


1. ‘Introduction

Investigation of the radial excitations of the light mesons is of great interest
in hadronic physics. So far there are the questions connected with the exper-
imental and theoretical descnptlons of the radial excitations of pseudoscalar
mesons. For instance, the 7’ meson with the mass ( 1300 100)MeV is usually
identified as the first radial excitation of the pion [1]. However, indications
of a light resonance in diffractive production of 37-states have lead to spec-
ulations that the mass of the «’ may be considerably lower, at ~ 750 MeV
[2]. So far there are no experimental data concerning the excited states of the
kaons [1]. In this paper we attempt to give the theoretical predictions for the -
masses and the weak decay constants of these excited mesons.

A theoretical description of radially excited pions poses some mterestmg
challenges. The physics of normal pions is completely governed by the sponta-
neous breaking of chiral symmetry. A convenient way to derive the proberties )
of soft pions is by way of an effective Lagrangian based on a non-linear realiza-
tion of chiral symmetry [3]. When attempting to introduce higher resonances
to extend the effective Lagrangian description to higher. energies, one must
ensure that the introduction of new degrees of freedom does not spoil the
low-energy theorems for pions, Wthh are universal’ consequences of chlra.l
symmetry. : T

A useful guideline in the construction of effective meson Lagrangians is the
Nambu-Jona-Lasinio (NJL) model, which describes the spontaneous breaking -
of chiral symmetry at quark level using a four—fermion interaction [4, 5, 6].
The bosonization of this model and the derivative expansion of the result-
ing fermion determinant reproduce the Lagrangian of .the linear sigma model,

. which embodies the physics of soft pions as well as higher—derivative terms.

With appropriate couplings the model allows to- derive also a Lagrangian for
vector and axial-vector mesons. This not only gives the correct structure of
the terms of the Lagrangian as required by chiral symmetry, but also quan-
titative predictions for the coefficients, such as f., fx, gx, g,, etc., which are
in good agreement with phenomenology. One may therefore hope that a suit-
able generalization of the NJL-model may provide a means for deriving an
cffective Lagrangian including also the excited mesons. '

‘When extending the NJL model to describe radial excitations of mesons,
one has to introduce non-local (finite-range) four-fermion interactions. Many
non-local gencralizations of the NJL model have been proposed, using ei-
ther covariant-euclidean [7] or instantaneous (potential-type) [8, 9] effective
quark intcractions: These models generally require bilocal meson fields for
bosonization, whicli makes it difficult-to perform a consistent derivative ex-
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pansion leading to an effective Lagrangian.. A simple alternative is the use
of separable quark interactions. There are a number of advantages of work-
ing with such a scheme. First, separable interactions can be bosonized by
introducing local meson fields, just as the usual NJL-model:- One can thus
derive an effective meson Lagrangian directly in terms of local fields and their
derivatives. Second, separable interactions allow one to introduce a limited
number of excited states and only in a given channel. An interesting method
for describing excited meson states in this approximation was proposed in [10].
Furthermore, the separable interaction can be defined in Minkowski spacc in
a 3-dimensional (yet covariant) way, with form factors depending only on
the part of the quark-antiquark relative momentum transverse to the meson
momentum [9, 11, 12]. This is essential for a correct description of excited
states, since it ensures the absence of spurious relative-time excitations [13].

“Finally, as we have shown [12], the form factors defining the separable inter-.
“action can be chosen so that the gap equation of the gencralized NJL-model

coincides with the one of the usual NJL-model, whose solution is a constant
(momentum-independent) dynamical quark mass. Thus, in this approach it
is possible to describe radially excited mesons above the usual NJL vacuum.
Aside from the technical simplification the latter means that the scparable
generalization contains all the successful quantitative results of the usual NJL
model. ‘
In our previous paper [12] the theoretical foundations for the choice
- of the pion-quark form factors in a simple extension of the NJL model to

the nonlocal quark interaction were discussed. It was shown that we can .

choose these form factors such that the gap equation conserves the usual
form and gives the solution with a constant constituent quark mass. The
quark condensate also does not change after including the excited states in
the model, because the tadpole connected with the excited scalar field is equal
to zero (the quark loop with the one excited scalar vertex - vertex with form
factor). ~ :

Now we shall use these form factors for describing the first excited states
-of the pseudoscalar and vector meson nonets in the framework of the more
realistic U(3) * U(3) chiral model [4, 5, 6]. We shall take into account the

connections of the scalar and vector coupling constants which have appeared.
in this model and the additional renormalization of the pseudoscalar fields

connected with the pseudoscalar - axial-vector tramsitions. For simplicity,
we shall suppose that the masses of the up and down quarks are equal to

cach other and shall take into acecount only the mass difference between (up, -

down) and strange quarks (m, and m,). Then wé have in this model the
five basic parameters: m,, ms, A3 (3-dimensional cut-off parameter), Gy and

G (the four-quark coupling constants for the scalar—pseudoscalar coupling
(G1) and for the vector — axial-vector coupling (Gs)). For the definition
of these parameters we shall use the experimental values: the plon decay
constant fr = 93MeV, the p-meson decay constant g, ~ 6.14 (—ﬂ a2 3), the
pion mass M, ~ 140MeV, p-meson mass M, = 770MeV and the kaon mass
My =~ 495MeV. Using these five parameters we can describe the masses of
the four meson nonets (pseudoscalar, vector, scalar and axial-vector) ! and all
the meson coupling constants describing the strong mteractlons of the meson
with each other and with the quarks.

For the investigation of the excited states of the mesons it is necessary
to consider the nonlocal four—quark interactions. We have shown that for
description of the excited states of the pseudoscalar and vector meson nonets -
it is enough to use only three different form factors in the effective four—
quark interactions. These form factors contain three arbitrary parameters
and describe the excited states of the mesons consisting : 1) of the u and d
quarks (7', p',w'); 2) of the (u,d) and the strange quarks (K', K*'); 3) of the
strange quarks (¢'). For the determination of these parameters we shall use
the experimental values of the masses of the excited vector mesons p', K* and
¢'. Then we can calculate the masses of the excited state 7' and K’ mesons
and their weak decay constants f;» and fx:. In our next work we are going
to calculate the excited states of the 77 and #' mesons without any additional
parameters.2

In section 2, we introduce the effective quark interaction in the separa-
ble approximation and -describe its bosonization. We discuss the choice of
the three different form factors necessary to describe the excited states of
the pseudoscalar and vector meson nonets. In section 3, we derive the effec-
tive Lagrangian for the pseudoscalar mesons, and perform the diagonalization
leading to the physical meson ground and excited states. In section 4, we
perform it for the vector mesons. In section 5, we fix the parameters of the
model and evaluate the masses of the excited states 7’ and K’ and their weak
decay constants f, and fx.. In section 6, we discuss the obtained results.

'The mass formulae for the axial-vector mesons and , especially, for the scalar mesons give only qualitative
results (20 — 30% accuracy).

2Remind, one more additional parameter , connected with the gluon anomaly, was used in the usual NJL
model, when we described the ground states of the n and 5’ mesons (U(1) problem) [5].
The problem of the radial excitations of the light mesons, including the 5 and 7', in the framework of the
potential model was discussed in works [14].



2. U(3)*U(3) chiral Lagrangian with the excited meson
states

In the usual U(3) * U(3) NJL model a local (cur‘rent-current) effective quark
interaction is used

Lig.q = / d'zq(z) (9 — m%) q(z) + Lins (1)

I = [ de[GH3@5) + 3@)i3E)
- S0P + @) 2

where m? is the current quark mass matrix. We suppose that m0 =~ mj.
JSpy, 4(z) denote, respectively, the scalar, pseudoscalar, vector and-axial-
vector currents of the quark field (U(3)-flavor),

is(z) = q(z)A%(z), jb(z) = g(z)ivsAq(z),
i) = a(=z)r*A%(z), i (Z)=ti(;"c)757"/\“q($)- (3)

Here A® are the Gell-Mann matrices, 0 < a < 8. The model can be bosonized
in the standard way by representing the 4—fermion interaction as a Gaussian
functional integral over scalar, pseudoscalar,vector and axial-vector meson
fields [4, 5, 6]. The effective meson Lagrangian, which is obtained by inte-
gration over the quark fields, is expressed in terms of local meson fields. By
expanding the quark determinant in derivatives of the local meson fields one
‘then derives the chiral meson Lagrangian.

The Lagrangian (2) describes only ground- ~state mesons. To include excited
states, one has to introduce effective quark interactions with a finite range. In
general, such interactions require bilocal meson fields for bosonization [7, 9].
A possibility to avoid this complicétion is the use of a separable interaction,
which.is still of current—current form, eq.(2), but allows for non-local vertices
(form factors) in the definition of the quark currents, egs.(3),

iint‘= /d4zz |:_G'_ []St .’L‘)]S'(.’L‘) +]P1($)]P1 .’L‘)]

i=1

-G i)t + jz,,(z)j:,,-(z)]] , @

jile) = / d'z, / a3 G20 F2 (23 21, 22)q(22), (5)
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Jpi(z) = /d4$1/d4$2 4(x1)Fp (x; z1, T2)q(z2), (6)
vi(z) = /d4$1/d4$26 () Fyi(z; 21, 22)q(22), (7)

/d4:c1/d:c2q:r1

Here, Fyi(z;z1,29), ¢ = 1,...N, denote a set of non-local scalar, pseu-
doscalar, vector and axial-vector quark vertices (in general momentum- and
spin~dependent), which will be specified below. Upon bosonization we obtain

Lyos(G,9;0,0, P, A) = /d4z1 /d4:c2 q(z) (i@ 2, — m°) 8(1 — )

/d% Z

+V @) Fpl (s o1, 2) + AP (2) F (s 1. .rg))]q(.lr2)

/d"zz [2G

This Lagrangian describes a system of local meson fields, o¢(x). ¢%(z), V& (x),
AP*(z), i = 1,... N, which interact with the quarks through non-local ver-
tices. These ﬁelds are not yet to be associated with physical particles , which
will be obtained after determining the vacuum and diagonalizing the effective
meson Lagrangian.

In order to describe the first radial excitations of mesons (N = 2), we take
the form factors in the form (see [12] )

Fro(k) = Xfo(k),;  Fgo(k) = irsA°fu(k),
Foy(k) = v"X°fo(k),;  Fai(k) = 157" X fo(K). (10)

7 (2521, 22)q(2). (8)

Jxi(e)

(T3 T1, T2) + ¢F(2)Fy (23 31, a9)

9+ 4) - 5 (VD + )] )

fa(k) = ca(1 4 d k). (11)

We consider here the form factors in the momentum space and in the rest frame
of the mesons (Peson = 0. k and P are the relative and total nomentun of
the quark-antiquark pair.). For the ground states of the mesons the functions
£2(k) =

After integrating over the quark fields in eq.(9), one obtains the effective
Lagrangian of the of, 04, 8, 5, V", V"', AT* and A3" ficlds. (uj = u,uy =
i)

L(0,7 ?, V1 A, a, (51 Va A) =
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1 2 o) L o 420, o2 72
_— —— (V24 A2 4 V2 4 AL
2G(a + ¢+ +¢,,)+2G2(,,+ a+ Vo + 47
—iN, Tr log[if — m® + (0] + 17500 + 7V + 157, A4L)A°

+(8a + i75Pa + VuVE + 157, AL fa) (12)

Now let us remind how we fix the basic parameters in the usual NJL model

without the excited state of mesons [5).
Firstly, define the vacuum expectation of the o} fields

6L . d'k 1 < oL >
- - — = 0.(13
< 60[’1 >O 7.]\(: trA3(2w)4 (k — m0+ < 0{1 >0) Gl ( )

Introduce the new sigma fields whose vacuum expectations are equal to zero

O, =0~ < o} > (1)
and redefine the quark masses
me=ml— < al >. (15)

Then eq. (13) can be rewritten in the form of the usual gap equation

m; = m? -+ 8G1m,-11(m,'), (l = u,d, S) (16)
where
d'k 1
= 17
In(m;) = —iN, / T (17)

and m; are the constituent quark masses.
In order to obtain the correct coefficients of kinetic terms of the mesons in
the one-quark-loop approximation, we have to make the renormalization of

the meson fields in eq. (12)
Oa =gy0a $a=95¢a VI=gpVi", Af=gpAL, (18)

where :
d'k 1

. _1 . . :

05 = Wh(mymI™, Dmi,ms) = —iNe | Gy =y (19)

9% = V6g?. (20)

After taking into account the pseudoscalar - axial-vector transitions (¢, —
Ag), the additional renormalization of the pseudoscalar fields appears

~1 )
94 = Za *gs, (21)
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where Z, = 1 — 6—'";‘ = 0.7 for plons (M,, = 1.23GeV is the mass of the

axial-vector a, meson (1], m. = 280MeV [5] ). We shall assume that all
Lo Z, = 0.7.

After these renormalizations the part of the Lagranglan (12) describing the
ground states of mesons takes the form

L(o,$,V,4) = ———(g‘” ELLARE (V2 +42)
—iN, Tr log [z@ - mo + (gf;aa + 1759300 + g?v('y,,Va“ + 757,,Af,‘)) X‘] . (22)
For simplicity we omitted here the index r of the meson fields.
From the Lagrangian (22) in the one-loop approximation the following
expressions for the meson masses are obtained (5]

1 < 1
M = g} [—-—811(%)} (g; 9z = (23)

G 1my’ T 4ZIy(my,my,)’

M} =k [~ 4(hm) +hmp)] + 775,

1

2

Ik = 4ZI(my, m;)’ (24)
g 3

MZ.__ p —

? 4Gy 8gyLh(my,m,)’ (25)

I(m,,m, TN
M?= M2——___2( ) | (26)

? I(mg,ms)’
. L(my,m,) 3 -
MZ. — 242\TThy, My e . 2.
K Mp I2(mu7 7"'3) + (ms mU) : (27)

Now let us ﬁx our basic parameters. For that we shall use the five experimental
values [4, 5):

1) The pion decay constant f, = 93MeV .

2) The p-meson decay constant g, ~ 6.14.

Then from the Goldberger-Treimann identity we obtain

My = frGx . (28)
and from eqs. (20) and (21) we get
9 m. = fﬂgp

"=z ™ Joz

7

= 280MeV. b (29)



From egs. (19) and (20) we can obtain (see [15])

3

L(my,,m,) = 3
P

A3 =1.03GeV. (30)
3) M, =~ 140MeV. The eq. (23) gives G| = 3.48GeV 2 (see [15]).

4) M, = 770MeV. The eq. (25) gives G2 = 16GeV 2.

5) Mg ~ 495MeV. The eq. (24) gives m; = 460MeV .

After that the masses of n,7' and K*,¢ mesons can be calculated with a
satisfactory accuracy. 3 It is possible also to give the qualitative estimations
for the masses of the scalar and axial-vector mesons, using the formulae

M'ﬁi,j = Ml2/._, +.6mgmj, ) (31)
Mf‘,d_ = M‘fu + 4mym;. (32)

We can calculate the values of all the coupling constants, describing the strong
interactions of the scalar, pseudoscalar, vector and axial-vector mesons with
each other and with the quarks, and describe all the main decays of these
mesons (see [5]).

3. The effective Lagrangién for the ground and excited
states of the pions and kaons

" To describe the first excited states of the all meson nonets, it is enough to use
only three different form factors f,(k) (see eq. (11))

fuu(k) = Cuu(l + duukz):
fus(k) = Cus(1 + duskg)) .
fss(k) = C.'ss(l + dssk2)- ) (33)

Following our work [12] we can fix the parameters dw,du; and d,; by using
the conditions

K (m) =0,  H(m)+H*(m)=0, I(m)=0,  (34)

where

d'k  fofa

(R 0 — ) e

-t (my) = =iV,

The egs. (34) allows us to conserve the gap equations in the form usual
for the NJL model (see cgs. (16)), because the tadpoles with the excited

3To calculate the masses of the 7 and 1’ mesons, it is necessary to take into account the gluon anomaly [5).
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scalar_ external fields do not contribute to the quark condensates and to the
constituent quark masses.

Using eqgs. (34) we obtain for all d, close values
du = —1.78 GeV™2, dyy = —1.75 GeV™2, d,, = ~1.72 GeV -2, (36)

Now let us consider the free part of the Lagrangian (12). For the pseu-
doscalar meson we obtain

8 _ «
L) = 33 S oiP)KL(P)s(P). (37)
1,j=1 a=0
Here ’
: . |
DB = (a0 h2mpar, ($1) 4 (6) = 2R

a=1

b

(8" + (6D)* = 2KPRD, (492 = (612, - (¢})? = (7)™ (38)

¢,’_~‘ band #; are the components of the 5 and ' mesons. The quadratic form
K7 (P), eq.(37), is obtained as

& ‘ E(P) = 6 K(P), : (39)
K(P)= - ijGil
. d'k 1
— i N tr .A3(27T)4 [Jf Y mgivsf,-ak ~ %1; — mg/z'»,sf;J ,
=L ff = f(k. (40)
my = my (a=0,..,7); m=m,
My = my (a=0,..,3); my =m, (a=4,..,8). | (41)

my and m; are the constituent quark masses (m, ~ mg).. The integral (40) is
evaluated by expanding in the meson field momentum, 2. To ordey 2 :

obtains ' e
KW(P) = Z}(P* - M),  K&(P) = Zy(P? ~ M%)
K f?(P) = I('gl(P) = 711(])2 - A26¢15'b=4,....7)a (A = ms — ’”u) (42)
where . v
2 =4z, Zg = 4, g = gl (43)
a2 __ ay—1 1 a a a a p /
MP* = (ZY) [G_l —4(L (mg) + I (7nq‘)] + Z'—lAzﬁablb:m. T (49)

‘a2 —_ ay—-1 _}_ ffa a a a Y
M, (Z3) [Gl -~ 4(1 (1rzq)+I{f (mq,)]+A2(50,,]1,:,1 ____ 7. (45)



Here, I2, I and I{/® denote the usual loop integrals arising in the momentum
expansion of the NJL quark determinant, but now with zero, one or two factors
fa(k), €qs.(33), in the numerator (see (35) and below )
d'k fa(k).. fa(k)

A, (27)1 (32 — K2)(m? — k2)
The evaluation of these integrals with a 3-momentum cutoff is described e.g.
in ref.[15]. The integral over kg is taken by contour integration, and the
remaining 3-dimensional integral is regularized by the cutoff. Only the di-
vergent parts are kept; all finite parts are dropped. We point out that the
momentum expansion of the quark loop integrals, eq.(40), is an essential part
of this approach. The NJL-model is understood here as a model only for the
lowest cocfficients of ‘the momentum expansion of the quark loop, not its full
momentum dependence (singularitics etc.). Z is the additional renormaliza-
tion of the ground pseudoscalar meson states taking into account the ¢® — A9

7% (mg,my) = —iN, (46)

transitions (seec eq.(21)).
After the renormalization of the meson fields

¢ar /Za a (47)
the part of the Lagrangian (37), descrlbmg the plODS and kaons, takes the
form

LY = S [(PP— M) n + 2T, P mmy+ (P* — M%) n}],  (48)

N | =

1 -
LY = Sl(P* = Mi, - &%) K} + (P - M}, - A?) K}

+ 2Tk (P? - A?) K Ky). | (49)
Here
r,= % ___ & (50)
a = Za a a a. o
Vi Z; \/[2I2ff
M? = (4ZIy(m,,m ))—l[i_sf (my)] = my_
m 2 uy 'ty Gl 1 u 4ZmuI2(mu,mu)’
M = (@l (mama) - — 81 (ma), e
1 .

ML = (4ZL(m., ms))—l[Gi — 4(L(ma) + L(my))] + (27! = 1)A?

4ZI2(mu7 ms) + ( ) ’
. ’ .1
ME = (4l (my,m,)) '[CTl — (I (m,) + I (m,))]. (52)

10

After the transformations of the meson fields

¢ = %@(m sinb, + /1 =T, cos,)¢%"
+%(\/—1+_I‘asin 8a — V/1 =T, cosb,)$s",
\/_(\/*r sinf, — \/1+_1‘ c059,) %"
(\/_r sinf, + m costl,)p2r (53)

the Lagrangians (48) and (49) take the diagonal forms

LY = (P2~ M?) 7%+ }(P? = M2) 2, (54)
LY = 2 (P = M) K + 3(P* ~ M) K™. (55)
Here '
1
2 _ 2 2
M(M’) - 2(1 - T2) [M + M,
(=) /(M2 = MY+ (2M M, T2, (56)
1 .
My iy = —(—fﬁ[MK, + M2 +2A%1 -T)
(=) /(ME, — M, )2 + (2My, My, T ). (57)
and ' o |
1 qu., - Mja
tan2, = ([ -1 2L 4] -
. T2 [Mji. + M, (58)
In the chiral limit we obtain: M,, =0, M,, # 0 (see egs. (51)) and
M} = ML + O(My), (59)
M+ MIT,
M2 o= - ' le + O(M3). \ (60) -

Thus, in the chiral limit the effective Lagra.ngian eq.(48) describes a massless
Goldstone pion, 7, and a massive particle, 7'. We obtained similar results for

the kaons. 7
For the weak decay constants of the pions and kaons we obtain (see [12])

fr = muy 2ZI2(mu,mu) (Sine'rr V14-T7 + cosfr\/1—T,), .
fr = muV2ZIh(my, my) (stnbr/1 — Ty — cos0,/1 + T,), (61)

11



fx = m"—\;_i—ms-\/Zlg(mu,ms) (sinfx /14 Tk + cosfx /1 —T'k),
fro = ﬂ"—ji—mi,/zb(m,,,ms) (sindx+/T= T — cosBxv/T+ Tr). (62)

In the chiral limit we have

1+Fu . 1—Fu

5inb, = - 5 cosl, = 5 (63)
and
My . (mq + my)
In = —_—, = —_—, o = 0, cr = 0. . 64
f Gr Jx 29k . i (64)

Here we used eqgs.(19) and (21). Therefore, in the chiral limit we obtain the
Goldberger-Treimann identities for the coupling constants g, and gx. The
- matrix elements of the divergences of the axial currents between meson states
and the vacuum equal (PCAC relations)

(Olo"A5l¢") = mify6%, (65)
(0lo"Ag4'®y = m3, fys°. (66)
Then from egs. (59) and (64) we can see that these axial currents are conserved

in the chiral limit, because their dlvergences equal zero, according to the low-
energy theorems.

4. The effective Lagrangian for the ground and excited
states of the vector mesons

The free part of the effective Lagrangian (12) describing the ground and ex-
cited states of the vector mesons has the form

. 8
L) = 43 S e PIRE"(PIV(P), (67

i,j=1 a=0

where
3. L

DV = (A (A 210 (V) (V) = 2K

a=0 . .

(V¥ + (V) = 2K, (V)2 = (9t)? (68)

and |

[u/a(P) 112 yl/

12

d'k 1 o1
- .Nc tr/ I‘ ia Vf'u .
I R [Jf pm ey J

\ x

=l 7 = fa (69)
To order P2, one obtains
R;}l;/a — W{I[P2gl{u— P/‘PV—QI_“’(A:J;I)Z],
R/wa = Wa[PZg;w — PHpY _ g/w(MQa)2]’
3
Ry = Ry =3[Pl — PAP" ~ A6y o). (70)
Here .
8 a 8 a ~a 8 a ~—
L e A L (71)
o 3 o
(M) = (WiGy) ™' + §A25 *lo=1.7, (72)
ray2 a ~1 3 2cab —_
(M3)" = (W3Ga) +§A¢5 [b=a.17. (73)

After renormalization of the meson fields

/mr \/‘— V/m . (74)

we obtain the Lagrangians
L$)2) — —%[(g’“’PQ — prpy _ guuMli)p/l;p.l,
+ zl‘p(g/wPQ _ P/tpu)p;llp; + (ngPZ — PHpY glwl\{zz)pgﬂg , (75)

LY = —3l(g" P~ P*P* — g M})¢\ )}
S AY(GP — PRPY)GS (9" P~ PP — M2 )elas). (6
3
LY = —I{(g™P?— prpv - (GO + ME)RT KT
+ 2]:1]\__ (g}wPQ — pPHpY /w A2)I"I“ K

+ (gl“’P2-—.P#PV ;w( A2+M1\ )) —t/t w] (7.‘-)

Here

3 3

M2 = T M2.. = —_—

P 8GyIy(my, my) B 8GyI(m,,m;)’
3 . 3

;l YN R Y M/fz = ~7——7

8G2I2(1ns,ms) 8G21_2 (nLny”ln)
3 ] 3

Mim——P gl 3 g
K2 8G’212”(mu,1ns) b2 8G212”(m_,.,ms) (78).

13



1{*(mi, m;)
\/Ié‘(mi, my) 17 (mi, m;)

After trasformations of the vector meson ficlds, similar to eqs. (53) for the
pscudoscalar mesons, the Lagrangians (75,76,77) take the diagonal form

I (79)

a4

LY) 5. = =1 [(g"P? = P*P" — M} )V#V
+(g"P* — P*P" = M3 )V*#V], (80)
where V@ and V@ are the physical ground and excited states vector mesons
1 ;
M2, = Fg M2+ M2, (=, +) Jotz - )+ (2M,, M, T, )]

M? ! [M + M2 (-, )\/(Mz—M2)2+(2MMF)2 (82)

X F2 é é2 4 ¢2 ¢80 80 |

1 .
M} g = = |M}; + M, +30%(1 = T%.)
1-T%. 2 :

(=s+) /(M = ME,)? + (2My: Mig T 2] (83)

To describe the excited states of the vector mesons, we shall use the same
form factors f, like in the case of the pseudoscalar mesons. Therefore, we
can fix the parameters cyy,cys and cs; using the experimental values of the
masses of the vector meson excited states and then make the predictions for
the masses of the excited states of the pseudoscalar mesons and vice versa.
We shall here the first version.

5. Numerical estimations

We can now estimate numerically the masses of the pseudoscalar and vector
mesons and the weak decay constants f,, f, fx and fgr in our model.
Because the masses formulae and others equations ( for instance, Goldber-
ger — Treimann identity and so on) have new forms in the NJL model with the
excited states of mesons as compared with the usual NJL model, where the
excited states of mesons were ignored, the values of basic parameters of this
model (mu, m;, A3, Gy, G2) can change. Howevcr, we see that one can usc
the former values of the parameters Ay = 1.03 GeV and G, = 3.48 GeV - -2
because eqs. (23) and (30) change only slightly after including the exuted
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states of mesons. For the quark masses we shall use the values m, = 285 MeV
and m, = 470 MeV, which are also very close to the former values. For the
coupling constant G, the new value G, = 13.1 GeV~2 will be used, which
more noticeably differs from the former value Gy = 16 GeV =2 (see section 2).
It is a consequence of the fact that the mass M,, noticeably differs from the
physical mass of the ground state p — M, (see egs. (78) and (81)).

Using these basic parameters and the internal form factor parameter d,,
—1.78 GeV 2 (sec eq. (36)) and choosing the external form factor parameter

= 1.45, one finds

M, = T70 MeV, My =15 GeV,
M, = 137 MeV, My =13 GeV. (84)
T, =0647, T,=0.54 (85)
T, = VZT, ( sec egs. (50) and (79)). The experimental values are equal to

Mg = 769.940.8 MeV, M” = 146525 MeV,
MSP = 139.57 MeV, MSP =134.98 MeV,
MEP = 1300 % 100 MeV. , (86)

From eq. (61), one obtains

fr=93 MeV, f=0.86 MeV,
fr ~ 1 (M, 9
fr r2—1‘My

(87)

Using the internal form factor parameter d,; = —1.75 GeV~2 (see eq. (36))
and choosing the external form factor parameter c,s = 1.51, one finds
Mg. = 880 MeV, M. =1450 MeV, ,
Mg = 495 MeV, Mg =1455 MeV, (88)
Tk =056, Dk =0.466 = VZIy. (89)

The experimental values are equal to

M,‘f.p = 891.5940.24 MeV, M“f’ = 1412412 MeV,
M“p = 493.677 1 0.016 MeV, M;(’(,p = 497.672 4 0.031 MeV,
MSP = 1460 MeV(?). S (90)

From the eq. (62), one gets
fi = 1.16f, = 108 MeV, fxr =11 MeV. (91)
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And for the ¢ and ¢’ we obtain, using the form factor parameters ds; =
—1.72 GeV~2 (see eq. (36)) and ¢, = 2

My =1019 MeV, My =1650 MeV, Ty =0.4 (92)
The experimental values are equal to '
M;’p =1019.413 + 0.008 MeV, M 7P = 1680150 MeV. (93)

We can use the parameters dy; and c,; for the calculations of the masses of the
n and 7' meson excited states. However, to calculate the masses of the ground
and excited states of the eta—mesons it is necessary to take into account the
gluon anomaly ( see [5]) and the mixing of the 7, 7', 7j and 7’ states. Since it is
a very complicated problem, we will consider this task in future in a separate

paper.-

6. Summary and conclusions

Let us discuss the obtained results. In the first case where we considered
the mesons consisting of the up and down quarks (p,w,n) we used the five
experimental values: the masses M,, M,; M, and the decay constants f, and
g, in order to fix the parameters m,, A3, G1,G2 and c¢y,. It allows us to predict
the mass My = 1.3 GeV and the weak decay constant f = 0.86 MeV. 4 Our
prediction for the mass of 7’ is consistent with the modern experimental data
[1]. However, the mass of the first radial excited state of pion has an interesting
history. Three years ago the new experimental information'about excited
states in the few-GeV region, e.g on the 7’ meson, was obtained at IHEP
(Protvino). Indications of the light resonance in diffractive production of 37—
states have lead to speculations that the mass of the 7’ may be considerably
lower at & 750MeV [2]. Our calculations showed that the first radial excited
state of the p—meson corresponds to the first radial excited state of the pion
with the mass 1.3 GeV. Therefore, the excited pion state with the mass
0.75 GeV is forbidden.

Using the experimental values of the masses My and My we fix the param-
. eters m; = 470 MeV and ¢, = 2. We could make some predictions in this
- quark sector, if we consider the eta-meson states. However, this task will be
solved in our subsequent paper.

A few predictions one can make. for the strange mesons. Indeed, using
only one experimental value of the mass K* mason in order to fix parameter
cus = 1.5, we have calculated the masses of the K*, K, K’ mesons and the
weak decay constants fx and fi. We would like to emphasize that the excited

*We also can calculate all the strong meson coupling constants.
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state of the pseudoscalar kaon K’ is not well-determined experimentally at
present isee {1]). Therefore, our prediction only points aut the place where it
is necessary to look for this state.”

In conclusion. we would like to note that the pseudoscalar and vector me-
son masses are unnmbiguously connected with cach other in the NJL-model.
Indeed, in the usual NJL-model we can use the masses of the pseudoscalar
mesons for fixing the model parameters and after that predict the masses of
the vector mesons and vice versa tsee {5, 16]). The same situation occurs
for their excited states. Using the masses of the excited states of the vector
tesons we can predict the masses of the excited states of the pseudoscalar
niesons and vice versa. :

We have considered here the simplest extension of the NJL-model with
polynomial meson--quark forn factors and have shown that this model can be
useful for describing the excited states of mesons. We have used assumption
that the quark-current form factors for the scalar, pseudoscalar, vector and
axial-vector currents with the same flavours are equal to cach other and the
obtained results have supported this assumption.

The author would like to thank Drs. S.B.Gerasimov and C.Weiss for the
fruitful discussions and Prof.A.Di-Giacomo for the kind hospitality in Istituto
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filled. This work was supported by the Russian Foundation for Fundamental
Research { Grant N 96.01.01223).
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