ОБЬЕАИНЕННЫЙ ИНСТИТУТ
 คAEPHЫX ИССАЕАОВАНИЙ

АУБHA

H-39
E2. 9617
$2157 / 2-76$
M.Havlíček, W.Lassner

MATRIX CANONICAL REALIZATIONS
OF THE LIE ALGEBRA $\mathbf{u}(p, q)$

E2. 9617

M.Havlícek, W.Lassner

MATRIX CANONICAL REALIZATIONS
 OF THE LIE ALGEBRA $\mathbf{u}(\mathbf{p}, \mathbf{q})$

```
Submitted to "Letters in Mathematical
    Physics"
```

1. Introduction

In our preoeding papers $/ 1, \dot{\prime} /$ as well as in /3/ there was elaborated a special sort of canonical realizations of some real forms of classical Lie algebras. In this note, continuing In the same spirit, we gite a short desoription of our results conoerning now the Lie algebra $u(p, q), p \geqslant q \geqslant 1$.

Our tagk is to express the generators of the given Lie algebra through a defigite sort of functions of a given number of quantum aanonioal rariables q_{i} and p^{i}. We are interestad In realizations with the following proparties:
(1) The Casimir operators are realised by multiples of the identity element. Suoh a realization we oall Sohur-rea1imations.
(i1) Dnder inv slution, induced on the set of the ohosen sort of functions of q_{i} and μ_{i} by the relations $p^{i+}=p^{i}$ and $\gamma_{i}=\gamma_{i}$, the realizations of the real Lie algebras are okew-Hermitian. (Note that we assume $\left[p^{i}, q j\right]=d j_{j}^{i} \| \quad$.
In refs. $11,2 /$ we had described a large olass of canonioal
realizations of $g 2(\nu, R)$ and $\leq j(2 a, R)$ with these properties. The functions through which the generators are expressed in these \therefore ases were the inost simple ones, polynomials. In other words we were dealing with canonical realizations in the Weyl algebra $\forall J_{. A}, N$ the number of sanonical pairs used.

In order to get the analogous large olass of canonioal realizations of the Lie algebras $(2, m), n \geqslant m \geqslant d$, the above properties demand the use of a more general olass of functions, elements of W_{N} © MoliM, where M_{G} / M denotes the algebra of complex $M_{\times r}$ matrioes (see/3/) In the set of skew-EIGrmitian realizations of $u(p, q)$ presented 1n this note we lise functions further generalized. The generators of $u(f, \dot{y})$ are realized now in the tensor product
 zation of the Weyl algebia $\mathbb{V}_{2 N}$ s.e., certain rational functions of canonical pairs. The reailzations defined recurrently are classified by sequences of real numbers ($\left.\alpha ; x_{1}, \ldots, x_{p}, \ldots\right)$ $\therefore \because \because: \because$ the so cealled si natures. Por $d=1,2, \ldots, 2 q \cdots 1$ Fe get a $d, 1$-parameter set of realizations with the real

 to sero by definition of he gignature). In dependence of a these realizations are contained in $\mathbb{F}_{(N(d)}^{\prime(X)}$ With $A(t)$ $\leq(9,-l-d), r(\alpha)-\left[\frac{d}{2}\right], n=j+\xi$. (We see that for $c l-1$ the number $V(d)=?-A$ equals the mindmal number of oanonical patrs such that a nontrivial realization of $u(, 7, q)$
 furthermore a aet of realisations in $W_{Z N(d)} r(\alpha)$
oorresponding to the signature $\left(d ; \alpha_{1}, \ldots, \alpha_{p+q}\right), d=2 q$,
where $\left(\alpha_{1}, \ldots, \alpha_{p-q}\right)$ is the signature of the skew--Hermitian irreduoible representation of the oompact Lie algebra u (p-q.) with dimension K . The ramalming parameters $\alpha_{p, q, 1}, \alpha_{p, q}$ allow any real value and the number of oanonical pairs in $W_{i n(d), M}^{(r(d)}$ equals $N(d)=\not \subset(2 p-1)$. In the analogioal sets of oanonioal reallgations for all the other olassioal Lie algebre whio. we have studied up to now $/ 1,2,3 /$ the realizationa are Sohur--realizations. We believe that this is true also for the presented realizations of $u(p, q)$. As to realizations charaoteriesa by signatures with $d=11 t$ is a consequence of their mindmally property $/ 4 /$ and in Example 2 we show that also the remaining realizations are Sohurwrealigationa in the partioular agse of $u(2,1)$. In this example we briefly discuss further the question of "equivelenoe" among some presented realizations while Krample 1 gives the oonnection of realisati'n of $u(p, \dot{\psi})$ oharaoterized by aignatures with $d=1$ and realizations of $g l(c, C)$ given in $/ 2 /$.

2. The reourrent relation

We start our oonsiderations with the complex Wegl algebra $W_{2(2 n-3)}^{\prime}, n=p+q \geqslant \dot{2}$. It 1s useful for our purposes to denote ite generating elementa by $q_{0}, f_{c}, \bar{a}_{i}, a^{2}, \bar{b}_{2}, b_{1}^{i}, i=1, n-2$ With the non-zero oommutators

$$
\begin{equation*}
\left[f z_{b} ; 40\right]=1,\left[\vec{a}^{2}, \vec{a}_{d}\right]=\left[h^{2} \bar{i}\right]=\cdots, \tag{1}
\end{equation*}
$$

We use the tensor notation, $a_{2}=.7: c^{i}, \quad$ etc. For a given metrio tensor

$$
\left(y_{2}\right)=d_{y}\left(L_{1}, \varepsilon_{n, 2}\right)
$$

with

$$
\begin{equation*}
\Sigma_{1}=\varepsilon_{2}=\cdots i_{1, \ldots}=\varepsilon_{1}-\cdots=-s_{n \cdot 2}=1 \tag{2}
\end{equation*}
$$

an involution on $W_{2(2, j)}$ is induced by the relations

$$
\begin{equation*}
F_{i}^{*}=-\rho_{c}, q^{\circ} \quad q r,\left(a_{1}\right)^{\prime}=\bar{a}_{2},\left(b_{2}\right)^{\prime}-b_{2} . \tag{3}
\end{equation*}
$$

The localization $\left.W_{i(2 n}^{4} j\right) \quad\left(\right.$ in the element $\mathcal{F}_{i} \in \mathbb{W}_{2(2 n, 3)}^{\prime}$ see /9/) is defined by

$$
W_{2(2 n-3)}^{\prime}=\left\{40^{-i}, \alpha \mid \times \in W_{2(2 n-3)}, l=(, 1,2, \cdots\}\right.
$$

Now let A be any associative complex algebra with involution and let $F_{i}^{d}, i . j=1, \ldots, \ldots \ldots, \quad$ be elements in A such that their commutators are

$$
\begin{equation*}
\left[F_{i}^{d}, F_{k}^{l}\right]=c_{k}^{-d} F_{i}^{2}-\dot{u}_{i}^{-l} F_{k}^{j} \tag{4}
\end{equation*}
$$

Further assume that

$$
\begin{equation*}
I_{2}^{d r}=g_{i k} g^{d} T_{l}^{h} \tag{5}
\end{equation*}
$$

With y_{i} according to (2). Then the $(n-2)^{2}$ akew-Hermitian elements $i\left(T_{i}^{j^{*}}+T_{i} \dot{z}^{\dot{j}}\right)$ and $\left(F_{i}^{d^{*}}-F_{i}^{\dot{j}}\right)$ form the basis of a akew-Hermitian realization of $u(p-1, q-1)$ in $A^{1)}$ Hate that the same in valid for nondingonal rall matrix ($g_{i j}$) similar to the diagonal one (2).

1) The reader may oonault in this question for instance the book of Gourdin /5/.

Theorem 1: Let \hat{i} be an associative ocmplex algebra with involuticna Assume that in A a skem-Hermitian realization of $u(p-1, q-1), p \geqslant q \geqslant 1$, is given through $(n-2)^{2}, n=p+q$, e, aments F_{i}^{j} satisfying (4) and (5). Then the following elements $E_{i}^{j}=\bar{a}_{i} c^{d}-\eta\left(b_{i} b^{d}-\bar{t}_{i}^{d}\right)+\frac{\alpha_{n-1}}{\eta} d_{i}^{d}$, $E_{n}^{n-1}=40^{2}$,
$E_{n}^{i}=q_{0} a^{i}, \quad E_{i}^{n-4}=\psi_{0} \dot{c}_{2}$,
$E_{n}^{n}=\frac{1}{2}\left(q_{0} p_{0}-\bar{i} u+n b \bar{b}+x_{n}+\frac{1}{2}\right)+\frac{x_{n-1}}{n}$,
$E_{n-1}^{n-1}=\frac{1}{2}\left(-4 p_{c}-\bar{i}+\eta b \vec{b}+x_{n}-\frac{1}{2}\right)+\frac{x_{n-1}}{n}$,

$$
E_{1}^{n}=q_{0}^{-1}\left\{\eta\left[\left(b_{k}-\bar{a}_{k}\right)\left(F_{2}^{k}-b_{1} \bar{b}^{k}\right)-\frac{1}{2} x\left(b_{1}\right] \cdot \bar{a}_{1}\left(E_{n}^{\prime \prime} \cdot \frac{x_{n-1}^{\prime}}{n}\right)\right\},\right.
$$

$$
E_{n-1}^{i}=q_{c}^{-1}\left\{\eta\left[\left(F_{n}^{2}-b_{n} \bar{b}^{2}\right)\left(\bar{b}^{*}-a^{*}\right)-\frac{1}{2} \alpha^{*} \bar{b}_{i}\right]+c_{2}\left(E_{n-1}^{n-1}+\frac{1-i_{n-1}}{n}\right)\right\}
$$

$$
E_{n-1}^{n}=q_{0}^{-2}\left\{\left(E_{\ldots-1}^{n+1}+\frac{\alpha_{0-1}^{*}}{n}\right)\left(E_{n}^{n}-\frac{x_{n-1}}{n}\right)+\pi_{1} l\left(b_{4} \cdot \bar{a}_{k}\right)\left(r_{1}^{k}-b_{2} b^{n}\right)\left(\bar{b}_{-}^{L} d^{1}\right\}\right.
$$

$$
\left.-\frac{x}{2}(h \bar{b}-b a)-\frac{\dot{x}^{*}}{2}\left(b+\bar{h}-\bar{u}+\frac{1}{4}|x|^{2}\right]\right\}
$$

$$
?=0_{1} 1, \quad x=x_{n}+2 x_{n-1} ; x_{n-1}, x_{n} \in \mathbb{R}
$$

where

$$
\left(g_{i+2}\right)=\left(\begin{array}{c|c}
g_{i j} & 0 \tag{9}\\
0 & 0 \\
0 & 1
\end{array}\right)
$$

The proof is atraightforward and therefore omitted here; the faot that. $E_{L}^{\prime \prime}$, lead just to $u(p, q)$ is a oonsequemoe of the similarity of the $\left(g_{(, y}\right)$ to the matrix diag ($+1, \ldots,+1,-1, \ldots,-1$).
p-times q-times
The orviously recurrent charaoter of the realization (b) for $\eta=1$ w11l be used in the rext section for construction of further realizaticns of $u(p, q)$.
3. Realizations of $u(, 2, \eta)$ denoted by signatures.

Derinition: For given nommegative integers $p, \bar{q}, p \geqslant q \geq 0, p+\eta, \geqslant 1$,
the ($p+q+1$)-tuple of real numbers

$$
\chi_{p, q}=\left(\alpha ; \alpha_{1}, \ldots, \alpha_{p, q}\right)
$$

is oalled signature if

$$
a=0,1,2, \cdots,-q, \delta_{p q}
$$

and
(1) for $d<2 q-\delta_{n q}$

$$
\begin{aligned}
& x_{1}=\cdots=x_{p+q-d-1}=0 \\
& \text { (11) for } d=2 q(1.8, p>q) \\
& \text { (} \left.x_{1} ; \cdots, \alpha_{p-q}\right) \text { from the signature }{ }^{2)} \text { of an }
\end{aligned}
$$

irreduodble skew-Hermitian representation of $u(p, q)$.
2) That means $\dot{a}_{i} \in R, x_{i r 1}-x_{i}=\dot{n}_{i}, f_{i}=0,1,2, \ldots$ and the repr. of $u(n-q)$ is given by the repr. of su($p-q$) with highest weight $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{1,-q-1}\right)$ eooording to $/ 6 /$ p. 548 extended by $E=E_{4}+\ldots+E_{2-4 p-q}=i\left(\alpha_{1}+\ldots=\alpha_{p-q}\right) \cdot I$.

Note the following important property of the signature. For every signature $\alpha_{p, \psi}=\left(d, \alpha_{1}, \ldots, \alpha_{p, q}\right), d \geq 2$
the sequence ($t-2, \dot{x}_{1}, \ldots, v_{f, q}$,) is again a sigmatore $\alpha_{p-1,4 .}$.

To every signature α^{\prime} fo we will define no rr a skew-Hermithan realization of $L(\nsim, q)$ in $W_{S V, H}^{r} \quad$ (See Theorem 2). The realizations which correspond to signatures with $d=0,1$ are given in the following table:

Table: Realizations with signatures $\mathcal{C}_{p_{1}, 7}=\left(d ; \alpha, \ldots, \alpha_{A+q}\right)$,

$$
d=0,1 .
$$

Further, the skev-Hermitian realization of $u(p, q)$ with signor Lures $\alpha_{p, q}=\left(\alpha ; \alpha_{1}, \ldots, \alpha_{p+q}\right) \alpha \geqslant 2$ is given $\alpha^{\prime} \geqslant$ eq. (6) with η al, where F_{i}^{j} is the realization of $u(p-1, q-1)$ -Nth signature $\alpha_{p-1, q-1}=\left(d-2, \alpha_{1,} \ldots, \alpha_{p, q-2}\right)$. The following theorem summarizes and completes these results.
 a skew-Hermitian raalization of the Ite algebra a ($/ 1 ;$) derined in the above desoribed may by means of eq. (6).
 where
and where $M-1$ with exaeption of the oasa $f-q \geqslant 2$ and $d=2,7$ Whers M is the dimension of che skew-Hermitian irraducible representation of $u(p, \gamma)$ with signature $\left(x_{1}, \ldots, x_{p-p}\right)$, The number $i f(c)=\frac{d}{i}(2 a-c t-A)$ Elves the whole number of oanonical pairs used, and $r i ́ d)$ idtly.
3. Tixaraples

As we fointed out in Introduotion thage realizations are Schur-realizations due to the minimal number of canonioai pairo used: $V(d)=V(d)=p+q-1$.

We show now that these realizations are connested with the gubset of skew-Hermitian. Sohur-realizations of $g(4, R), c=q+q$,

 have the following form:
$a, b=A \therefore \quad a-1$, Ie., they are contained in the Weyl algebra $\left.V_{2(n, 1)} \equiv H_{2(, \ldots, 1}^{\prime}\right)\left(q_{1}, p^{\prime}, \cdots q_{n, 1}, \rho^{\prime}\right)$. The complex linear combinations

$$
i\left(\hat{E}_{L^{2}}^{2}+g^{p} g_{2 i} \hat{E}_{p}^{c}\right),\left(\hat{E}_{\mu}^{s}-q^{\mu \mu} g_{\mu i} \hat{E}_{p}^{c}\right)
$$

define non-skew-Hermitian Schur-realisation of $u(f, y)$.
As we pointed out in Conclusion of Ref. $/ 2 /$ the generators $\hat{E}_{,}^{,}$form a Schur-realization of $g 2(a, R)$ also if \mathcal{C} is are chosen complex. Let us use this possibility and substitute

$$
\hat{x}_{n-1}=-i(n-n)\left(\frac{\alpha_{n-1}}{n}-\frac{1}{2}\right), \hat{x}_{n}=-i\left(\alpha_{n}, \frac{\alpha_{n}}{n} \cdot \frac{n}{2}\right)
$$

$\alpha_{n-1}, \alpha_{n} \in \mathbb{R}$.
Further we shall define two mappings: the isomorphism

$$
\begin{aligned}
& b, w_{f(n-1)}\left(q_{n}, p_{1}, \cdots, q_{n-1}, p^{n-1}\right) \rightarrow w_{2(n-1)}^{\prime}\left(a^{2}, \bar{a}_{2}, q_{c}, p_{c}\right) \\
& b\left(q_{2}\right)=-\bar{a}_{2}, b\left(p^{2}\right)=-a^{i}, b\left(q_{n-1}\right)=p_{0}, b\left(p^{n-1}\right)=-q_{0} \\
& (i=1,2, \cdots, n-2)
\end{aligned}
$$

and $:_{c}{ }_{c} \in E$ not $W_{2(n-1)}^{1}\left(a^{2}, \bar{r}_{i}, q_{0}, f_{c}\right):$

$$
\because\left(a^{2}\right)=\psi_{c} a^{2}, v_{c}^{i}\left(\bar{u}_{z}\right)=\varphi_{i}^{-1} \bar{a}_{z}, \dot{v}_{c}\left(\varphi_{c}\right)=\varphi_{\bar{c}}^{2}
$$

$$
v_{2}(y)=\frac{1}{2} p^{2}(y c p+\bar{a} a+c), \quad c \in C
$$

(Both mappings b and V_{c} do not conserve the involution). If we ohoose $c=-\alpha_{n}-\frac{3}{2}$ then $b\left(\hat{E}_{\mu}^{n}\right)$ is related to $E_{h}^{0} \quad\left(g_{1}\right.$ ven by eq. (6), $\left.\quad \eta=0\right), 1.0 .$,

$$
{ }^{L_{c}} b\left(\hat{E}_{\mu}^{u}\right)=E_{\mu}^{B} .
$$

As the elements $\hat{E}_{\mu}{ }_{\mu}^{\prime}$ are polynomials in oanonical variables they are simper than the rational functions E_{μ}^{ν}. This more complicated form of the generators E_{i}^{4} can be understand as the price for tine aken-Hermitioity property. The question is of course whether it 1 s necessary, $1 . \mathrm{A}_{\text {., whether }}$ skew-Harmitian Schur-realization of u (μ, q; in the Feal algebra exists. Due to the known isomorphism $u(1,1) \simeq g^{2(2, R)}$ the realizations (10) give such an example for $u(1,1)$. (11) Realizations of $u(2,1)$ with signature $\left(2 ; \alpha_{1}, \alpha_{2}, \alpha_{3}\right)$

These realizations are given through 3 canonical pairs by eq. (6) with $\eta=1$ if we put $F_{i}^{j}=F_{i}^{1}=\alpha_{1} 11 \quad$. Generaling Casimir operators of the enter of the enveloping algebra $U[u(2,1)]$ are $i C^{(1)}, C^{(2)}, i C^{(3)}$ where

$$
C^{(1)}=E_{\alpha}^{4}, C^{(2)}=E_{\mu}^{b} E_{\mu}^{, ~}, C^{(3)}=E_{\mu}^{D} E_{4}^{p} E_{f}^{4},
$$

By direct calculation we obtain

Where

$$
\begin{align*}
& \ddots_{1}^{2}+\frac{1}{1}-x_{2}-\theta \tag{12}\\
& \ddots_{2}-\left(\frac{4}{3}+\frac{4}{2}\right) i_{2}=\frac{1}{2},
\end{align*}
$$

This shows that the considered realizations are Schur-realiantion. As we see the Casimir operators $C^{i 2}$) are symmetric polynomials in the variables $x_{1}^{2}, x_{2}, \dot{x}_{3}^{2} ;$ this fact can be used for the following considerations, It 19 a well-known property of symmetric polynomials that for fixed values of $c^{\text {as }}$, :" three complex numbers $\tilde{\gamma}_{1}, \dot{\alpha_{2}}, \dot{x}_{,}$fulfil eq. (11) if and only if they are roots of a $3-r$ order equation $x^{\prime}+c, x_{2}, \ldots, \ldots$. Where that coeppicients $\dot{c}_{c}, \iota_{1}, l_{2}$ are in one-to-one polynomial correspondence with $c^{(1)} c^{(2)} c^{(1)}$.

If and only if $\hat{i}_{i}^{\hat{i}}=\hat{r}_{k_{i}}, \quad 2=1,2,3$, where i_{i}, k_{i}, \quad, Is some permutation of the naturals $1,2,3$. Since α_{1} and x_{2} must be contained in the range of values of $x^{T} ;$ (given by eq. (12) for real x_{1}, x_{2}, x_{3}) there are two aasca: (1) if $\quad \operatorname{lng}_{2}^{2}=0$ then x_{i}^{2} do not differ from $i_{i}^{2}, \dot{\alpha}_{i}=\dot{j}_{i}$,

$$
i=1,2,3 .
$$

(11) If $\operatorname{lm} \underset{\alpha_{2}}{\underline{2}}=0$ there exists one and only one different family $\alpha_{2}^{2 \prime}$:

$$
\dot{x}_{1}^{\prime \prime}=\dot{x}_{1}^{\prime}, \tilde{x}_{2}^{\prime \prime}=\dot{x}_{3}^{\prime}, \hat{\alpha}_{3}^{\prime \prime}=\hat{x}_{2}^{\prime}
$$

For both the cases we get that the signature which gives according to (12) the valuss $x_{1}^{r \prime}, x_{2}^{*}, x_{1}^{*} \quad$ must be
 only one realization, in the class of realizations with signatures ($2 ; \mathcal{S}_{1}, \ldots$,), in which the eigenvalue of any Casimit cjerator is the same as in the realization with the sigoature ($\left.2 ;{ }_{i}, \quad \therefore \quad x_{j}{ }^{\prime}\right)$. So, if $x_{i}=C$ there are Just two realizations with the same eigenvalues of Casimir operators while for $\quad \chi_{2}=0$ no further realization leads to the same eigenvalues.

As, generally, two Schur-realizations of a Lie algebra which differ in eigenvalue of some Casimir operator cannot be related (in'equivalent mod $\hat{E n c}^{\prime}$. $\mathrm{H}_{\mathrm{f}}{ }^{\prime}$) we have proved that in the class of realizations of $u(2,1)$ with signatures (2; \therefore, i) any pair of realizations are non-related realizations with the possible exoeption of pairs with signatures ($2 ; \gamma_{i}^{\prime} \dot{x}_{2} \dot{x}_{1}$) and ($2 ; x_{1}^{\prime} \frac{1}{1} x_{2}, x_{1}^{\prime}$, $\therefore \dot{1} \dot{1}_{1}^{\prime} \quad \alpha_{2}, \alpha_{1}=\dot{N}, \alpha_{2}^{\prime} \neq C$.

This case remains for an independent discussion.
t. Conclusion

The generators of the Lie algebra $u(\gamma, y)$ in the realian tions described in this paper are matrices the elements of which are the most simple raticnal functions of oanonical variables. As we already said there is a question if negative powers of the Gic's are, without loss of akew-Hermitioity, neoessary or not. The similar situation arises as to the use of matrices in our formulas, 1.e. the necessity of use of $W^{\text {rad }}$ with $M>1$.

We have seen that in the ind: \mathcal{H} ion process from Theorem I to Theorem 2 we come to the question or skew -Hermitian Schuirealizations of the oompact Lie algebra u ($/, \gamma$) in $A_{i s}^{r}: H_{i s}^{\prime}$, . It can be proved that no such a nontrivial realization of "($\because, 7$) exists in $K_{i,}^{r}$, and so some eatension of $I_{\text {i, }}^{\prime}$, is neoessary, We could look for such an extension, eng., in the quotient division ring of the Weyl algerra /8/ wherein $W_{i f}^{\prime \prime}$ is also contained. As we, however, do not know any example of $\dot{n} \frac{n t r i v i a l ~ s k e w-H e r m i t i e n ~ S c h u r-r e a l i z a-~}{\text { a }}$ tin of a compact lie algebra in this structure (with the usual involution) we have taken the other, more simple, extension of $W_{i \lambda}^{r}$, the algebra $W_{i 6, M}^{r}, M \geqslant A$.

If one is interested in applications of the canonical reallaations for representation theory there is also a further reason to take $i_{i i_{i / H}^{r}}^{r}, M \geqslant 1$. The iterative process to construct realizations of $u(\eta, y)$ starts from the well-known classification of skew-Hermitian representations of the Lie algebra of the unitary group $U(p-q)$.

If we accept $H_{i A}^{r}$ as the best structure for our purposes we may ask for further skew-Hermitian Schur-realizations
 It is an interesting property of $\|_{A M}^{\prime} \quad$ that no such realization of a oompaot Lie algebra exists in ${ }_{F i t}^{\prime \prime \prime}$. This assertion generalizes a result known for $V_{2 A^{\prime}}$ ㄴ $\mathbb{X}_{i A}^{z}$ (see $/ 7 /$) and $W_{2 A, H}=H_{2 A M}=$ (see $/ 3 /$) to the lolaligation $W_{N, H}^{r}$, and it will be proved together with more detailed study of the presented realizations of $u(f, y)$ elsewhere.

Refcrences:

1. M. Havlićek, W.Lassner. Rep.Kath, Phys., 8 , 351 (1976).
2. M. Havlidek, W.Lessner. Canonical Realiaations of the I.Li Algebra $5 f^{\prime}(2 n, R)$, JINR E2-9160, Dubna, 1975.
3. M. Havličck, PaExner. Ann.l'Inst.Poince, 23, 335 (1975).
4. A.Joseph. Comm.Math. Physe, 36, 325 (1974).
5. M. Gourdin. WUItary Synmetriets, North-Holland Publishing Com., Ansterdum; 1967.
 Firita, Moscow, 1970.
6. fovoseph. Journ. of MathePhys.,13, 351 (1972).
7. NoJacobson. Lie algebras, M1r, Hoscow, 1964 (1n Russian).
8. W. Horho, P.Gabriel, R.Rentschler. Primideale in Einhïllenden auflisbarer Lie-Algebren, Lecture Notes in Mathematics, 357, Springer-Verlag; Berlin-HeideIberg -Hew York, 1973.

> Heceived by Publishing Departorent on March $18,1976$.

