al . pM2M1 + 
l = l M f Mt M f M1M2 M ···· (3.7) 

with the constant infinitesimal coefficients. Under the left action 

G' = (1 + it)G, (3.8) 

the parameters xM = ( xm, 0µ) transform as the coordinates of the ( D, Da) - dimen­
sional superspace: fJxM = cM(x), where 

cM(x) =EM+ /•IM,XM1 + lM M1M,XM,XM, + .... (3.9) 

The rest of the parameters in (3.6) transform in a more complicated way. Exactly as 
in the bosonic case the transformation laws of the parameters with n lower indices 
includes all parameters up ton lower indices and all derivatives of cM(,r) up ton 
-I h order. The calculation of this transformation laws is complitely analogous to the 
purely hosonic case. 
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The next to the right after xM are parameters with three indices: uM M,M,· They 
transform inhomogeneously as the Cristoffel symbols in the superspace with coordi­
nates J.":\I 

, M ( l)N(M+l) 8 M N ( l)M2(N+l) M 8 N 
Utt M1M2 = - 8xN/:. u M1M2 - - u M,N 8xM2 €. -

(3.10) 

(-l)(M1+M2)(M1+N)UMNM _8_€.N f- ~(-l}(M+1)(M1+M2)_8 ___ 8_/:.M. 
2 8xM1 2 8xM, 8xM2 

The transformation laws of the components of the supervielbein are as follows: 

{J~,m µ = -8µ,Em + 8ntmtpn µ - 8µ,tvtpm v - 8nEvtpn µIPm v = (3.11) 

-Dµtm - DµEv1Pmv, Dµ = 8µ - tpm µam, 

8</>µ m = OmEµ - (OmEn + 8mt~tpnJ'Pµn + +(8vEµ +OnEµIPnv}'Pv m, (3.12) 
fJ£ka = -( 8kEm + fAtv !pm v }£ma, , (3.13) 

8£µ,0l = -(OµEP+8mEptpmv}£pa=-DµEP£pa• (3.14) 

In analogy with (2.18) we denote t:;;, = (e-u)~, t:; = (e-v)~- The next step is 
to consider all parameters as the fields in the superspace with D bosonic and Da 
grassmann coordinates xM and construct invariant differential forms in terms of these 
fields. 

4 Differential n - forms in the superspace 

Along with grading of the coordinates xM, their differentials dxM have their own 
grading. There exist two different gradings of the differentials of the coordinates. 
One of them corresponds to the independent grassmann grading and grading of the 
differential d[4]. It leads to the following commutation relations: 

[xm,xn] = [xm,dxn] = [xm,d0µ] = [d0µ,d0"] = [0µ,;dxm] = 0, 

{dxm,d;J}.n} = {0µ,0v} = {dxm,d0µ} = {0µ,d0"} = 0. (4.1) 

More simple commutation relations take place when grading of the differential d 
coincides with grassmann grading (5]. It means that the differential changes. the 
grading of the coordinates to the opposite one: 

g(dxM) = g(xM} + l. (4.2) 

As a result there are equal numbers D + Da of bosonic ( xm, dBµ) and grassmann 
( dxm, 0µ) variables. 

The left - invariant differential n -form 

n = a-1dG 
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belongs to the algebra of the superdiffeomorphism group 

n = mApA +mAA,PA'A +mAA1A2pA2A1A + ... (4.4) 

and its coefficients nA, nA A,, nA A1A2 are invariant under the transformation (3.8). 
We emphasize this fact by using the letters from the beginning of the alphabet for 
indices. We will use latin letters a, b, c, ... for bosonic and greek letters a, /3. 1 .... for 
grassmann indices. Note, that according to the grading rule (4.2) !la and 0" are, 
correspondingly, anticommuting and commuting objects. 

Explicit expressions for components of flA are: 

na 
!l" 

(dxm + d01'./,m )£ a = dxM E a 'Vµm- M, 
{d0µ - (dxm + d0vipm v)<Pµm}l'µ" = dxM EM"· 

(4 .. 5) 

(4.6) 

The expresions (4.5) and (4.6) represent the one - form supervielbein EA = f2A = 
dxM EMA with components 

Ema= l'ma Em" = -ipl' ml'I'" 
EMA= 

Eµa = l'ma1Pmµ Eµ" = £/' + l'v"<PvnV-'m I' 

From (3.11)-(3.14) it follows 
.T. 

oEMA = -EN oN EMA - oMEN ENA. 

The components of the inverse supervielbein are 

Earn= l'am -l'an<Pvn1Pmv Eal'= <Pl'nl'an 
EAM = 

Ecx m = -l'a"i/Jm v Eaµ= £"I' 

(4.7) 

(4.8) 

(4.9) 

where l'a m and £"I' are inverse matrices to l'm a and l'µ" correspondingly. Straight­
forward computation shows very simple form of the superdeterminant Ber Et 

A detl'm a 
BerEM = -d" a· 

et"µ 
(4.10) 

One can show that arbitrary nonsingular graded matrix Et can be parametrized in 
the form (4.7) for which (4.10) is valid. So, in some sense such parametrization of 
graded matrices is natural. 

Due to its definition ( 4.3) n -form satisfy the Maurer - Cartan equation 

an+ n An= o. 

Two first components of this equation are as follows: 

d!lA + (-1t+BnABnB, 

dOAB +(-1t+cnAcn° B + 2(-l)A+B+CnA Bene. 
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('1.13) 

J ,, 

l 1nder the right gauge transformations from the group GL(D) x GL(Dc ): 

G' = G{l - ih'i,(.r)P:- ih'.3(.r)P;!} 

o,: and 08 transform as corresponding connections: 

onb = h~ni - n;1ii - dh'i, 
80'.} = h~O~ - O~h} - d/{3. 

(-1.14) 

(4.15) 

(4.16) 

Taking tlwm as a ·•minimal" co1111Pctiions. I lw equation (4.12) expresses tlw cornriant 

diff1·n•11tials of ff' am! 0": 

DO" 
DO'~ 

dO" + O'i,Ob = n~w = TBonBO". 

= dO" + 0°013 = O"ff' = T 0 nBnn d a Ba • 

(4.17) 

(4.18) 

where we expanded one forms n~ and n~ in terms of the basic system of one-forms 
n8 . ThP form of the right hand sidPs -0f tlwse equations shows. that Tb~- and Jt 
components of the torsion vanish ick•ntically. 

5 Integral invariants in the superspace 

Having constructed invariant. differential O - forms WP have to lw able to build_fr~m 
t.hPm the integral invariants like act.ion. Th<' problem lies in I lw fact I hat I here are 
two types of diffnentials of grassmann coordinates. \VP will <1<'1101<' I hl'lll c/0 11 and 
d.0''. First of these differentials are used in invariant differential n - forms. l' nlik1· 
dJ·"'. which are anti commuting objects. d0''· commut.e and one can cons! rue! from 
the n -forms the differential form of arbit.ra.ry order. Cont raril_,·, so cal!Pd Berezin 
pseudodifferentia.ls 401' anticommute. One can t.a.kP integrals m·pr the Sll[J<'rspace 

I= j d0 ,r4DG0F'(,r,0) 

with the help of Berezin integration rules 

J 401
' = 0, J O''d_Ov = 8'w. 

(5.1) 

If C •)) \. J._ 

The integration volume dv = dD,rd_0
GO transforms under the ge1wral dilfeo111orphis111 

,,,,M = ,r'M(xN) as 

(
01-'·'1) 

dt>' = Ber -."-. di·. 
d.r;\ 

If the function F( .r, 0) in ( 5.1) transforms as 

(iJr'M) F(,r',O') = Bcr-1 fJ.i-N F(;r,0). 

!) 

(:i.:I) 

(5.4) 



the integral I is reparametrization invariant. 
The following prescription for building of integral invariants from invariant diffn­

ential forins was formulated by Bernstein and Leites [6). Taking arbitrary invariant 
differential form F(x, 0, dx, d0) one can introduce new auxiliary variables ,,m and 
yµ in one to one correspondence to d.rm and d01' .These new variables 11111 have the 
same grassmann properties as d:I:"' and dO 11 

( opposite to ones of .r"' and 01') and the 
following transformation laws 

11'm 8r'"' 8r'm ih-n 11" + ~Oµ yµ, (5 .. 'i) 

y'µ 8011
• 

111 
aoµ ,, 

= o.r"' 11 + a0" 11 • (5.6) 

The transformation ( .5.-5 )-( ,'i.6) has very important property. Its superdeterrninant 
(super.Jacobian) 

---=Ber 1 --
8{17'm,y'1'} _ (fJ.r.'111

) 

8{11",y"} OJ"N 
(.5.7) 

is inverse to the super.Jacobian for the transformation of the "old" coordinates :i·M. 

This fact is based on the following property: the superdeterminant of the graded 
matrix is inverse to the superdeterminant of the same matrix with opposite grading. 
It means the invariance of the product d\/ == d0 .rd,00Od00 yd,0 11 with respect to the 
general coordinate reparametrization in the superspace. · In turn this fact leads to 
the invariance of the following integral 

I= j d\/F(:r,0,11,y). 

If the integral over 11 and y exists, the result of such integration 

I= j d0 xd._0 GOF(x,O) 

will be invariant as well. 

(.5.8) 

(5.9) 

It is convenient at this stage to introduce additional set of auxiliary variablf's 
CA, transforming as the vector of the G L( D, Da) and having the grassmann grad­
ing g(C,,) = 1. g(C°' = 0). With the help of this ghosts it is easy to construct 
invariants in a covariant manner under SL( D, Da ). The additional volume element 
dC = d,C 0 dCDa does not transforms due to condition Berh = l for h belonging to 
SL(D,Da). 

The simplest invariant has the form 

lu = j dVdCe;E-<c_. = j d\/dCe;~MEM-<c_._ (5.10) 

As was shown in [7] the result of integration over T/M and CA in (5.10) is proportional 
to the supndeterminant of the EMA 

lo= j dDxd_0 nOBfrEMA· ( .5.11) 

IO 

J 

The wide class of invariants can he obtained from the expressions of the form 

I= j <lVdCF(fl.C')tiE-'C,._ (5.12) 

where F(O, C) is an arbitrary function of C..1 and Cartan 's n -forms. in which differ­
entials of coordinates d,rM are changed to ,rlf. Due to completeness of the one-form 
vielbein. the function F(O, C) can be repre:iented as the series in powers of vielbein 
and CA 

F(n C) = "F 8
• .. ·

8
• E-4' ••• E-4"C ... c " L..,,, .4n••··4.l B1 B1;; (,5.13) 

with coefficients Fa •... B, .4,. .. .,t, depending on the functions u:\/.u, .... \/" ( .r, 0). Thus. t lw 
evaluation of the integral (5.12) reduces to tlw ernluation of the basic integrals 

IA, ... A,. = jc111cl(:EA' EA"(: C €iEAcA B1 ... Bk "' B1••• Bkc · (.5.14) 

One can show that such integrals an• zero \\'lwn numbf'rs 11 and !.· are different. The 
nonzero answers for two simplest cases arc• 

f <111dCEACBeiE··•c .. = (-l)AbAaBer(t.'.\lc'). (5.15) 

J d11dCE,1 1 E'42 Ca,Ca2eiE·
4

CA = (5.16) 

{( -l)A,+.426A2 c.41 + (-1)•41A2+IoA2 b-'11 }Bn·E .4 B1 (I B2 B, B,_ ,Af • 

The genera.I expression for the basic integrals (5.14) can be e\'aluatf'CI from the rela­
tion 

. jd17dCeiE,.E_4BcB = Ber(EMA~AB) = BcrE!l{1BtT~DB (5.17) 

by varying in it :E.4 8 in the neighborhood of thP identity. The resulting 1..1, .... 4 .. B
1 

... B. 

look like expression (5.16) with correspondingly symmetrized production of appro­
priate number of o~: multiplied by Bfl'EMA. This gives the answer for I.bl' inrnriant 
I (!i 12) in terms of the superspan• integral 

I= J dD:rdDGo" pB .... H, . 1A, ... A.. . _ L., .4,. .... 1, B1 ... Bk (5.18) 

The question of finding the integral invariant. of such typl' in t hP superspace for 
the action of supergravity, like (2.33) for gra,·it.y, is open. If such act ion dc)('s exist. it 
contains among the structure constants tlw Dirac gamma matrin•s, ,.~.J• \\'hich break 
the tangent space gauge group GL(D) x GL(Du) down to its subgroup (SL(2) in the 
case of four dimensions) and establish the·connection between bosonic ancl fermionic 
dimensionalities D and Da. 
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6 Conclusions 

We have considered the nonlinear realizations of infinite - dimensional diffeomor­
phism groups of any (super)space. The parameters of coset space in a very natural 
manner include the coordinates, vielbeins and connections of the corresponding (su­
per)space. The geometrical and physical meaning of higher parameters 1/''M •... .\I" 
with 11 2:': 3 is still unclear. Construction of invariant under the action of diffeo­
morphism group differential fl -forms is straightforward in any (super)space. At the 
same time the G L( D, De) gauge group, considered as the right action on the group 
element. plays the role of gauge group in the tangent space. The most of the fl-forms 
transform as tensors of this G L( D, De). The only fl-form with two tangent indices 
flb plays the role of connection which automatically is torsionless in the bosonic 
case. In the superspace only Tb~ and T!f,., components of the torsion are vanishing 
identically. 

Such an invariant differential fl - forms can be considered as building blocks for 
construction of integral invariants like action. In purely bosonic space (2.33) gives 
the expression for the gravity action. In the case of superspase the method of con­
structing integral invariants is described in the Chapter 5. The existing of the action 
for supergravity of such type is an open question. 
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Hemi11ettHhte peamnamrn rpynn (cynep)imcpcpeoMopq:11nM0B, 
reoMeTpH'leCKHe ofueKTbl 111 HitTerpaJlbHble HllllapmlHTbl. . . 

I I, , / • "• f ' 

J3 cynepnpocTpa11crne 

. CToKa3aHo;. 4TO TeTpaJibl H C8}13HOCTH mo6oro (cynep)npOCTpaHCTBa ec:TeCTBeH- · 
HblM o6pa30M MO[)'T 6b1Tb 0nHCaHbl B Tepi.11111ax HeJ1H1-leHHblX peanJJaUHH 6eCK~~ 

· 11e'!tt0Mep11h1x. rpynn m~cpcpeoMopcpH3MOB toorneTcrny10umx ( cynep )npocTpa11crn .. 
MeTO)l nocTpoellH.H. HHTerpanbHbllt 'mrnapu_aHTOB H3 HHBap11aHTilh_lX

1

. J111Cpcpepe11-
u11anhHblX p~cpopM Kaprnua 0606we11 Ha 'cny'laH cynepnp?CTpaiicTB. : • . . . . 

Pa6oTa Bb1~on11e11a B Jla6oparnpmi Teopern'lec~oii q:>113HKH ,HM.H.H.Eoro.n1090: I 1 
. Ba QJ15U1. ' , . . , . 
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Geometrical Objects and,Integrallnvariants in the Superspac~ : 

, ' :· ,.' _, , : ·, _, ,\ , ·, '. : ... ·; . ' I, . ,. 

E2-97-122 

. : It is sh~wn that 'vielbeins ~nd ~~nnections :of ariy (~
0

uper)s~~ce-are natublly 
de.scribed in , . terins ' oL ' ncrnlin~ar, reiiliiatjons ?f : infinite~dime-~sional 
diffecimorphisrri groups of _the corresponding (super)space_. T~e. me_thod 
. o{ construction of integral : invariants . from: the invariant Cartan' s. differi::ntial 
Q-forms· is generalized ·to' the case ,o(superspace. 
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