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1 ’Introduction o ;

lt is the purpose of thrs report to state the generalrzed Hamlltonlan dynamrcs .

x ‘,lll of the spatlaly homogeneous B|anch| lX cosmologrcal model W|thout matter

,SOU rces

The cosmologrcal models due to the exrstence of add|t|o‘ I r|g|d spacet r

) .‘symmetnes are |ncomparably 5|mpler than the underlymg theory of gravrty At
the same t|me they possess the main features of the full theory and thus can
be used as a laboratory for testmg vrab|l|ty of new |deas and techmques The
trad|tronal method in Hamlltoman analysis of cosmologrcal models that has been
. extenswely used is the Arnowrtt-Deser—Mrsner (ADM) formulation of .canonical
 theory of gravitation [2]. The ADM method is'based on certain fixing of coordi-
wnate condition (gauge) and solving of constraints. The crucial unsolved problem
“in'this approach is the proof of the mdependence of observable-quantities'from ,
. any possrble choice of the gauge condition’ “To clarify the problem we shall ‘study
. the Bianchi cosmologlcal models using the alternative method [3] [4] ‘to con-
struct the observables in the constrained system without: supposing any gauge
condition. The first step in the applrcat|on of this gaugeless approach is the
abellanrzatron of constraints i.e., the conversion of the initial ‘non-Abelian con-
'straints- to the equivalent set:of Abelian-ones, .Below, we'shall.construct the
matrix transforming the constraints to-the abelian form for-the, non-diagonal
B Bianchi IX: cosmology with constraints .obeying the SO(3) algebra. .The real-
lzatlon of tl'llS conversion allows us to find the explicit connection of dynamrcs
: of dsagonal and” non dlagonal Branchr IX cosmology The conclusron IS ‘that the
dynam|cs differs only for non- phyS|cal degrees of freedom and observables for

* diagonal and non- dragonal cases are one and the same.
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2 Spacetime decomposition

Canonical analysis views the Universe in terms of space plus time [5]. Thus, we
suppose that the spacetime is a smooth manifold, M = ¥; X R, endowed with
a metric g of signature (—,+,+,+), metric-compatible connection and time

function ¢. The level surfaces of ¢, Et, are spacelike and form a foliation of a

spacetime mamfold ThIS means that they are nonintersecting and fill M. After
the foliation of the spacetlme manlfold it is useful to choose on M a surface -

compatible moving coframe (el, o) ! with four-dimensional unit-length vector

freld eq orthogonal to ¥, and three drmen5|onal vector fields e, = (e, ey, e3)

tangent toit. 2 The correspondlng dual frame has a time axis orthogonal to the"

shces 2y wh||e the space axes are tangent to them. In this frame, the metric g

reads , ,
- &= '-‘-el@mmboa'@ob,‘ Y
with the spatial ‘metric - induced on Et To .implement the canonical analysis,
one can specify a time like vector ey = Bt ;- ‘time flow” vector field on M which
will ‘describe the evolution with the time parameter t. The well-known Dirac-

ADM metric [5] follows from (1) after fixing the coordinate coframe e, = (%)
’ and rewriting the vector field eg.in terms of the normal vector field e, and spatial

vector field N, tanget to the hypersurface £, e; = Ne/ + Nf‘ea
g = (N — N*N,)dt @ dt + 2N, dt ® dz* + 7uda® @ dz’.  (2)

The spatial metric ~, the lapse function N and shift vector N are treated as

field configuration variables for the gravitational field. Their classical behaviour

1We ﬁse boldface to distinguish four-dimensional quantities from three—dirnensional

ones.: L : - , S
. 2According to this decomposmon the Lie derlvatlve Ee " denvatlve w1t,h respect t,he

proper time along the normal to E,, will descrlbe the evolution havmg phys1cal meamng

is determined by varying the Hilbert-Einstein action
AN N = [aR,

where R is the spacetime curvature scalar and 17 = /=g w% A w! A'w? A W? is
the four-dimensional volume element.

To proceed further. from this genetal canonical formulation of the-gravita-
tion, let us consider the spacetime that contain some rigid ‘symmetry and -use
this symmetry to-restrict thegravitational configuration space in the Hilbert-
Einstein action (3). In the case of large symmetry the gravitational degrees: of
freedom are reduced to finite number and this circumstance essentially relieves
the analysis of the theory. Below we shall investigate the restriction of gravita-
tional configuration space by the requirement of spatial homogeneity that leads

to so-called Bianchi cosmological models. 3

3 Model description

By definition, in spatial homogeneous spacetime a.three-dimensional Lie group
G acts on spacetime as a group of isometries, such that each orbit on which G
acts simply, transitively is a spacelike hypersurface. The advantage of coneidering
simply . transmve actlon is that we can put the element of G'3 into one -to-one
correspondence with the pomts of X,. After this 1dent|f|cat|on the spacetime is
considered topologically as the product space G5 x R. After mentioning this ob-

servation it is clear that instead of usual coordinate coframes we need to choose a

new space coframe e, adapted to the Lie group structure of the three-dimensional

’ hypersurface Y. The algebra of lnflnlteSImaI generators of isometries, i.e., Killing

fields £, a=1,2,3 ' . L
| fotl=cue. @

3For details we refer to one of many comprehensive reviews [6).




dictates this choice. The vector 'fieldsedand €, provide a basis of a coframe
invariant under the isometries ['E eo =0, E e, = 0. In this case, one finds
the form of a space metric for the Bianchi models v = 74 w® @ w® with a group
mvanant,frame w® whose structure coefficients -2-C;bc =-dw*(ep, €.) are structure
constants of the homoger!eity group G. The preferable role of this choice for-a
, coframe is- clear from the Killing, equatlon ['E g = 0 it.immediately follows that

~ the functlons N Nu ‘and ., depend only on the time parameter £.- Due to this

srmpllfcatlon the. |mtlal variational problem for Bianchi A models * is restricted

o to a vanatlonal problem of the * ‘mechanical” system

: .t B T T _—
LV Vo) = / dN R K KK ] (9

where 3R is the curvature scalar formed from the spatial metric A

R =— 'Yabccdac b~ Z'Yab'YCd'YlJ Ci C bd> (6)

and » o
| Kap = 2N ( (YaaCl + ’deC BIAE R S ()]
is the extrinsic curvature of the sllce I defmed by the relatlon K —"——~'Eel'yab

The Lagranglan (5) belongs to the class of so-called degenerate ones. Thus,
to deal with ‘the- Hamiltonian descrlptlon we' need the Dlrac generalrzatlon of
, Hamlltoman dynamlcs [1] ' o ‘

4 'Hamiltohiari,forkmlilvati'onv g

‘Implementing: the Legendre” transformation on variables N, N, and v, we get

the canonical Hamiltonian Hg = NH + 'N“H,,, the primary P° = 0, P°=0

4Writing the structure constants of the is'dm’etry'Lie group in the general form, ce, =
g gen : ab

aapS' + A déd , class A models are those for which G4, = A4, =0.
[2Y%) ad

and secondary constraints -

. 1 “» oo . .
H—T[T 7rub")7" Tb] - ‘\/'733..": (S)
vd

H,=2 Cn™q. , 9)

~ Due to the reparametnzatron symmetry of (5) inherited from the diffeomorphism

mvarlance of the initial Hilbert-Einstein action, the evolution of the system |s '

unamblguous and it is governed by the total Hamrltoman
=]\"H+'\ H, +u0P + u, P, | o (Ib)

with four arbitrary functions u,(¢) and ug(t). One can verify that the secondary

constraints are first class and obey the algebra-. -
{H,H;} =0, {H,.Hp;}=~C", H,. (11)

To provide the explicit construction of true:dynamical degrees of freedom’
without gauge fixing according to the general scheme [3], [4]. it is necessary to
implement two operations: to convert the constraints (8) to the new equivalent

set of ‘commuting” constraints ;

®=CuMa o {12)

‘L.e., to abelianize the first class constraints (11) and to perform the canonical

transformation to new coordinates so that a part of the new canonical vanables

comcudes with the new Abellan constramts

‘5 Hamlltonlan reductlon. canonlcal trans-

formatlon and abellanlzatlon

Let us concentrate our attention on the Bianchi type IX model. ® For 'this model

it is very useful at first to realize certain canonical transformation that essent”ially'

“SFor the Bianchi IX model:the symmetric matrix S is the unit matrix.



simplifies the procedure of abelianization This canonicaltransformation ‘means -

a passing from coordinates (’y,J, xil) to the well known Misner representation [5].

In Misner's representatlon the spatial metric is given by

c— R2e-29 213
5] R . ,J,‘ e

where 3,1 is a 3 X 3 symmetnc traceless matnx and Qi is a scalar both being
funct|ons of time parameter only, RO is a constant Whenever Qisa monotomc
function of time, one can choose 2 as a scale factor for cosmology related to ‘the
'Volume through Rge 60 — det'y To. realize the abelianization it is convenient
[6] to use for. nondegenerate-symmetric. matrix J3.the follo_wrngdecomposmon.

3=R"Yo.0,v)DR(,0.9) with the SQ(3) matrix
R(9,0, zp)'t:‘e"‘:se”’“ed'ks ; (14)'
I, parametrlzed W|th the Euler angles and d|agonal ‘traceless matrix.
| D= diog(By+VIB By —VEB 28, (19

" In terms of new canonical coordinates 8, pg; &, ps; d},p.,.;,,i_,p_; B4,py the mo-

. mentum constraints can be rewritten as
— (P-1 , o ’ .
=(R7'7T®),, - - (16)

where the ¢, = (pg,pw,pd,) and 7 is the following m’atrix ‘

0 1 0
T =] sing cotfcosy % . (17)
3 ,cosr,[)‘ cot Osin Zl% ' ‘

It is clear that exept when sin6 = 0 the matrix 7-'R is just the matrix of
abelianization C in (12). So, after implementing the Dirac transformation to the

initial constraints H,, the equivalent set of Abelian constraints is

O =p,=0, Qy=py=0 Dy=ps=0 (18)

(13)

“in new ‘coordinates.

" where

‘ B

* " To'complete the abelianization stage of reduction let us rewrite energy constraint

Tt

T 1 . - S . , ' . ,' .A ) |
M =5 0h + L — 1) + W(0, 8, p4,p0,p4) = °R(By; B-) Roe™, (19)

!Wzl‘( 2 (sin-qséinepa‘+*cos¢cos0p¢+cos¢Pw)2'+
T oG evBE) smh2(3ﬂ++\/_ﬁ-)5m20 o
‘"(cos ¢sin® Pe~s1n¢cosﬂp¢+51n¢l’w) SRR a

smh2(3ﬂ+ f 3B-)sin’ 6 ) R

(20)
The three-dlmensronal scalar curvature 3R for the Branchl IX model is
3 — 1( 4(ﬂ++fﬂ )+ e4(ﬂ+-fﬂ_) e ééb;';
9 2B +V3B2): L 9 =284 ~VER). 2e4p+). R (21)

The pnce for the passmg to new constraints (18) is that the energy constraint

" (19) does not commute with them’

(M0 = 0,
{®.,0;} =0, (22)

“where f? are a certain functions on phase space. However, one can again apply

the Dirac equivalent transformation of constraints Keeping the momentum

‘constraints ®, unchanged and shlftlng the energy constraint

TH= H + paCa + P¢C¢ + p¢C¢ 7 (23) ‘

“we shall get the set. of Abelian momentum constramts (18) and new energy

constraint -

= L0h et - R RELE) BT, ()



“The arbitrariness of the functions u in the total Hamiltonian (10) reflects the
presence in the theory of variables whose dynamics is igoverned in an-arbitrary
way. The conversion to the equrvalent Abelian set of constraints allows us to
separate these ignorable variables from physrcal one whose classical behavior is
uniquely determined. It is clear that in the case of the Bianchi IX model ;6,0
are just these_ ignorable ,coordinates. ‘The fourth ignorable coordinate is connected

with the remaining energy constraint (24) It is worth to note that this constraint
* coincides with the corresponding Hamiltonian ones for so-called diagonal Bianchi

IX cosmological model. This means that in terms of the Misner variables after

abelianization of constraints the dynamics of diagonal and non-diagonal Bianchi-

IX cosmology dlfFers only for the non-physical degrees of freedom v, ¢,0 while

the dynamrcs for the physical variables is one and the same.

To find the fourth ignorable coordinate it is necessary to analyze the energy

constraint . -For this purpose it is useful to implement the set of canonical

‘transformations
Y I A UL B S
657 93T 3L
1 1 1
— — 3 _——Q = — —_—_— 7 — - 26
Bs V36 - Q m=gPim o EP-—3ra (20)
1 1 ‘
Bz = —20, -0 “p3= 3 P+ — § pa (27)
and _
b, = exp(ﬂ;)“ P; = p,b,,

~

In this new canomcal basis the energy constrarnt reads

3
T(:%; bPE - Zw b;P; +‘ Zb“ Zb? b ()

Ty 1]

Starting with this representation one can reduce the problem of the Hamiltoniar

description of our constrained system to the analysis of motion of “free particle”

i=1,23 " (@)

4T

e

*+ suppose,’ tha_t 7]

with  zero “energy” on the three—drmensronal hyperbollc manifold with a certain

metnc To achieve thlS let us again pen‘orm the canomcal transformatron that
absorbs the * potentral term in (24) ‘ ‘ '
b, = \/:2_Thsin i
= \./m:cosn,-. o N » o (30)

As a result the energy constraint becomes

’7:{ = Ha gabnb"

where the “metric”

G"b = 2sin r]a st 1],,( ab, + (5(11, “) cos(n,, - r]b)) ' (31)

has. been mtroduced Now it is clear that one can easily determine the corre-

‘spondmg |gnorable coordmates if th|s metric possesses the Killing vector. For

example, there is a simple case when this metric admits the symmetry. If one

=m=1=7s then the metrrc G can be transformed to the

diagonal form

= (4sin®y) diag(=1/2.1.1)

“with the help of the constant orthogonal transformation G= OT G O. After the

implementing the canonical transformation
o meour, ¢
o —,Oqcm e e (3
the energy constraint reduces to the simple diagonal form
Ho = —1/2012 + I + 1152 = 0 (33)

and this means that our reduced system is equivalent, to the motion of a free

“ massless relativistic partrcle in the three—drmen5|ona| flat Minkowski space-

time. It is interesting that the same reduced system has been obtained in [7] for

the so-called diagonal, intrinsically multiply transitive models (DIMT).
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