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1 Introduction :

As was shown in [1], grav1ty can be realized as a nonlinear reallzatlon of the four
dimensional diffeomorphism group. The consxderatlon was based on the fact that
infinite dimensional diffeomorphism group in four dimensional space can. be repre-
sented as-the closure of two finite dimensional groups - conformal and affine [2]. As
a consequence of such. representation of the d:ffeomorphlsm group, the basic field in
this consideration was the symmetric tensor field of the second rank - the metric
field g, », which corresponds to symmetric generators of the affine group.

The generalization of this approach to the case of superspace was given in [3].

In the present work we consider nonlinear realization of the whole infinite dimen-
- sional diffeomorphism group of the arbitrary (super)space. Among the coordinates
parametrizing the group element (coset space) in such realization there are present
usual coordinates of the (super)space. -The (super)vielbein and (super)connection
are naturally represented as the functions of other ‘coordinates of the coset space.
The structure of the connection in the purely bosonic case is such that the corre-
sponding torsion is zero. In the superspace only some components of the torsion,
namely T} and T3,, vanish automatically.

2 Bosonic space

Firstly we consider the case of the usual D - dimensional bosonic.space with the
coordinates s™,. m = 0,1, ..., D — 1. The generators of the.corresponding diffeomor-
phism group regular at the origin can be written in the coordinate representation
as B
m=15"18™ .5 Fom: o (2.1)
All of this generators can be naturally ordered in accordance with thelr dlmen-
sionality (dim s™ = +1):
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dim P, = -1, dim P™,, =0, dim P™™,, = 41, (22

With the help of the representatlon (2-1) one can calculate the commutation relations
between the generators of the diffeornorphism group and after ‘that we cin forget
about the auxiliary coordinates s™. The only we will need is the following algebra:

[Pml'm2”"'_m"m ’Pkl,kz,...,k;k] —_ . ‘ V (23)
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Let us consider the following parametrization of the group element:
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All parameters in the expression {2.4) are symmetric with respect to the permutation
of lower indices as a consequence of the symmetry properties of the generators (2.1).
It is convenient to take the element of the finite dimensional group GL(D), generated
by P, as the last multiplier in the expression (2.4). The rest of the factors in (2.4)
are ordered with respect to the dimensionality of the generators. As a consequence,
the product of factors to the right from arbitrary one form a subgroup of the diffeo-
morphism group. Such structure of the group element simplifies the evaluatlon of
the variations 645 L, under the mﬁmtesxmal left action”

G = (1 +i€)G, - - o (2.5)

where € = €™ P, + €™, P™y + €™y m, P12, + .. belongs to the algebra of the
diffeomorphism group. The coordinates in (2.4) transform through the infinitesimal
transformation: parameters €™, m,,...m, and coordinates wich are placed to the left
from given ones in parametrization (2.4): '

6™ = §a™(e,a’), 84", =6¢"n,(e 2™ dh), (26)
6", 1, = 8¢, 4, (e, 7, R R , (2.7)

The only exception is the transformation law for ¢} , which includes only €,+™ and
¢y, itself. At this stage it is natural to consider all parameters as-the fields-in D -
dimensional space parametrized by coordinates z™.

Step by step one can evaluate the variations of all parameters of the coset. The
general method of calculations is as follows. To find the variation é4'; , we have
to solve the equation ‘ ' o

(14 ie)e™” = " H47(1 4 ié). (2.8)
~ where, for the brevity, ¢" = ¢!, , P~ and parameter ¢ contains the generators
with n and more upper indices. Correspondingly, € contains the generators with n+1
or more upper indices. Both of these parameters contain PJ*.

From (2.13) it simply follows:

ie™ " ee™" = 7" 6e™" 4 . (2.9)

Both right' and left part of this equation can be written in terms of multiple commu-
tators ‘ 4

n e — 1 :
e Ne= ———— NE$" +§ (2.10)
. "
where, for simplicity, we use the notation
e Ne=e+ '[ id", €] + l[—zqﬁ" [—ig", €]l + (2.11)

The equation (2.10) is the basic equatlon for 6¢™ and €.
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The simplest transformation law have the dimension-one coordinates z™ ; They
transform as the coordinates of the D -dimensional space under the repara.metrlza.-
tion: . _

A N T A S
Here =™ (x) is infinitesimal function of the coordinates z".
first among the relations (2.13):

6r™ = ™) ="+

(2.12)

This is a consequence of

(1 +i€)e'=™Pm = ™ +52™)Pn (] | 2). (2.13)
in which 8z™ is given by (2.12) and: .
> 16 m mmy 1 .im my,my » '
€= 770m ¢ P m+§6m,m,e P m e ©(2.14)

The next parameters in the coset have three indices and transform as a Cristoffel
symbol: .

Oe™ Oe™ Je™ 1 %™

6 m —_— n - m —— m —_—
¢ mimy 61"¢ mpmz a$m2¢ mn axml¢ nmy +26 mlal.mg'(

2.15)

In general the transformation law for parameter with n lower indices will contam the
term with n-th derivative of infinitesimal parameter ¢™(z).
-Only variations of the last parameters ¢"; 4, need the separate con51derat10n To
find them one have to evaluate the expression
36 (.’E)Pk ig" .
m

§(embn'y = (2.16)

The simplest way to do this is to use the matrix representation for the generators of
GL(D) group: o
(PM); = i678L. (2.17)

In this representation the element of GL(D) group is the exponent of the matrix ¢:

e 7y :
(Y = () = B (2.18)
It is convenient to consider the matrix E} instead of ¢ because its transformation
law is very simple:

dem(z) E!
dz*
It means that the E} transforms as the covariant vector with respect 'to its lower
index. Slmultaneously, its upper mdex is mert This is the transformation law of the
vielbein.
The fact that Ej is endeed the vielbein becomes evident if we consider the Car-
tan’s differential form

6E, = — (2.19)

Q=G"dG =iQ°P, + i P +iQ  PM% 4
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which simultaneously with its components (Q?, Q,...) is invariant with res.pect to
the left transformation (2.5). We emphasize the fact of invariance by using the
letters from the beginning of the alphabet for indices. The explicit expressions for
the components of the Q) -form are:

0 = Endem, (2.21)
0 = -EPdE;, - 2t EVE;,, (2.22)
Q. = (dof, — da'$} 6}, + (2.23)

+dz' gl + dz' Gy, — 3dz' o) En ESED, ... .

The first of this forms is exactly one-form vielbein. The physical mean.ing of its index
a becomes clear if we consider the right gauge transformation belonging to GL{D)

G' = G{1 — ih(z)} = G{1 —ih}(z) P’} (2.24)
Vielbein one -form 'E“ = ° transforms as the vector
6E* = hIE® (2.25)

of this GL{D), which can be considered as the gauge group in the tangent space. fl\ll
) -forms with higher number of indices transform homogeneously as.correspondmg
tensors. The only exception is the differential one-form (2.22) which transforms
inhomogeneously:

608 = h2Q — QhS — dhg. (2.26)

This is exactly the transformation law of the connection one-form and €Qf is the
natural candidate for the connection in the absence of any other tensors. of second
rank, which could be, in principle, added to the connection. So, the “minimal” one-
form connection is given by (2.22) in terms of vielbein E7, and Cristoffel symbol ..
The corresponding curvature two -form

Ry = dQp + Qo8 (2.27)

transforms as a tensor of second rank. -

Due to its definition, the Q -form satisfy the Maurer-Cartan equation
d1+ QA =0, (2.28)
or, in components

dQ* + Qb =0, (2.29)
dfly 4+ Q200 +20; 0°=0, (2.30)
A, + 00 + QL0+ 05,08 + 300,00 =0, ... (2.31)

The lefthand side of first of these equations (2.29) is the covariant differenti'al ?f the
vielbein with the connection Qf. The fact of its equality to zero means vanishing of
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the corresponding torsion. Second equation represents the curvature two-form (2.27)
in terms of vielbein and Q-form with three indices

R = 202 0. ¢

(S

.32)
The rest of equations express covariant differentials of (1-forms in terms of other
O-forms. '

The following expression for the action

§= / Rppbqes_qove, (2.33)

leads to Einstein - Gilbert action
S = /(l[).l' /_gh) gmn — ”ubE;n Eg;

after elimination of ¢}, with the help of its equation of motion in terms of ¢"". Some
comments are needed here. Up to now the gauge group in tangent space, considered
as right transformations (2.24), was group GL(D) of general linear transformations
in l

D - dimensions. In principle, one can construct action. invariant under the whole
GL(D) gauge group, for example f R® R in four dimensions. The presence in the
action (2.33) of two constant tensors - absolutely antisvimmetric tensor Cayny.ap and
tangent space flat metric ** = diag(1, 1, ..., 1, —1) means that the invariance group
of the action (2.33) is the subgroup of G'L(D), namely, the group SO(D - 1.1).
So, the choice of the gauge group in the tangent space depends on the structure
constants in the action, which can break G'L({D) down to its subgroup. '

(2.34)

3 Sup erspace

As a generalization of the approach we consider the diffeomorphism group of the
superspace with coordinates sM, from which D coordinates ™. m = 0. l..D -}
are bosonic and Dg coordinates 5, u = 1.2..... Dg are grassmanu. Both num-
bers D and Dg from the very beginuing are arbitrary. The grassmann grading of

‘the coordinates g(s™) = 0, g(s*) = 1 means the standard commutation relations:

MV _ (—1)oeMalsM) gV oM 0, or, for the brevity, sMs¥ — (—1)M¥NeM — 0. The
generators of the algebra

= MM M, d

My Mg, My, B
Ptz M EWTh (3.1)
have the following dimensionalities:
. . . 1
dim P, = <1, dim P,=dim P, = =5
dim P™,, = dim Py =dim PR <, (3.2)

. . L .
dim P*¥, = dim P, = +;. dimn P™"M = dim P = gL

b}
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Some of the generators are bosonic and others (with halfinteger dimensionality) -
fermionic with grassmann grading 0 or 1 correspondingly. The same grading 0 or 1
corresponds to bosonic m or fermionic y indices. The algebra of the generators (3.1)
is graded algebra:

LY h J i N,
P.\II.A‘IZ ..... A’InhlPNj.Nz ..... t\kN _

z e
§

Mi+...+A MM Ni+... N1y M. n
(_l)(111+ +Ma+ MY N + +Nk+N)PN|, ,'\kNPWl A, M

1M N1t AN) My MaNy NN N » (3-3)

M. (Ml+---+Mn+M)(N1+...+Nk+N)+N(M,+...+M,_,)P.’Vl...Nle.,.A'l,_,AI,H...M,. A

It is convenient to parametrize the group element in the form

G=KH, (3.4)
where
. ; ; s M Mo M, N
L = e“'mPME'oqu'e'" My My P2 '“e'“NNI"’WJPNJN’N’”..., (3.5)
., iy ik ply g
H = VP megit"aP e iutiP (iv?eP% (3.6)

The element H belongs to the finite - dimensional subgroup GL(D, D¢;) of the su-
perdiffeomorphism group and its parameters have dimensions: dim ™, = 1/2,
dim ¢*, = —1/2, dim u*; = dim v#, = 0. The coset K .= G/H is parametrized
by infinite number of the parameters with dimensions: dim z™ = 1, dim 6% = 1/2,
dim ™y, N, run from 0 to —3/2 etc.

Consider the element of the diffeomorphism algebra

€= CMPM + GMMI PM‘M + GMMI‘MZPMzM’ M+ (3.7)
with the constant infinitesimal coefficients. Under the left action
G = (1+16G, (3.8)

the parameters 2™ = (2™, 6#) transform as the coordinates of the (D, D¢) - dimen-
stonal superspace: §zM = eM(z), where

Mizy=€eM + cMMlxM‘ + cMMlMZ:l:Mia:M‘ + ... (3.9)
The rest of the parameters in (3.6) transform in a more complicated way. Exactly as
in the bosonic case the transformation laws of the parameters with n lower indices
includes all parameters up to n lower indices and all derivatives of ¢¥(x) up to n
-th order. The calculation of this transformation laws is complitely analogous to the
purely bosenic case.

The next to the right after #™ are parameters with three indices: u™ s, 5s,. They
transform inhomogeneously as the Cristoffel symbols in the superspace with coordi-

nates & M
SuM Ny 9 MmN Ma(N+1), M 9w
u g = (~1) 3anE * M = (=1) uTMNGRE
(3.10)
0 .1 a. 0
(M + M) (Mi+N) M eN £ Z(=1)MANM1M2) _ T M
(—1)Mr+Ma)(M; u NM’a e +2( 1) 1+ M, s azMze

The transformation laws of the components of the supervielbein are as follows:

6,¢,rn“ — _aﬂcm + a,.e’"zl)"“ - aﬂeud)mu - aﬂeud)n“,(l)m.', — . (311)
~D,e™ — Dyeyd™,, Dy=0,—¢™ ,0m,

8¢, = Opne* — (Ome" +a,,,e"¢" )o¥, + +(0,¢ +.0 e“x/)" 19" m  (3.12)

86 = —(Oke™ + ake"zbm.,)ﬁm", ) (3.13)

6E,% = —(8u€ + OpnefYp™,)E,* = —D,e’E,°. (3.14)

In analogy with (2.18) we denote £;, = (e™*)5, &7 = (e™)%. The next step is
to consider all parameters as the fields in the superspace with D bosonic and Dg
grassmann coordinates ™ and construct invariant differential forms in terms of these

fields.

4 Differential - forms in the superspace

Along with grading of the coordinates z™, their differentials dz™ have their own
grading. There exist two different gradings of the differentials of the coordinates.
One of them corresponds to the independent grassmann grading and grading of the
differential d[4]. It leads to the following commutation relations:

[z™,2"] = [z™,dz"] = [z™, d0*] = [d*,d6"] = [6*;dz™] = 0,
{dz™,dz"} - = {0*,0"} = {dz™,d6"} = {6*,d0"} = 0. (4.1)

More simple commutation relations take place when grading of the differential d
coincides with grassmann grading {5]. [t means that the differential changes the
grading of the coordinates to the opposite one:

g(dzM) =g(z")+ 1. (4.2)

As a result there are equal numbers D + Dg of bosonic (z™, df*) and grassmann
(dz™, 6*) variables.
The left - invariant differential Q -form

Q=646 : (4.3)



belongs to the algebra of the superdifféomorphism group

Q=1Q4P, +iQA 4, PY 4 +iQ4 4, 4, P24 4 (4.4)

and its coefficients 4, Q44 , 944, 4, are invariant under the transformation (3.8).

We emphasize this fact by using the letters from the beginning of the alphabet for

indices. We will use latin letters a, b, c, ... for bosonic and greek letters a, 3.~,... for
grassmann_indices. Note, that according to the grading rule (4.2) , and 0 are,
correspondingly, anticommuting and commuting objects.

Explicit expressions for components of Q4 are:

Q° (dz™ + dO*9p™ )En® = dz™MEp®, (4.5)
Q= {d0* —(dz™ +d0"Y", )"} = dzM Epe. (4.6)

The expresions .(4.5) and (4.6) represent the one - form supervielbein E4 = Q4 =
dz™ Ep? with components '
Ema — gma Ema — _¢umg“a .
Ea = (47)
. Eua’ = 8,,,"1/)'"” E“a = g"a + gua¢"n¢)mu .
From (3.11)-(3.14) it follows '
T‘ 5EMA = —eNaNEMA — aMCNENA. (4.8)

The components of the inverse supervielbein are
E™ =& — & 0", Bt = ¢ 6"
BM = ‘ , | (4.9)
Eam = "gal"d)mu Ea“ = gau
where £,™ and £, are inverse matrices to En® and &,” correspondingly. Straight-
forward computation shows very simple form of the superdeterminant BerE4,

det&,°® :

BCT‘E]C[ = W. (410)
i

Ore can show that arbitrary nonsingular graded matrix Efy can be parametrized in
the form (4.7) for which (4.10) is valid. So, in some sense such parametrization of
graded matrices is natural.

Due to its definition (4.3) Q -form satisfy the Maurer - Cartan equation

dN+OAQ=0. (4.11)
Two first components of this equation are as follows:

a4 + (-1)+*2a450P, v (4.12)
dQ4g +(-1)"CQ1:0C g 4 2(—1)ATEHCQA 0. (4.13)

8
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Under the right gauge transformations from the group GL(D) x GL(Dg):
G' = G{1 — ih{(x) P! — ih5(x P} (4:14)
Q¢ and QF transform as corresponding connections:

&0 heQy — Qihy — dhy (4.15)
805 = KO — QLR — dhj.

Il

Taking them as a “minimal” connectiions. the equation (4.12) expresses the covariant
differentials of 2* and °:

DQ* dQ¢ + Qe = QL0 = T5, Q800 (4.17)
DO = d0° + Q307 = Q00° = Tg Q80" N ER T

where we expanded one forms Q2 and ) in terms of the basic system of one-forms

QB. The form of the right hand sides of these equations shows, that Tp and T3,
components of the torsion vanish identically.

5 Integral invariants in the superspace

Having constructed invariant differential 2 - forms we have to be able to build from
them the integral invariants like action. The problem lies in the fact that there are
two types of differentials of grassmann coordinates. ‘We will denote them d0# and
do*. First of these differentials are used in invariant differential - forms. Unlike
dr™. which are anticommuting objects. d6* commute and one can construct from
the € -forms the differential form of arbitrary order. Contrarily, so called Berezin
pseudodifferentials d6* anticommute. One can take integrals over the superspace

1= / dPxdP<9F (x,0) (5.1)
with the help of Berezin integration rules
/_(i()” =0, /0“51_0" =&, 15.2)

The integration volume dv = dPxdP<0 transforms under the general diffeomorphism
M= ;T.'M(II?N) as

' dr™M .
dv' = Ber (().l"\') dv: (5.3)
If the function F(z,0) in (5.1) transforms as

a l'IM
oxN

F(;r.’,ol) = B(‘.T”1 ( ) F(;I',B). (54)

9



the integral I is reparametrization invariant. _ )
The following prescription for building of integral invariants from invariant differ-
ential forms was formulated by Bernstein and Leites [6]. Taking arbitrary invariant
differential form F(z,0.dz,d) one can introduce new auxiliary variables 3™ and
y* in one to one correspondence to de™ and df* .Tlese new variables 7™ have the

same grassmann properties as dr™ and df* (opposite to ones of ™ and 0%} and the

following transformation laws

a.l_lm al.lm

nlrn = }Fﬁ]" + 0+ y“, (5:'))
N/ aalﬂ m + 00“ v .r (‘
yuo= gt o’ (5.6)

The transformation (5.5)-(5.6) has very imporﬁul property. lts super(letermiha‘m

(superJacobian)

Hn'™, vy} - <01’M)

—+————— = Ber

e 0
is inverse to the superJacobian for the transformation of the “old” coordinates ™.
This fact is based on the following property: the superdeterminant of the graded
matrix is inverse to the superdeterminant of the same matrix with opposite grading.
It means the invariance of the product dV = (ID.rdDG0dDGy_(lDr] with respect to the
general coordinate reparametrization in the superspace.- In turn this fact leads to
the invariance of the following integral T

I=/dVF(;1.',0,r],y). ‘ (5.8)

(5.7)

If the integral over.q) and y exists, the result of such integration

I:/dD.r(_[D“&F(x,O) (5.9) .

will be invariant as well.

It is convenient at this stage to introduce additional set of auxiliary variables
C'a, transforming as the vector of the GL(D, Dg) and having the grassmann grad-
ing g(C,) = 1, g(Cy = 0). With the help of this ghosts it is easy to construct
invariants in a covariant manner under SL(D, Dg). The additional volume element
dC = dCPdCPs does not transforms due to condition Berh = 1 for h belonging to
SL(D, Dg).

The simplest invariant has the form
I = / dVdCeE Ca = / AV dCem™ Eu*Ca, (5.10)

As was shown in [7] the result of integration over y™ and C4 in (5.10) is proportional
to the superdeterminant of the Ep*

To= /(IDJ?(_ID”()BGTEMA. (5.11)

10

The wide class of invariants can be obtained from the expressions of the form
= / dVACF(Q.C)e B0, (5.12)

where F(Q,C) is an arbitrary function of ("4 and Cartan’s Q -forms. in which differ-
entials of coordinates dr™ are changed to n*. Due to completeness of the one-form
vielbein, the function F(Q,C) can be represented as the series in powers of vielbein

and ("4
F(Q.C) = ST FBxBr W EYMLE*Cg,..Cp, (5.13)

with coefficients ng",gl‘”l"""“ depending on the functions 11""1\1,,“(\,"(.1'.0). Thus. the
evaluation of the integral (5.12) reduces to the evaluation of the basic integrals

JAredng po= / dydCE™ .. E*(p,...Cp B 0, (5.14).

One can show that such integrals are zero when numbers n and & are different. The
nonzero answers for two simplest cases are ~ '

/d’ld('E'4(~'B€im("* = (=) gBer(Ex©). A - (5.15)
/ djdCE" E*Cp,Cpe®'04 = (5.16)

‘ {(~1 )A|+.425AzBl §h B, + (_1).41A7+16-42 826:‘151'} B('I'E}\:A- ’

The general expression for the basic integrals (5.14) can be evaluated from the rela-:
tion ‘ T o ' ‘

/ dpdCeE*Ea"Cn = Ber(EyAS4P) = BerEp* Bersp? (5.17)
by varying in it 47 in the neighborhood of the identity. The resulting I+ g g
look like expression (5.16) with correspondingly symmetrized production of appro-
priate number of 51’;2 multiplied by BerEy. This gives the answer for the invariant:
I (5.12) in terms of the superspace integral

I = /dD;rdDGOZ1”3""‘3'.4,...,.4,1‘4""'4"5,...&- , (5.18)

The question of finding the integral invariant of such type in the superspace for
the action of supergravity, like (2.33) for gravity, is open. If such action does exist. it
contains among the structure constants the Dirac gamma matrices, 7% ,. which break
the tangent space gauge group GL(D) x G'L(D¢) down to its subgroup (SL(2} in the
case of four dimensions) and establish the’connection between bosonic and fermiouic
dimensionalities D and Dg.

1.



6 Conclusions

We have considered the nonlinear realizations of infinite - dimensional diffeomor-
phism groups of any (super)space. The parameters of coset space in a very natural
manner include the coordinates, vielbeins and counections of the corresponding (su-
per)space. The geometrical and physical meaning of higher parameters u* s, as,
with n > 3 is still unclear. Construction of invariant under the action of diffeo-
morphism group differential € -forms is straightforward in any (super)space. At the
same time the GL(D, Dg) gauge group, considered as the right action on the group
element, plays the role of gauge group in the tangent space. The most of the Q-forms
transform as tensors of this GL(D, Dg). The only Q-form with two tangent indices
Q¢ plays the role of connection which automatically is torsionless in the bosonic
case. In the superspace only T and Tj components of the torsion are vanishing
identically.

Such an invariant differential {2 - forms can be considered as building blocks for
construction of integral invariants like action. In purely bosonic space (2.33) gives
the expression for the gravity action. In the case of superspase the method of con-
structing integral invariants is described in the Chapter 5. The exrstmg of the action
for supergravity of such type is an open question.

Acknowledgments. I would like to stress the invaluable influence on me of D.V.

Volkov and V.I. Ogievetsky. [ would like to thank M.A. Vasiliev and A. Nersessian

for useful discussions and comments on the subject.

This investigation has been supported in part by the Russian Foundation of
Fundamental Research, grant 96-02-17634, joint grant RFFR-DFG 96-02-00186G,
and INTAS, grant 93-633, grant 94-2317 and grant of the Dutch NWO organization.

References

[1] A.B. Borisov, V.I. Ogievetsky. Theor.Math.Phys., 21 (1974) 329
[2] V.L Ogievetsky. Lett.Nuovo Cim., 8 (1973) 988
(3] E.A. Ivanov, 1. Niederle. Phys.Rev., bf D45 (1992) 4545

{4] J. Wess, .J. Bagger. Supersymmetry and supelgravrty Princeton Univ.Press,
1983

[3] F.A. Berezin. Introduction to the algebra and analysis with anticommuting vari-

ables. Moscow Univ., 1983
(6] LN. Bernstein, D.A. Leites. Functional Analysis, 11 (1976) 70

[7] P. van Nieuwenhuizen, Phys.Rep. C68 (1981) 189
Received by Publishing Department
on April 7, 1997.
12

o,

ﬂamHeBA S S s SR

iE L[HaJ]belX Q- ¢)opM Kaprana o6o6u1en na cnyqau cynepnpocrpaucra O

vB‘a OHHH LA \ R

- E297-122 |

i -

Hf:J'lMIlCMHble peamraauuu rpynn (cynep)nu@cbeomop(bmmoa e
TeoMeTpHUEecKHE 0BBEKTI N mrrelpanbume HHBapHaHTbl : TR e
chnepnpocrpaHCTBe Ll e T B

['loxaaano uTo Terpanbl H caaanocm moﬁoro (cynep)npocrpancraa ecrecraeu-
HblM 06pa30M MOryT ObITh onHcaHbl B repMunax HETHHEIHBIX peanu3aunii ‘Becko-
Hequmeprlx rpynn nucbcbeomopcbmmoa tooraercrnyroumx (cynep)npocrpancra
Meton NOCTpOEHHS MHTEIPAIBHBIX mmapuanros u3 HHBapHaHl‘Hle ﬂmbcbepeﬂ—

e
o {‘, e -

N

PaGora BblﬂOIlHeHa B ﬂaﬁoparopun TCOpCTHl{CCl\OH rbnam(u M. H H Boromoﬁo—

P

L Q- torms is generalrzed to: the case ot superspace
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