


1 Introductlon

‘\”In ref [1] 1t has been shown that the congruent transference 1ntro- S
f"duced by Weyl [2] i in'1921° defines a non-Abehan gauge ﬁeld The’ PR
Weyl gauge theory is'a reahzatron of abstract theory of gauge ﬁelds‘ s
s ‘1n :the framework of class1cal dlfferentlal geometry wh1ch does not
"f assume separatron between space - time’ and a gauge space. At the‘l
if».same time, contemporary gauge models assume an exact local sep- ~ - -
: ‘,.'aratron between space - tlme and a gauge. ﬁeld It 1s _]ust th1s p01nt"“,;
that the Weyl theory opens a new. possrbrhty e e
i It i is' shown that the space: of: all covariant antlsymmetrlc tensor
fﬁelds isa sp1nor representatlon of the Weyl gauge group and allows '
f,the constructron of ‘a spinor current - source in a gauge theory of i
“that type Status of the Cartan tors1on ﬁeld w1th1n the Weyl gauge% -
theory is cons1dered and 1t is shOWn that the torsion is not a gauge‘;_ s
,ﬁeld however, in‘a certaln gauge the theory admlts geometrlc in- S
erpretatlon in terrns of the Rremann Cartan ,‘geometry i
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, :;Accordmg to (1), vector components under the congruent transfer— 3

B ence change by the law

‘t ,,and the blvector FJH d:cJ Denote by V, "the Covariant der1vat1ve:,>,";:‘,
et _w1th respect to the connectlon I‘ Then w1th allowance for (3) we; S

o dlggvv) =0.

T ‘~transformat10n

\

in’ the space of vector fields, .5' 1 is the ‘inverse transformatlon‘

fx"‘f?f;f Tfollowmg law l »_‘5‘-‘ L o

ot g,wh1ch 1ncludes the dlsplacement belonglng to the Rlemann geome- . L
| ftry (the ﬁrst term) and the rotatlon determlned by the metr1c g

. :Thus the Weyl connectlon 1smetr1c Undercongruent transference,»:: ¢ :
" the length of a vector does not change s1nce maccordance W1th (4) il

.- The Weyl geometrlc con tructlon presented above has a 1mple’ -
o f’fgroup- theoretical 1 meaning.- Let S' be components of a tensor field ~
o Sof type (1 1) obeymg the' cond1t1on det(.S") £ 0. In this case there B
: exists a- tensor ﬁeld S- -1 w1th components T' such that S’ T" = 6’

STt s obv1ous that- the tensor ﬁeld 5 :can: be regarded as a lmear o

' Slnce under congruent transference the length of a ‘vector: remalns".;_, S
" constant, among the transformatlons (6) we d1st1ngu1sh those’ thatv-”Vl', ol
" _do not change the length of a\vector they are glven by the equatlonsilf PR b

'Transformatlons of the form (6) and (7) form a group that is- a‘ ;
gauge group, as will be shown below, we denote it by Gw. The w
Y gauge group estabhshes'an equ1valence relat10n in the s space of vec:

- tor fields: It can 'be shown that ifa: vector viin‘an equ1valence classjf‘"’ -
undergoes congruent transference then any vector v equlvalent to :

! i

: ",.].lt in the sense . Of the group G'w, also undergoes congruent trans-“.f :
ference, Then the gauge potentlal should be transformed by the G
Flkm'——'.Fz,_, TkT +gu TIY TJ (8

> ‘From' (7) it follows that the tensor Flkm obeys equatlon (3) and
_'f_hence the Weyl connectlon i i S

P U -

also determlnes congruent transference Con51deran 1nﬁn1tes1mal',”;’,'l7'r""‘f
gauge transformatlon .5" 5‘ + u TJ 57“6’ = uJ, whrch uponi’ -
' o :;substltutron 1nto (7) g1ves g,ku H ngu EiL 0. Hence it follows ‘that
,any antlsymmetrlc covarlant tensor ﬁeld of second rank (2 form)f«:vv‘f'
= uJ, determlnes ‘an: 1nﬁn1tesrmal gauge transformatlon since

COHSldeI‘ lnﬁnlte51mal‘"gauge transforn1at1ons" of the

L e B Al i3

: \"fj”where V 1s covarlant derlvatlve w1th respect to the Rlemann .con-
H{\E}nectxon of the metrlc g,J, whose Chrlstoffel symbols are’ g1ven by
(2) Let us now construct the strength tensorof ’the gauge field

. ";" : where R,JH is the Rlemann curvature tensor of the metr1c g,J From

- (9) it follows that the strength tensor is. gaugeft'ransformed by the ylk»
““A“')l' 'law v‘,": U ; : ¢ e } % ; : AR
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e "gauge transformatlons

meanlng It ‘can be shown that’ the curvature tensor “of the Weyl

connection co1nc1des w1th ‘the. strength tensor of the Weyl gauge -
7 feld whereas the gauge potentlal is cons1dered as a’ deformat1on
'\,‘»":gtensor of the R1emann connection. =’ e K R

Y ofie deﬁned by the connectlon F

cedure results in the followmg equatlons of the gauge ﬁeld

SJkl

current- source :

Thus the tensor field- F,Jk, entermg 1nto the Weyl connect1on 15';’,_
- '(a gauge ﬁeld and the: tensor B,JH is, the strength tensor’ of that
©field We stress. that the ‘gauge’ group in the. ‘case under: cons1d-¥
‘»z.rferatlon s’ deﬁned by the metric, while the _gauge | ﬁeld has‘a d1rect',; MO
o ‘geometr1cal meanlng (congruent transference) and'no extra 1nternal~:.,:’ Tl e
Yoor gauge space.is'to-be. introduced.. Here gauge symmetry reﬂects:\/};
2} 'the fact that there does not ‘exist any obJect1ve property that could- e
S ";;‘dlstmgmsh the geometry deﬁned by thelr connectlon F from the'j.- o

VV“.{A:"where S”" is-an unknown current source of the gauge ﬁeld thatv'
ishould be a quadrat1c functlon of components of the quant1ty deﬁn-\;_i T ho \’
mg a'spinor representat1on of the gauge group G’w Var1at1onal pro—_ e :

. ?"'whlch clearly shows the role of the Rlemann curvature tensor under . o
: "The tensor (10) ‘has-a s1mple geometrlc Rl

; LU S o B N
. = e e e T

el From these equat1ons we der1ve the equat1ons for the gauge ﬁeldvl o

- Space time 1nd1ces are raised and lowered w1th the metrlc tensor 9ij;! ]
foal gwhereas parametr1c indices, with the ¢ group, metric [4] Gab. = amJine

In the. Weyl theory, the rnetrlc tensor 18, also a group tensor and’l
A "‘__structure constants are absent

K and gauge space a.re not separated llke 1n the ’abstract theory

; 4 Splnor representatlon

i”

" Next; consi‘der-'the' current 'vectorf‘ :

e 1 : 2
i QJ: 'é’vkl(Fk B:]ml FI Bt]mk+S]kl)

From the ﬁeld equatlons 1t follows that the current is conserved 1f s
the b1vector v,] obeys. the equatlon Vi ka =0. However, the cor-"

: respondlng conserved quant1ty is'not* gauge 1nvar1ant The same b

- holds true also-in - ‘the abstract, theory of gauge ﬁelds ‘In- all the,.‘f‘«l'(,,,.{f
_previous’ formulas it was assumed that the gauge: potentlal is of 1
~ dimension of the i inverse length To 1ntroduce ‘the constant of in-

; teract1on w1th the gauge: ﬁeld we. should make the subst1tutlon;‘ s
- Fyys s hc I “In the limit. 6 = 0 the Lagranglan (11) transforms;;-".;',‘l‘f'
: ‘; 1nto the pure graV1tatlonal one S et :

| wh1ch 1s known [3] to be renormallzable s 4
Let us now compare the Weyl gauge theory w1th the abstract

theory of gauge fields. The: latter is. based on an arbltrary semls1m—f L

ple Lie group with structure constants fe and a set of vector ﬁelds

- The reason 1s that for some Lle;;{,a i
i _groups ‘the coordlnates on' a group can be regarded as tensor ﬁelds o
in space —~t1me wh1ch Just leads to the s1tuat10n ‘when’ space t1me}’i *

_E “:::I';j'i Let us. cons1der the ﬁeld that 1s a source of the Weylfgauge’ ﬁelda,
Sy and’ ‘defines ‘a’ ‘spinor- representat1on of ‘the grOup GW The sp1nor
© representation’of the ‘Weyl gauge group is a 16-comp:

< which can be defined as space of -all covariant. ant




ﬁelds ﬁ, ,p(p = 0,1,2 3 4) on a space - time mamfold with. the“i'i‘ o
S metrlc gij- fMathernatlcally, a shorten notatlon d1fferent1al form 1s‘ o :

» ’.adopted So the forrn is the follow1ng quantlty

}‘lln ref.. [9]

G e

:"“’”y‘ObJects of that sort were ﬁrst cons1dered in ref [5] (see also [6 7 Ll

S R Usmg the 1dent1ty
L 8])- ‘The h1story of the problem and further references can be found T S ‘

R =

R

The Lagranglan (16) is not su1table for the 1nvestlgat10n s1nce the
o operator d is not self—conjugate w1th respect to the scalar product

“To prove the aboye staternent we deterrmne the natural La—; : S ,’,VL'*-

A"granglan for the field:, (14) and show ‘that ‘it is 1nvar1ant underj‘g: el
S :'?';jigauge transforrnatlons ‘which deﬁne the syrnrnetry aspect of the - oo
L Weyl! gauge field. We /deﬁne the scalar bracl(et of two ﬁelds of the’,}..

\"’.k,",‘t““:ftype (14) as. follows

glywhere the bar rneans cornplex conjugatlon If F 1s al forrn the,""

o ~~generallzed curl operator d is. gwen as. follows

R f Here square brackets denote alternatlon 3 = 3/ 3&0 The sunplestnv‘i“
Lagranglan for the ﬁeld F 'fthatcan be constructed 1n terrns of the"i e

Ld(F) t (deF)+ dF F)f FF) v

,’,

(F H) fh + fthl + ft]ht] + f,_,kh” + ft]klht]kl Tk

'j“v"‘Note that the operator of external dlfferentlatlon (15) is the only

SEEOO ,:rwhlch w1ll be now a l d e L
:"j,‘llnear Operator of first order- that cornrnutes w1th transforrnatlons DRV F na y ze We deﬁne a numerlcal Operator A by

" of the. -group of dlffeornorphlsrns the group of syrnrnetry of grav-‘},j.;;:'_t s :se 1ng

L"“~'f1tat10nal 1nteract1ons Therefore the Lagranglan (16) is-defined =~
nlquely If Viisa covarlant der1vat1ve w1th respect to the Rle—’;"v ‘
‘Lrnann connectlon of the- rnetrlc iy deﬁned by relatlons (2), then i NS
: partlal der1vat1ves in (15) can be replaced by covai ant der1vat1ves_'\; e

"zl,It 1s not dlfﬁcult to Verlfy the valldlty of\_the followmg relatlons

” ‘5F‘-—( vmfmv ; vafm”*"“_j_;‘ -~

< i =y b

(f, _fn fz]a ““ft]k, kal)




Q;Fsmce Vd + dV v2 then

L | .V(2V d) + ( V d)V = 0 - 3um[,f1k] + 3u[,Jfk], 4um[,fJH] —|— GU[stkI])

"1’:‘From (18) and (19) ]t follows that the operator \ It can be shown that the opera.tors Q(u,J) and Q (u,J) commute e
i SRR ' o Algebra of the. operators J(u,,) = Q(u,J) is closed Wlth respect to pon
S . e V—- (V 2d)A evies (20) L the Lie bracket Opemtlon e i

B vcommutes w;th the opera.tor V whereas thelr squa.res are equa.l to ‘ e 2 !
vv vv v2—v s
e VVe wxll call the operator V dual to the operator V In accordance\;z~'; 3 | Lim . o ) /
"‘r‘w1th the pr1nc1ple of mlnlmal electromagnetlc 1nteractron S we ma.ke o g From '(23) 1t follows that the opera.tors J (u,,) deﬁne reallza.tlon of
o -"';'r',the substltutlon V => V — 12 A 1n the operators v and V, denote; the L1e algebra. of the cons1dered Weyl group Slnce‘f S N e ' ;

fthe new opera.tors by D a.nd D, respectlvely, a.nd determme tl’lelI'.:li'
P ‘squares We have ‘ e R - ’ ~

E,)+—EAV‘+

ol _»_Where Fu, is & blVector of the electromagnetlc ﬁeld A s1m11arfl;kil’i,,,,
- formula follows for the dual opera.tor D with the cha.nge ‘of the‘ o

:!Operator Q(F,J) by the dua.l operator Q (F,J) The opera.tors Q’fgtkl: ;

and Q are deﬁned by a.ntlsymmetrlc tensor ﬁelds of second ra.nk (2- ’[ o

» ’;forms) Let us wrlte the opera.tors Q(u,,), Q (uu) m an expllc1t1‘r'!’:' ;

Q(UIJ)

‘ tThe condltlons of 1ntegra.b1hty of equations (27) follow from thef“! S
m‘{,""iBla.nchl 1dent1t1es and are of the form Rijk. ™ tmi. + Riji™upn =000

"’When R,JI = K(g,;& _qﬂ& ), equa.tlons (27) will not’ ‘have solu-}‘;«
. ‘'tions at’ all. Thus the Lagra.ngla.n (17) in the space of constant cur-
N rvature wrll be 1nvar1a.nt under the. tra.nsformatlons (25) only upon“’s Ly
lntroducmg a gauge field of a. deﬁmte type ‘The latter can- be de- - :
s termxned a.s follows Cons1der varla.tlons of the type 6F =:J (u,J)F

AU mm —u” mm um: 2
: :.' 2 T 2 l

1 mn
2 f""-mJ + 2um[1.f_1] ul]f)

3”m[tf1kl 3"[ufk]: 4“m[:fmk1] _" Gu[szkl])a (21) ’




Th1s class of var1atlons, up to the Lagrange der1vat1ve, ylelds for

the Lagrang1an (17) e e T S

6L(F) 14

< where S'Jk 1s a tensor ﬁeld of th1rd rank ant1symmetr1c in the last

W two 1nd1ces

~1 e ] ’V-
i ( 11 :Pf n 1p+2 Jlfcflll ,f” dp

to ensure gauge 1nvar1ance ;'We added the same term to the La— ,
granglan (11) of the gauge ﬁeld Thus the expllc1t form of the
ycurrent source of the: gauge ﬁeld is determ1ned un1quely ‘From (28)

‘1t follows that under transformat1ons 6F iJ‘(u,J)F the tensor SJ"I

' E]k _“Ejk + v qu + EJmuk

Accord1ng to (7) the ﬁeld F,kl 1s the Weyl gauge ﬁeld whereas the
field F:is shown to be 1ts sp1nor source That the’ transformat1ons
| (25): deﬁne the sp1n0r representatlon of the group Gw can easrly be. -
g ver1ﬁed by comparing them with- the transformat1ons 5 ) Theory

Cof the ﬁeld Fije: has’ been already formulated above ‘and i in the next . \ N

sectlon we dwell upon the relatron between the Weyl gauge potent1al

both the ﬁelds be1ng tensor ﬁelds of the same type

‘.'L.and the’ Cartan torsion.’ That this. relat1on does ex1st follows from

s transformed by the law S Sl e T

VUJkS’J" RO i

N

nents the Chr1stoffel symbols

; :;5 connectlon called the metr1c connectlon 1s deﬁned unamblguously

respect to F As a, result we. have

5 Torsmn and gauge symmetry

At present the tors1on d1scovered by Cartan is. the sub]ect of nu- / ‘
“merous studles aimed at ‘establishing its: physrcal meaning and the -

connectlon of general relat1v1ty with the physics of microworld. We : f‘ L
: will” cons1der this questlon in the framework of the Weyl gauge

theory ‘Let a linear connectlon ‘be-given, and- F’ - be'its: compo-»
Then, as it was. ﬁrst shown by
Cartan [10] the llnear\ connection un1quely deﬁnes a tensor ﬁeld
K’k'— 1/2(I%, — T;), that is called the torsion tensor The S
Rlemann Cartan 'geometry is g1ven by the metrlc and tor51on ten- - i
~sor of the llnear connectlon compatlble w1th the metr1c Thus the

because

: k. o {Jk} + I‘Jk +g111‘11 gmk + g I‘Ikgmj (29)

; { (30)
and determ1ne 1ts var1at10n wrth respect to F Then we replace the
covar1ant der1vat1ve V; w1th respect to the Rlemann connectlon ln;f :

the Lagranglan L(F ) by the covarlant derlvatlve V, w1th respect
' to the connectlon (29) of the Rlemann Cartan space Tl’l]S pecullar“f ’
subst1tut10n 1ntroduces the tors1on ﬁeld into the Lagranglan 7). \
A new . Lagranglan ‘will be. denoted by’ L;\ (F) Accordlng to (29) e
this Lagranglan for the field F in the Rlemann Cartan space can‘;,,l
be represented as a sum of the Lagranglan (17) and an‘extra term
‘to be denoted as LA(F) Next we' vary both the Lagranglans w1thjf" i




| ,,m, p(p— 1) | 1 _r\»”g\ o = ‘l."
Sty Dmn[uf i2-+4p] f‘——Dbmlml w70
1 Jklf X T
: T BE 3’ thl lpt 'p(p— )(p 2)0[1“2'3"[“ ’Pl) AR S
where F —g Fka,, Sl L b SR
CTle S 3Fl:]k]7

Indlces sandw1ched between vert1cal 11nes are not subject to the
operatlon of alternatlon For the new Lagrang1an we; get S

,,, .

| 5[,,\ (F)

where ]& I&"‘”is the covector of tors1on ,‘*?“When varymg the

Lagranglan L;\, we should take 1nto account that

where gis. the determlnant of the metr1c tensor From comparlson |
of (31) and (32) it can be’ seen’ that these express1ons W1ll co1nc1de

if the gauge cond1t1on C,Jk = 0is’ 1mposed on the:'-ﬁeld F,

i “ we’ set 1ts completely antlsymmetrlc part to zero

Jk, Le. 1f

Sy

"g‘vFlka + Fkt + Fk:]

and then set‘F’ ;\—2]{ , ; inman
Thus ‘we have shown that the ﬁeld F equatlons derlved by

: varymg the Lagrang1an (30) can,in‘a certa1n gauge, be represented
as equatlons in the' Rlemann Cartan space We ‘will also show that”
thc (Jartan tors1on s not a gauge ﬁeld Smce as follows from (5) .

L S s

the Weyl connectlon is. also a metr1c connectlon, then from com-
" parison of (1) and (29) we obtaln the relatlon between components‘,y-
: of the t0r31on tensor and gauge potentlal i Sl R

| ’ / Ft]k —","'I{t]k + I{;k_; + I<Jk17 Lo

(33)]4,;,15'

where K,,k = I&,, gik: From (33) it follows that 1f F,Jk is; known we“;lj' S
can determlne the torsmn tensor components B

:i k, I(Uk __1/2( 'Jk l FJik)

K,,k __—1/2( ,,k —'F,,k)

» and pose the entlrely natural questron of the relatlonshlp betweenf’j L
* the tensors K,,k and K,,k However, such a relatlonshlp that ‘con-
‘5_ta1ns only the: tensors K,,k, K,Jk and: the elements of : the gauge";l_v?"_,, N
group ‘does not ex1st .Indeed, since the tensor Fijxisa skew Ssym-
- metric w1th respect to the: second and: thlrd 1nd1ces whereas the:"
tors1on tensor is skew,~ symmetrlc w1th respect to the ﬁrst two in-:
d1ces in; the relat10n (34) the index that part1c1pates in. the gauge‘
transformatlon (8) and an 1ndex that is not affected by it are, conz. .
fused A , R B g i
L The concluswn :1s that the torsmn tensor 1s not a geometr1cal’5 e
quant1ty from the p01nt of v1ew of gauge symmetry Spec1fy1ng the
_‘torsion tensor, we fix the ‘gauge.: +Thus, the fundamental geometrlcalix
ob Ject 1s "the: tensor F,Jk that determlnes the. congruent transport o
It is for. th1s tensor that the gauge - invariant, equatlons (12) Wthh‘;f e
-arein fact determlned unlquely by, the gauge symmetry, are written ' .

o {‘7} down. ‘Tt_is now. -easy to understand why for the torsion tensor. all

: poss1ble Lagranglans are. encountered and 1nvest1gated in llterature\'".f- o
“with equal SUCCess. If one does pose the questlon of equatlons for
the\tors10n then it is most natural to do’ th1s end to ﬁx the gaugef;,j:f e
1n accordance w1th what was sald earher Ly ’
We note an 1nterest1ng connectlon between gauge transforma-‘ g

s t10ns and Rlemannlan geometry The second term on the rrght = S




"\ . < +

e ;fshand s1de of relatlon (8) vanlshes 1f T Q= 0 In the standard theoryi St

~of gauge fields, this corresponds to trans1t10n from local to global- . e S
k ’ - gauge’ ﬁeld in-a deﬁnlte sense becomes. sxmple a necesslty because 5

o soluﬁons at all As lt was mentloned above th1s s1tuat10n occurs in ‘

‘the's space. of constant curvature ‘where the appearance of the Weyl

o {""transformatlons ‘In the con51dered case, the equatlons T' =0 N
- 'may not have any nontr1v1al SOluthIlS at all for example 1n the ST PR of the absent of global symmetry A very mterestlng space - t1me of 7
k"case when gi;-is'the metr1c of. aspace of constant curvature. Thus e ' "f’:thls kind is “the de Sitter one, wh1ch is. usually cons1dered as a. Cos<: it

. 15 ST I B

ral R1emann1an geometry in general requires ‘a’ local: (gauge) sym—’ T
S ‘metry We note also. that’ geometrlcal relatlonshlps, like: phys1calj]

- laws, depend ne1ther on the ch01ce of ;the’ coord1nate system nor on S
g ,,:'the choice of the bas1s in the studled vector spaces, S0 ‘that all the ?v',”.w}»'
b ;‘f:"“,relat1ons that have been estabhshed above can’ be expressed in’ any::" rad

coord1nate system and 1n any ba51s 1nclud1ng an- orthogonal one

6 Conclusmns

L We summar1ze the obtalned results and present

3 me problemsv'._»;
- ,fj:.The 1nterpretat10n of congruent transport g1ven here makes it’ pos- |-
l’151ble to- estabhsh a deep connectlon between class1cal dlfferentlal‘f*_‘-,‘g;f' 1
B geometry and the theory of: gauge fields.: It is 1mportant to'empha-"

o size once more 'the! fundamental s1gn1ﬁcance of th1s relat10nsh1p,"lf‘,~

: S wh1ch is that in the con51dered case it is not’ necessary to 1ntroduce/iq_‘f{,\, 1

©an abstract gauge space. The equat1ons for 1nteract1ng ﬁelds can{{ T

';'.',ln fact: be un1quely derlved ‘The, relatlons establlshed for. the Weyl ' 0
i gauge ﬁeld and the Cartan torsion’ ‘make it poss1ble 16 cons1der,,~;__-ﬁ‘

. from a new po1nt of v view, the. problem of phy51cal 1nterpretat10n of =~

‘._;the tors10n in’ the framework of the gauge pr1nc1ple The ex1stence e !

7 of the spinor source of the Weyl gauge field is an 1nterest1ng fea-»

: f‘f_ture of this. ﬁeld that d1ctates the questlon about poss1ble Physmal‘;" e

:v',?‘)"man1festat1ons of th1s kind of 1nteract1ons In the M1nkowsk1 space B o
: ‘ i t1me equat1ons (27) are qu1te 1ntegrable Thus the gauge symme-"‘w '

" “‘;~1,‘,.try can be con51dered in th1s case as'a global one:: “With respect to""
. this’ global symmetry a space of forms (14) is. reduc1ble Assoc1ated’, B E
e _‘;reduct1on of the space of forms (14) g1ves the D1rac theory in wh1ch

S we' “find only well known interactions. In contrast with this. case,

\‘there"1s a more 1nterest1ng p0551b111ty, when equatlons (27) haveno‘f.'f\

B

V_‘_‘problems d1scussed in literature in relatlon to the physrcal 1nterpre— L
~ “tation of tors1on can. be 1nvest1gated In a, more su1table framework

po ;of the Weyl gauge theory
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