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Experimental determination of the parameters of elastic scattering is very impor

tant for the development of the modern strong interaction theory (1]. The interaction 

potential of charged hadrons is a sum of Coulomb and nuclear interactions. So, after 

the eikonal summation, terms with the Coulomb and nuclear interactions appear. The 

differential cross sections measured in experiment are described by the square of the 

scattering amplitude 

du/dt = 1r (FJ(t) + (1 + p2(s, t)) JmF'f,(s, t) 

=i=2(p(s,t) +acp)) Fc(t) ImFN(s,t)), (1) 

where Fe = =i=2aG2 /ltl is the Coulomb amplitude; a is the fine-structure con

stant and G2(t) is the proton electromagnetic form factor squared; Re FN(s, t) and 

Im FN(s,t) are the real and imaginary parts of the nuclear amplitude; p(s,t) = 
Re F(s,t)/Im F(s,t). 'Just this formula is used for the fit of experimental data de

termining the Coulomb and hadron amplitudes and the Coulomb-had~on phase to 

evaluat~ p(s, t). The phase of the Coulomb-hadron interaction has been calculated and 

discussed by many authors (2] and has the form (3] 

cp(s, t) = =i=[, + ln(B(s, t)Jtj/2) + ln(l + 8/(B(s, t)A 2
)) + 

(4Jtj/A2
) ln(4Jtl/A2

) + 2Jtl/A2
], (2) 

where B(s,t) is the slope of the nuclear amplitude; A is a constant entering into the 

dipole form factor. 

Two experiments UA4 (4] and UA4/2 (5] gave very different values of p. In work (6] 

it was shown that this value strongly depends on the used procedure and parameters in 

(2). That is why one should more acc~rately know all quantities in (2). Recently, M. 



Block has noted the importance of the magnetic interaction of hadrons for the defini

tion of p [7). Now there are the large spin programs at RHIC and LHC. These programs 

include the measure of the spin correlation parameters in the diffraction range of elastic 

scattering. The phenomena of the interference of the hadronic and the coulombic am

plitu_des may give an important contribution not only at very small transfer momenta 

but also in the range of the diffraction minimtim [8). So one should know the phase of 

the interference of the coulombic and hadronic amplitude at sufficiently large transfer 

momenta too. 

The last two terms in (2), symbolized as 11, appear in the phase -of the Coulomb 

amplitude in the second Born approximation when the hadron form factor is taken into 

account. They were calculated by R. Cahn (3] with the form factor of hadrons in the 

form: 

G(t) = [A2 /(A 2 + q2)jl/2_ (3) 

Then, taking the new value of A2 = 0.71/4 GeV2 to coincide with the dipole form 

factor at very small transfer momenta and using some approximation he calculated an 

additional term and showed that it is to be taken into account. However, really we 

don't know the accuracy and the working range of additional terms in this case. 

A number of models [9,10) predicts the existence of the nondisappe_aring spin-flip 

amplitude .at high energies in the diffraction peak region. A possihiJity for appearing 

this amplitude at ,./s = 540 GeV in the proton-antiproton scattering has been shown 

in [6]. At present, new experiments are proposed on high precision investigations of 

polarization phenomena in the diffraction region of the proton-proton scattering at 

RHIC, see for example [8,11). There also we need exactly the contribution of the 

coulombic' amplitude. 

In this work, we exactly calculate the phase of the Coulomb amplitude in the second 

Born approximation with the form factor in the monopole form. Our expansion of the 

monopole form factor allows us to make a good, approximation of the dipole form factor 

up to few Ge V2 of transfer momenta and then calculate II which can work up to the 

range of the diffraction minimum. 
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For the hadron interaction, in the absence of nuclear forces we have only the 

Coulomb amplitude that in the eikonal reprcs<·11tation has the form 

1 /00 
Fc(q2) = 2i Jo bdbJo(bq)(I - cxp(Xc(b))), 

Xc(b) = 2i 100 
bdb.lo(bq) l·:(q2). 

Let us take the hadron form factor in the form: 

G2{q) = A4/(A2 + ,/)2, 

where A 2 is some constant. Let us expand 1 lI<' fon11 factor into three parts 

2 _ q2 ,\2q2 
G (q) = 1 - A2 + q2 - (A2 + q2)2. 

(4) 

(5) 

(6) 

(7) 

In this case, we obtain the part of th;, scattcri11g amplitude which does not depend on 

the form factor and the part with a new form factor. Note that the first two terms give 

the square of the form factor as in the work by IL Calin.· 

For the second Born term with our form factor we have 

F;b =-:- ({2 ® 2} + {2 < :l})Jo(bq)bdb 1 100 
2i O • 

(8) 

where 

{2@ 2} = x~x~ - x:,>.:'; - x;x~ + x;x;, 
{2@ 3} = -x~x;- x;x;; + \,1 x; + x;x; + x;x; 

The quantity Xo is the eikonal with the first t<·rm, Xi and x2 are the eikonals with 

the second and third terms of our form fact.or. Note that the terms {2 0 2} represent 

the second Born approximation with the Cal111 form factor. 

Let us develop our procedure of calculat i11g the f;oulomb phase with the form 

factor for th-e simplest examples. So, the first term of (8) is the second Born term of 

the scattering amplitude without the form factor. For it we have 

2B 2 1 ( ' ") Fc0 (q ) = 2i <P XoXo = 2i ["' ,:,x~ bdbJ0 (bq), (9) 
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and we obtain, introducing A as a fictitious photon mass and representing a power of 

q2 as an eponential integral, 

x~(b) = -2ia f
00 

f
00 

exp(-(A2 + q2)x) J0 (qb)qdqdx, k k · (10) 

x~(b) = -2ia 1= 1= exp(-(A2 + q'2 )y) J0 (q'b)q'dq'dy. 

Integrating over q we obtain for the scattering amplitude 

ia21oo 1= 1= dxdy 1i2 b2 F~ = - [ -- exp(-xA2 - -) exp(-yA2 - -)JJ0 (bq)bdb 
2 0 0 0 xy • 1x 4y 

(11) 

Upon integrating over band introducing new variables w and z 

2x = w(l + z);2y = w(l - z) 

we obtain 

j l 1= , F~ = ia2 dz dw exp(-wA2 
- q2(1 - z2)w/4). 

-1 0 
(12) 

These integrals are calculated_ exactly 

p 2B = ia2 
In lq/2 + ✓(V + q

2
/4\ 

ca q2 . q/2 - ✓P2 + q2/4) 
(13)_ 

and for A -+ 0 we obtain 

p2B -ia2 A2 
c0 = --In(-) q2 q2 . (14) 

So, for the sum of the first and second Born tP.rms without the form factor we have the 

ordinary representation 

where 

a ia2 A2 a 
Fc0 = -- - - ln(-) = --;- exp(ia '-Pc(q2)), 

q2 '/2 q2 q2 

A2 
'-Pc(q.2) = ln( 2 ). 

q 

, For the second and third terms (8) we have 

F.2B 
(c2),(c3) , 

ia
2 1'<> 1= 1= dxdy b

2 
b

2 

=- [ --exp(-xA2 --)exp(-yA2 --)]Jo(bq)bdb. 
2 o o o xy 4x 4y 
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Again, upon introducing the new variables w and z and integrating, we find 

F,2B 
(c2),(c3) 

j 0 21l 1oo = - dw d;, exp(-w[(I - z)A2 /2 + (1 + z)A2 /2 + q2(1 - z2)/4)) 
2 -1 0 

1 ~ 1 ~-q2 
= -ia2{2(A2 + q2) In I q2 I+ 2(A2. + q2) In I (A2 + q2)2 j}. (17) 

Now we must calculate the fourth term of (8). In the above calculations we had 

the same form as for the first term but with the change A-+ A. However, at the end, 

we cannot neglect A 2 in any terms, and we obtain 

1 4A2 
, ff • 2. [ - In 1---;:====;:=~~IJ-

Fc~B = -ici </>(X1X1) = -ia qJ(4A2 + q2) ( ✓(4A2 + q2) + q)2 (18) 

Using this method of calculation we can obtain the result for other terms of (8) 

which are sufficiently complicated but eventually exactly calculated, and thus we finally 

have 

, ff -1 [A2
] 

</>(XoXo) = ~ In 2 ' 
q q 

2 M, 
</>(-x~x; - x~x~) = A2 + q2 In~ A2 + q2l, 

-2 2A ) 
' ") - ------;::;::==~ ln(--;:;:==c==~- , 

</>(X1X1 - q✓(4A2+q2) J(4A2+q2)~q 

. 2A2 AA A2 - q I 
' ff ' ff) --,,...,.(ln(--] + ~-, </>(-xoX2 - X2Xo = (A2 + q2)2 A2 + q2 2A2 

. 1 .. 2A2 2A l , " , ff) --~ · In[--;;:=.;:=~-, 
</>(X1X2 + X2X1 = 4A2 + q2 - q(4A2 + q2)3/2 J(4A2 + q2 ) + q 

, ff _2A2(A2+q2) 1- A2+q2 
</>(X2X2) - q2(4A + q2)2 { 2(A2 + q2) 

4A2 l 2A 
qJ(4A2 + q2 ) n[ ✓(4A2 + q2)]}. 

(19a) 

(19b) 

(19c) -

(19d) 

(19e) 

(19{) 

Summing all the terms and collecting the leading terms with ln(A2 / q2 )
0 

we have 

2b ia2 A2 • 2 1 A2 

Fe (q)=--2 ln(2 )+za (A2 2)ln(2 ) 
q q + q q 

. 2 A2 A2 A4 
+za (A2+q2)2ln(q2)+ q2(A2+q2)2 v, . (20) 
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Hence, for the total Coulombic scattering amplitude we have the eikonal approxi

mation of the second order in ai 

4 • ).2 

Fe(q)=F]B+FJB=-~[(A/ 2)2)[l+ia({ln(2 ) + v,}], 
q +q q 

where 

(A2 + q2)2 4A2 ) + C, 
v,=Aln( A2q2 )+Bln((J(4A2+q2+q)2 

with 

,--._ 
(/) 

C 
0 

-0 
0 
L .____, 
;, 

q2(2A2 + q2) . 2A4 - 17A2q2 - q4 
A= J\4 ; C= (4A2+q2)2 , 

(A2 + q2)2[4A4(A2 + 7q2) + q4(10A2 + q2)] 
B = -'------'-....C.......:..-'-----''--'----,--

A 4q( 4A 2 + q2)s/2 

0.50 

0.40 

0.30 - ---------
0.20 

__ --;7'~ 

,. / / ---
// / 

0.10 °II/ 

0. 00 L._...._--1.._....__....,i__.__..___....__.__....___, 

0.00 0.02 . 0.04 0.06 0.08 0.1 0 
-t (GeV2) 

Fig. I. The behavior of v with q2
• (the long dushed line v,- the equations (22); 

the short dushed line - Ve of the work (3]. 

the dotted line - VA/3 ; the solid line - Vfit • 
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(21) 

(22) 

Frg.l shows the result of paper (3] - Ve a11<l our calculation of v, with A 2 = 

0.71/3 GeV2
• Note that our form fact.or is sulficiPntly close to the usual dipole form 

factor with A2 = 0.71/3 GeV2 up to q2 ::::: I (;"F2 • It is easily seen that as q -+ 0, 

our v, -+ Ve and vanishes in the limit of a point charge. The numerical calculation 

shows (see fig.I) that at small q2 the diffonmn· lwtween v, and Ve is small, but after 

q2 = 3.10-:-2 GeV2 it is rapidly growing. So, there is an essential difference of their 

behavior with growing q2 as v, continues slowly growing with q2 and Ve quickly de

creases and become negative. It is clear that the· solution of Ve must be bounded at 

-t =·3.10-2 GeV2 • 

Our method allows us to ~ake exact. calcnlat ions of v with the dipole form factor 

of hadrons. However, the corresponding exprc·ssio11s will be very complicated and it is 

bet~er to make the calculation with fitting t!IC' dipole form factor. If we multiply the 

last two terms and A in (7) by free parame·krs. wc can make a good fit of the dipole 

form factor up to q2 = 5 GeV2 and then calrnlate Vfit using (22). This calculation 

of Vfit for this form factor are shown in Fig. I. It is clear that the complete fit gives 

the upper bound of v and for the practical rnlculat.ion we can use our formulas with 

A2 = 0.71/3 GeV2
• It means that we can calculate the contribution of the coulombic 

interaction, taking into account the hadron form factor that will be valid in the whole 

range of the diffraction peak and it is especially exactly calculated for small transfer 

momenta. The method developed here gives the• possibility of calculating the hadron

coulomb phase with the hadron eikonal phas<' which can describe the experimental 

data up to diffraction minimum. We hope make• it in a subsequent work. The author 

expresses his ·gratitude to V.Meshcheryakov a11cl D.Shirkov for support in this work 

and to P.Gauron, S.Goloskokov, S.Kuleshov, B.Nicolescu and M.Smondyrev for fruitful 

discussions. 
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