


Experimental determination of the parameters of elastic scattering is very impor-
tant for the development of the modern strong interaction theory (1]. The interaction
_potential of charged hadrons is a sum of Coulomb and nuclear interaétions. So, after
the eikonal summation, terms with the Coulomb and nuclear interactions appear. The
differential cross sections measured in experiment are described by the square of the

scattering amplitude

dofdt =n (F2(t) + (1 + p*(s,t)) ImF3(s,t)

F2(p(s,t) + ap)) Fo(t) ImFn(s, 1)), B 1)

where Fc = F2aG?/|t| is the Coulomb amplitude; « is the fine-structure con-
stant and G%(t) is the proton electromagnetic form factor squared; Re Fyn(s,t) and
Im Fy(s,t) are the real and imaginary parts of the nuclear amplitude; p(s,t) =
Re F(s,t)/Im F(s,t). Just this formula is used for the fit of experimental data de-
t‘ermining the Coulomb and hadron amplitudes and the Coulomb-hadron phase to
evaluate p(s,t). The phase of the Coulomb-hadron interaction has beén calculated and

discussed by many authors [2] and has the form [3]

@(s,1) = F[y +In(B(s, t)]t]/2) + In(1 + 8/(B(s,1)A%)) +
(4[tl/A%) In(4{t]/A%) + 2}21/A%), ' 2)

where B(s,t) is the slope of the nuclear amplitude; A is a constant entering into the
dipole form factor. A .

Two experiments UA4 [4] and UA4/2 [5] gave very different values of p. In work [6]
it was shown that this value strongly dependé on the us.ed procedure and parameters in

(2). That is why one should more accurately know all qua.nﬁties in (2). Recently, M.
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“Block has noted the importance of the magnetic interaction of hadrons for the defini-
tion of p [7]. Now there are the large spin pfograms at RHIC and LHC. These programs
include the measure of the spin correlation parameters iﬁ the diffraction range of elastic
scattering. The phenomena of the interference of the hadronic and the coulombic am-
plitudes may give an important contribution not only at very small transfer momenta
but also in the range of the diffraction minimum [8]. So one should know the phase of
the interference of the coulombic and hadronic amplitude at sufficiently large transfer

momenta too.

The last two terms in (2), symbolized as v, appear in the phase of the Coulomb .

amplitude in the second Born approximation when the hadron form factor is taken into
account. They were calculated by R. Cahn [3] with the form factor of hadrons in the

. form:

G(t) = [A*/(A* + "), o (3)

Then, taking the new valué of A2 = 0.71/4 GeVzri.;o coincide with the dipole form
factor at very small transfer momenta and using some approximation he calculated an
additional term and showed that-it is to be taken into account. ‘However, really we
don’t know the accuracy and the working range of additional terms in this case.

A number of models [9,10] predicts the existence of the nondisappearing spin-flip
amplitude at high energies in the diffraction peak region. A possibility for appearing
this amplitude at 4/s = 540 GeV in the proton-antiproton scattering has been shown
in [6]. At present, new experiments are proposed on high precision investiga.tiqns of
polarization phenomena in the diffraction region of the proton-proton scattering at
RHIC, see for example [8,11]. There also we nced exactly the contribution of the

coulombic amplitude.

In this work, we exactly calculate the phase of the Coulomb amplitude in the second

Born a.pprbximation with the form factor in the monopole form. Our expansion of the
monopole form factor allows us to make a good approximation of the dipole form factor
up to few GeV? of transfer momenta and then calculate v which can work up to the

‘range of the diffraction minimum.

For the hadron interaction, in the abscnce of nuclear forces we have only the

Coulomb amplitude that in the eikonal represcutation has the form
Elg) = 57 [ bdbau(ba)1 = explcle) (4)
xe)=2% [ bdbsilon) £ (5)
Let us take the hadron form factor in the form:
G*(q) = A*/(A* + ¢*)%, (6)

where A? is some constant. Let us expand the form factor into three parts

;12 . ‘\2(12
TATE o) - (A2 + g2)2° : (M

G'g)= 1

In this case, we obtain the part of the scattering amplitude which does not depend on
the form factor and the part with a new form factor. Note that the first two terms give
the square of the form factor as in the work by R. Cahn.

For the second Born term with our form factor we have

1 (o]
F? = Z/ [{2®2) + {2 < 3)]Jo(bg)bdb ®)
0 .
where
{2®2} = XoXo — XoX1 — X1 X0 + X1X1»

{2®3} = —xoX2 = x2X0 + \1\2 + aX1 + XaX;
. The quantity xo is the eikonal with the first term, xy and xq are the cikonals with
the second and third terms of our form factor. Note that the terms {2 ® 2} represent
the second Born approximation with the Cahn form factor.

Let us develop our procedure of calculating the Goulomb phase with the formn

factor for the simplest examples. So, the first term of (8) is the second Born term of

the scattering amplitude without the form factor. For it we have

| 1 ’ " 1 o ’ "
FF() = 2 $xoxo) = 5 / \oXo bdbJo(bg); (9)
hd (4]



and we obtain, introducing X as a fictitious photon mass and representing a power of

¢? as an eponential integral,
Xo(0) = =i [ [" eop(=(37 + )2) fab)adads, (10)
Xo(b) = —2ia /0 B /0 " eop(~(31 + q.'z)y) Jolg b)g'dg'dy. o
Integrating over q we obtain for the scat.tering am;.)litude

2B_£ oo ro gy _ 2__[;.?_) _/\2_£
Fco = 9 /0 [/ [) 2y Clp('l‘A 41)(_1'11( Yy 4y)]Jo(bq)bdb (11)

Upon integrating over b ar_xd introducing new variables w and z
2z =w(l+2);2 =w(l - z)
we obtain
F2B = ia? /1 dz /00 dw c:cp(—m/\z; (1 —2%)w/4). ' (12)
0

These integrals are calculated exactly

2B=£n|q/2+ (/\2+q2/4). (13)
° T g2— /(1 gA) -
and for A — 0 we obtain
—ia? | \?
FY=— ln(:ﬁ). (14)

So; for the sum of the first and second Born terms without the form factor we have the

ordinary representation

a ia? A?

a . 2
Fo= 7 ]"(‘q—z) =z exp(ic p.(g°)), - (15)
where '
2 A2
ch(q, ) = ln(q—z)

. For the second and third terms (8) we have

2B
Flea) ()

2(12 o oo -] d.'l:dy 2 b2 2 b2 ' )
_ it —2A% — 2y ezp(~yA? — )| Jo(bg)bdb. (16
U7 oot — £ oty Dl (16)

SR

Again, upon introducing the new variables w and z and integrating, we find

Fig) (e . 4
2 1 oo

= _ﬁ"_/ / dw dz exp(—w[(1 — 2)A%/2 + (1 + 2)AY/2 + ¢*(1 — 2)/4)

22 ] AT g :

{2(A2+q2)1 n|— |+ (A2+q2) |(A2+q2)2|}'

Now we must calculate the fourth term of (8). In the above calculations we had

(17)

the same form as for the first term but with the change A — A. However, at the end,

we cannot neglect A? in any terms, a.nd we obtain o
-1 4A?

9402 + ¢7) l(\/(‘irl\2 +¢%) +4q)?

Using this method of calculation we can obtain the result for other terms of (8)

F3P = —id® ¢(xyx7) = —ia® | . @8

which are sufficiently complicated but eventually exactly calculated, and thus we finally

have
$(XoXo) = ;—jln[;\—:], . (192)
$(—XoX1 — X1Xo) = ;\—,-i—(-lqln[%;], (19b)
$0ax) = q\/(4X,2+ o ln(\/(4A22:q2)+q), (199
$(—XoXz — X2Xo) = (‘Afﬁ;),[ln[ /\2’\:(]2] A Xf ]/, | (19d)
X+ k) = g g g N ek (199
2A%(A? + ¢?) A4 g2 4A? 2A b s

-¢(X2X2) = (A + 72 {1- AT+ ) P ey ey lﬂ[\/(4A2 + %)

Summing all the terms and collecting the leading terms with In(\? /q’)‘ we have
ia? A2 1 A2
F2b — _ﬂ A ;2 - —_
20) = = () + it ()
A? A At

1a2——(A2 T ) ln(:I—z') + —_—q2(1\2 oy Vs. (20)



Hence, for the total Coulombic scattering amplitude we have the eikonal approxi-

mation of the second order in o

e = B2 4 52 =~ S ia(in(y 4wy (21)
c c q2 (A2+q2)2 q? , sl
where
(A? + qé)z 4A? .
Vs =Aln(-———-)+Blp(——n—— + C, 22
( qug ) 11(( F—(4A2+q2+q)2) ( )
with
: A (2A% + q%). C.— 20T — 17A%% — ¢
. - At ! - (4A2 + qz)z ’
g = (A2 + @) BAYA +7%) + ¢4(10A% + ¢?)]
- Ag(4A2? £ g2)5/2 ’
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Fig. 1. The behavior of » with ¢2. (the long dushed line v,- the equations (22);
the short dushed line - v, of the work [3].
the dotted line - v/3 ; the solid line - vy, .

F'rg.l. shows the result of paper [3] - v, and our calculation of v, with A2 =
0.71/3 GeV?. Note that our form factor is sufficiently close to the usual dipole form
factor with A% = 0.71/3 GeV? ﬁp to g2 = 1 GeV2, ‘It is easily seen that as ¢ — 0,
our v, — v, and vanishes in the limit of a point charge. The numerical calculation
shows (see fig.1) that at small ¢? the difference between v, and v, is small, but after
¢* = 3.107% GeV? it is rapidly growing. So, there is an essential difference of fheir
behavior with growing ¢? as v, continues slowly growing with ¢ and v, quickly de-
creases and become negative. It is clear that the solution of v. must be bounded at
-t =3.10"% GeV?. ‘ ,

Our method allows us to make exact calculations of v with the dipole form factor
of hadrons. However, the corresponding cxprvssi(}n}s will be very complicated and it is
better to make the calculation with fitting the dipole form factor. If we multiply the
last two terms and A in (7) by free param(‘iurs; we car make a good ﬁt- of the dipole
form factor up to ¢* = 5 GeV? and then calculate vg, using (22). This calculation
of vg, for this form factor are shown in Iig.1. It is clear that th? complete fit gi\;es
the upper bound of v and for the p‘,ractical calenlation we can use our formulas with
A? =0.71/3 GeV?2. It means that we can calculate the contribution of the coulombic
interaction, taking into account the hadron form factor that will be valid in the whole
range of the diﬂraction peak and it is especially exactly calculated for small transfer
momenta. The method developed here gives the possibiiity of calcuiating the hadron-
coﬁlomb phase with t};e hadron eikonal plase which can de_sCribé the experimental
data up to diffraction minimum. We hope make it in a subsequent work. The author
éxpresses his ‘gratitude to V.Meshcheryakov and D.Shirkov for support in this work
and to P.Gauron, S.Goloskokov, S.Kuleshov, 3.Nicolescu and M.Smondyrev for fruitful

discussions.
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