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1 ·, Introduction 
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It is the purpose of this report .to state. the generalized Hamiltonian dynamics 

. [i] of, the spati~ly homog~neous Bi~nchi lx'cos~ologi~al mo.de! 'witho-~t matter 
' : i . • ; . ' ' ' ',,\ ... •.·. ' t ,, • _. i l4 ,{ ,'> .' \'; ,, ; ~, I,/ ,. 

sour~es, . 
:.,,,, . '· · ~ • '. ·-.; •. i:f. : ·,,, ·;, :r.,;~.,.j ,•.ji:: 1 :,~f--::, 

The cosmological models due to the existence of addition'al rigid spacetime 
, , • • : ' '. '· , ,", , ~. ·,., ·," '. ~ 1 ', ' • ' . .;, t • ., i ·\ 1·,i' • -.'• .r. I: ; ·(' ,·;, 

,symmetries .are incomparably simpler than the underlying theory of gravity. At 
.' · '. 1.' ,•,_ • . _1,•:· ·• •:' ·.,:'.' :',:·, ,• • •> ,• : ,·,.' I•'"]' ',\fl 'j, '• ,' ''.,i' ''1';•,•,•;: 

the same time, they poss~ss .the main features of the full theory and, thus can 

be used as a labo;atory for testing viability of ne~ id~a~ -~n/t~chniques .. The 

tra?itional method in Hamiltonia~ analysis of cosmological models that has been 

extens,ively used is the Arnowitt-Deser-Misner (ADM) formulation of.canonical 

themy 'of gravitation [2]. The ADM method is' based on cert'ain fixing of ·coordi­

nate condition (gauge) and solving of constraints. The crucial unsolved problem 

in thii appro~ch is the proof of the independence of observable quaritities'from 

any possible choice of the 'gauge condition. 'To clarify the problem_'we s~all'sfudy 

the Bianchi cosmological models usirig the alternative method [3],' [4] to con­

struct the observablJs in .the constrained ·system witho'ut supposing any gauge 

condition. The ,fi,rst step in the application of this gaugeless approach is the 

abelianization of constraints i.e., the conver~ion of the initial nori-Abelian con-

straints to the .equivalent set· of, Abelian ones. Below, we shall. construct the 

matrix· transforming the constraints to the abelian form for.• the. non-diagonal 

Bianchi IX cosmology with constraints pbeying the S0(3) .algebra. Th~ real­

ization of this conversion allows us to find the explicit connection of dynamics· 

• of diago~aland ndn!diagonal Bianchi IX ~osmolo'gy. The conclusio'n is t·hat the 

dynamics diff~r~ o~iy for, ~on-physical ,degi~es of freedom and observables for 

· diagonal and non-diagonal cases are one and the same. 



2 Spacetime decomposition 

Canonical analysis views the Universe in terms of space plus time [5]. Thus, we 

suppose that the spacetime is a smooth manifold, M = Et x R, endowed with 

a metric g of signature ( -, +, +, + ), metric-compatible connection and time 

function t. The level surfaces of t, Et, are spacelike and form a foliation of a 

spacetime manifold. This means that they are non intersecting and fill M. After 
. ' . ' ~ . ~ 

the foliation of the spacetime manifold it is useful to choose on M a surface . 

compatible moving coframe ( e.L, ea) 1 with four-dimensional unit-length vector· 

field e.L orthogonal to Et and three dimensional vector fields ea ~ ( e1, e2 , e3 ) 

tangent to it. 2 The corresponding dual frame has a time axis orthogonal to the' 

slices Et while the space axes are tangent to them. In this frame, the metric g 

reads 

. g = -0.L 0 0.L + 'Yab 0a Q9 0b, (1) 

with .the spatial metric I induced on Et. To implement the canonical analysis, 

one can specify a time like vector e0 = ,ft ; "time flo;.," vector fie.Id on M which 

will describ.e the evolution with the time parameter t. The well-known Dirac-. 

ADM metric [5] follows from (1) after fixing the coordinate coframe ea = C:1~a) 

and rewriting .the vector field e0 in terms of the normal vector field e.L ~nd spatial 

vector field Naea tanget to the hypersurface Et ea= Nel_ + Naea 

g ~ '--(N2 
- N~ Na)dt ® dt + 2Nadt 0 dxa + "tab dxa ® dxb. (2) 

The spatial metric 1 , the lapse function N and shift vector Na are treated as 

field configuration variables for the gravitational field. Their classical behaviour 

1 We use boldface to distinguish four-dimensional quantities from three-dimensional 

ones. 
. 2 According to this decompositio.n, the Lie de~ivative CeJ., derivative with respe~t the 

proper time alo~g the normal to E1, will describe the evolution having physical meaning . 
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i~ determined by_varying the Hilbert-Einstein action 

A[AT,Na,,] = l TJR.' 
. . . 

(3) 

where R is the spacetime curvature scalar and T/ = Fu w0 I\ w1 Aw.2 /\ w~ is 

the four-dimensional volume element. 

To proceed further. from this general canonical formulation of the gravita­

tion, let us consider the spacetime that contain some rigid symmetry and use 

this symmetry to restrict the'. gravitational configuration space in the Hilbert­

Einstein action ·(3). In the case of large symmetry the gravitational degrees:of 

freedom are reduced to finite number and this circumstance essentially relieves 

the analysis of the theory .. Below we shall investigate the restriction of gravita­

tional configuration space by the requirement of spatial homogeneity that leads 

to so-called Bianchi cosmological models. 3 

3 Model description 

By definition, in spatial homogeneous spacetime a three-dimensional Lie group 

G3 acts on spacetime a~ a group of isometries, such that each orbit on which G3 

afts simp!Y. transitively is a spacelike hypersurface. The advantage of c~nsidering 

simply transitive action is that we can put the element of G3 into o~e~to-one 

corres~~nd~nce with ~he points of Bt. After this identification the ~~acetime is 

considered topologically as the product space G3 x R. After mentioning this ob­

servation it is clear that instead of usual coordinate coframes we need to choose a 

new space coframe ea adapted to the Lie group structure of th~ three-dimensional 

hypersurface Et. The algebra of infinitesimal generators of isometries, i.e., Killing 
·. ' ' ' . 

fields ea, a= 1,2,3 

[ea, eb] = ccabec (4) 

3 For details we refer to one of many comprehensive reviews (6). 
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dictates this choice. The vector fields e0 and ea provide· a basis· of a coframe 

invariant under the isometries .Cea e0 = 0, .Cea ea = 0. In this case, one finds 

the form of a space m~tric for the Bianchi models , = ''{ab wa 0 wb with a group 

invariant fram~ wa whose stru_cture coefficients ½C~bc =; dwa( eb, ec) are structure 

constants of the homogeneity group G3 • The preferable role of this choice for a 

. cofra~e. is c,le~_r: from the Killii:ig ·equation .Cea g = 0 it immediately follows that 

the fonctions N, Na .and .'Yab depend only on the time parameter t. · Due to this 

s_implific~tion the initial yariational problem for Bianchi A models 4 is restricted 

to a variational problem of the. "me~hanical". system 

' ',. ~ ' ' 

L_(N,Na,'Yab/fab) =:=.J dt . ..r,N [.3R- K/K/+Kab1{~~], 
'· t1 . · ' 

(5) 

where 3R is the curvature scalar formed .from the spatial metric , ,. 

3R 1 abcc ca 1 ab cd Ci ci = -2, da cb - 4' I 1ij ac bd• 
';·.,·· ·,' 

(6) 

and 1 . 
.. ·. Kab = - 2N ( ('YaaQdbc + ')bdcdac)Nc +'Yab) · (7) 

is the extrinsic curvature of the slice I:t defined by the relation Ka/~ -½°,CeJ. 'Yab· 

The Lagrangian (5) belongs• to the class of so~called degenerate ones. Thus, 

to deal with the- Hamiltonian description we 'need the Dirac generalization of 

Hamiltonian dynamics [1] . · 

4 Hamiltonian. formulation 

-Implementing· the Legendre'transformation oh varia.bles N, Na and /ab we get 

the canonical Hamiltonian He = NH+ NaHa, the primary pa = 0, P0 = 0 

4 Writing the structure constants 'of the isometry Lie group in the general form, c:6 = ' 
f/abS1d + A[doti, class A models are those for which c:d = Aa = 0. 
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and secondary constraints 

'lJ 1 [ ab , 1 a b ] r.:: 3D. 
tt=.,/1 7r 7rab- 2r. 0 r.1, -y; n._. 

'LJ •) c·•d Ix 
1 '-a = - ab7r led'" 

(S) 

(9) 

Due to the reparametrization symmetry of (5) inherited from the diffeomorphism 

inva.riance of the initial Hilbert-Einst~ih action, the evolution of the system is 

unambiguous and it is governed by the total Hamiltonian 

HT= NH+ A'"Ha + uoP0 + llaP
0

, 
' (10) 

with four arbitrary functions u 0 ( t) and u0 ( t ). One can verify that the secondary 

constraints are first class and obey the algebra 

{H, Hb} = 0, {Ha, Hb} = -CdabHa. (11) 

To provide the explicit wnstruction of true ,dynamical degrees of freedom· 

without gauge fixing according to the general scheme [3], [4], it is necessary to 

implement two operations: to convert the constraints (8) to the new equivalent 

set of '.'commuting" constraints 

1Pa = CadHd ( 12) 

'i.e., to abelianize the first class constraints (11) and to perform the canonical 

transformation to new coordinates so that a part of the new canonical variables 

coincides with the new Abelian constraints. 

5 . Hamiltonian reduction: canonical trans­

formation and abelianization 

Let us conc';ntrate our attention on the.Bianchi type IX model. '' For 'this model 

it is very useful at first to realize certain can~nical transformation that· essentially 

5 For the Bianchi IX model-the symmetric matri·x S is the unit matrix. 
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simplifies the procedure of abelianization. This canonical t~~n~for·mation means 

a passing from co~rdinates (-y;j, 7l"ii) t~ the weil-known Misner representation (5]. 

In Misner's representation the spatial metric is given by 

'Yii = R~e:--20 e2f3 ... IJ' ' . (13) 

where 3;j is a, :3, x -;3 symmetric traceless ~atrix and. f! is a scalar, both being 

function·s of time par~m~ter only ... R~ i~ a consta~t: Whenever n isa monotonic . . ' 

function of time, one can choose n as a scale factor for cosmology related to the 

voiume through .Rge-60 ~ det,. To realize .the· abelianjzation it_is convenient 

[6] to use for nondegenerate symmetric matrix /3 .the following decomposition: 

3 = n-1(9. 0, ,t,)VR(d>,0. ip) with. the S0(3) matrix 

R(<P,0,if.•) = e<l>~3f-Ok1e1•k3 ( 14) 

.. parametri~ed with the' Euler angles and diagonai traceless matrix 

V = diag(/3+ + ./f,/3_, ~+, - ·../3~-, :__2/3;). (15) 

In terms of new canonical coordinates 0,p0; <i>,p1 ; ij,,p,1,;, /3_,p_; /3+,P+ the mo­

mentum constraints can be rewritten as 

Ha = (n- 1T<I> t' (16) 

where the <I>a = (po,Pw, P¢,) and T is the following matrix 

( 

0 1 0 ) 
T = . sin t/J cot 0 cos 'ljJ c?•w

0 
• 

sm 

· cos .,; cot 0 sin •1• •(n "'
0 o/ o/ SJil ' 

( 17) 

It is clear that exept when· sin 0· = 0 the matrix 7-1n is just the matrix of 

abelianization C in {12). So, after ilT!plementing the Dirac transformation to the 

initial constraints Ha, the equivalent set of Abelian constraints is 

<I>1 = Pw = 0, <I>2 =Po= 0, <l>3 =Pit,= 0 (18) 
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Jo'complete the abelianization stage of ~educti~n }et_us r~write energy constraint 

' in new 'coordinates .. · 

. ,. . }' 2 ' . 2 . . '· 2 . ,. ' · . ' · . · . , · . · 3 . 4 -40 
. H = 6(P+ + P, -_Pn) t W(</>,0'._i/J,P¢,,P0,Pw)- 'R(/3+,/3-) R0 e . '. {19) 

·~- where 

i:·,. 

· W ~ ~-··( · .. · ~ 'P!· ·· . "+ {sin </>sin~ po +cos¢ cosO Pc/>_.: cos¢ Pw)2
· + 

· 2 smh2{2v'3/3-·) · ·" · · smh2(3/3+ + v'3/3-) s1112 0 · 

· .. +·(cos ¢sin:0 p! - sin </>cos0 Pit,_+/n</> Pw)
2

) 

· smh (-3/3+ .,... v'3/3-) sm . 0. . , . . 
{20) 

The three-dimensional scalar curvature' 3R
0

for the Bianchi IX model is 
' . i' ,· ' ,. '· ;., '', ':,, : ' ' . :, ' 
3R = -2 ( e4(f3++V3.B;:->. + ~4(P.+-v'3.B-l_ +, e-s.B+_ -

~2~-2(.B++VJ.B-) _'._ 2e-2(.B+-V3.B-l•_ 2e4.B+). {21) 

The wice for the passing to new constraints {18) is that the energy constraint 

· (19) does not commute with them 

\ 
{H, <I>a} = J!<I>;,, 

{ <f>a, <f>b} = 0, . {22) 

. where J! are a certain functions on phase space. However, one can again apply 

the .Dirac equivalent transformation of constrai~ts. Keeping the momentum 

constraints <I>a unchanged and shifting the eriergy constraint 

. H = H + poCo + PwCw + P¢,Cit, {23) 

· we shall get the set of Abelian momentum constraints (18) and new energy 

constraint 

.. H = ~(P! + p2_ - p~) + 3R(/3+, /3-) Rcie-4n' {24) 
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The arbitrariness of the functions tt in the total Hamiltonian (10) reflects the 

presence in the theory of variables whose dynamics is governed in an arbitrary 

way. The conversion to the equivalent Abelian set of constraints allows us to 
• > ' '. • •• 

separate these ignorable variables from physical one whose classical behavior is 

uniquely determined. It is clear that in the case of the Bianchi IX model ~·, ¢>, 0 

are just these ignorable _coordinates. The fourth ignorable coordinate is connected 

with the remaining energy constraint (24) It is worth to note that this constraint 

coincides with the corresponding Hamiltonian ones for so-called diagonal Bianchi 

IX cosmological model. This means that in terms of the Misner variables after 

abelianization of constraints the dynamics of diagonal and non-diagonal Bianchi 

IX cosmology differs only for the non-physical degrees of freedom 'l/_,, </>, 0 while 

the dynamics for the physical variables is one and the same. 

To find the fourth ignorable coordinate it is necessary to analyze the energy 

constraint 1-l. For this purpose it is useful to implement the set of canonical 

transformations 

and. 

/31 = /3+ + v'3f3- - n 

/32 = /3+ - v'3f3- - n 

f33 = -2/3+ - n 

bi= exp ({3;) 

1 · 1 1 
P1 = - P++ - P- - - Pn 

6 2y'3 · 3 
1 1 1 

P2 = - P+ - - P- - - Pn 
6 2v'3 3 

1 1 
p3 = -- P+ - - Pn 

3 3 

P; = p;b;, i = 1,2,3. 

In this new canonical basis the energy constraint reads 

3 . 3 •' 3 3 

- 1""22"" 1""4 ""22 1-l = 2 ~ b; Pi - ~-,-/iP; _bi Pi+ 2-?-, b; -:-- -?-, b; bi 
i=l · •<J · i=l ' •<J 

(25) 

(26) 

(27) 

· (28) 

(29) 

Starting with this representation one can reduce the problem of the Hamiltonian• 

description of our constrained system to the analysis of motion of "free particle" 
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with zero "energy" on the three-dimensional hyperbolic manifold with a certain 

metric. To achieve this let us again perform the canonical transformation that 

absorbs the "potential term" in (24) 

bi = v'2i'[ sin 17;, 

P; = y2IL cos 17;. (:JO) 

As a result the energy constraint becomes 

1-(_ = Ila gabrrb, 

where the "metric" 

g••b=2sin17a sin11b(8"b+(8,;b-i) c~s(11n-11d) (:31) 

has b_een intro_duced. Now.it is clear that one can easily determine the corre­

sp~nding iino~able coordinates if 'this metric poss~sses the Killing vector. For 

example, there is a simple case when this metric admits the symmetry .. If one 

suppose,; that 17 = 171 = 172 = 173 ihen _the metric g can _be tran~formed to the 

diagonal· form 

Q = (4sin217) diag ( -1 /2, l, 1) 

with the h
0

elp of the constant orthogonal transformation g = OT g 0. After the 

implementing the canonical transformation 

rr: == ('.) ~cfl\ 

11: = Oac17c• ·. 

the.energy constraint reduces to the simple di~gonal form 

'H.0 = - l/:HI~2 + n;2 + n;2 
= 0 

.. (32) 

(:tJ) 

and this means that our reduced system is equivalent: to the motion of a free 

" massless relativistic particle " in the three-dime~sional flat Minkowski space-
. . .i .; ' . 

time. It is interesting that the same reduced system has been obtained in (7] for 

the so-called diagonal, intrinsically multiply transitive. models (DIMT). 
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