


!

Statement of the problem

Cy
o

lem of quantlzatlon ‘has stimulated the development of the Hamlltoman

o approach to the theory of gravrty and cosmologlcal models of the. Um— ER R
.. verse, A lot of papers and some monographs’ (see e.g. [6, 7]) have. been .
devoted to the Hamiltonian description ;of cosmologlca.l models of the. =

Umverse -The main peculiarity of the: Hamrltonran theory of gra.vrty is
“the presence of, nonphy51cal variables and constralnts <They arise due

: to the dlffeomorphlsm 1nvar1ance of the theory wh1ch is the basrs of the . .

drfﬁcultles with the ‘solution’ for the important conceptual problems :

B treatment of the observable time in classical cosmology - 1nterpretatron
- of the wave function and 1ts non- normahza.blhty > O A
- relations between the observational cosmology (the Hubble law a.nd' |
“red shift) and: the Dirac observa.bles in the Ha.mlltoman descrlptlon of -
" the. cla.ssma.l and. qua.ntum cosmolog1es ‘A _ 5 IRy
‘One of the possrble solut1on of these problems in the Hamrltomnn ’
approa.ch is to reduce the 1n1t1a1 constra.mt system to unconstramed one(“
by, separa.tron of pure gauge degrees of freedom from physical ones:'In .
the present paper, we ‘would hke to a.pply recently developed method of i
the Ha,mlltonlan reductlon of smgular systems wrth the full separation of -

‘the gauge sector (8, 9] to'a simple, but important, cosmologlcal model
- of the Unlverse w1th scalar ﬁeld to 1nvest1ga.ted the’ problems listed above

= and to compa.re our reduced qua.nt1zat1on w1th the extended a.pproach"k

[345]

\ ¢

There is'a hope of solv1ng funda.menta.l problems of cosmology of . the
' ;» “early Universe by help: of quantum; gravity.' [1, 2,3, 4, 5]. The prob- .

R The content of the pa.per is the followrng Sectlon 2 is devoted to‘ g
observatlonal cosmology In Sect1on 3, we present. the La.gra.ng1an mode]
the equatrons of which coincide with the ones of the Fr1edmann Um--
verse filled /in’ by ra.dlatlon In Sectlon 4, the ga.ugeless version of the‘j‘f‘

~ Dirac Ha.mlltonla.n descrlptlon 8, 9] of the. model is expounded and
the phase spa.ce I‘edllCtIOIl is fulfilled . by sepa.ra.tmg of the physical and « -,
nonphysmal sectors ‘In Sect1on 5, we esta.bhsh the relatlon between the '
Dlra.c observables in the Ha.m1lton1an a.pproach and the Frledmann ones _‘
“in the class1cal cosmology Section. 61 is devoted to the quantrzatron of the SN
model in the reduced pha.se space and the descrlptron of the cosmolog1cal~ 3
observa.bl“s in qua.ntum theory In Sect1on 7 the functlona.l 1ntegral s

constructed which is adequate to the gaugeless quantization. In Section
8, we show how to modify the Wheeler — DeWitt wave function so.that
it describes the Friedmann cosmological observables. The conclusion is
devoted to the discussion and physical interpretation of the results.

2 Observational cosmology.

2.1 Experimental data.

One of the main facts of the observational cosmology is correlation be-
tween the distance of an astronomical object (Rf) to the Earth and the
red shift z (in A = ¢ = 1 units)

\(TF) oL dXTr),

_ = +..; Rp<T ‘1
XTr — Rp) XNTp) dTr © F<Tr (1)

zZ =

where A(TF) is wave length of photon radiated by an atom on the Earth
and A(Tr — Rp) wave length of photon radiated by an atom on an

- astronomical object at the time (T — RFp).

The quantity ——I—;M = H, is known as the “Hubble constant”.

The present value of this constant [10], [11]
km

Hy o (104 18) —7—,
p(‘.

gives the scale of the observational cosmology.

2.2 Theoretical interpretation.

There are two interpretations of this experimental fact. The recent the-
oretical cosmology is based on the Friedmann solution of equations of
general relativity for the case of homogeneous and isotropic distribution
of matter in the Universe [12]. It is important to emphasize that classi-
cal cosmology uses the comoving frame of reference with the Friedmann
- Robertson — Walker metric

(dsp)? = dT} — a*(Tr)yi;dz'de?, (2)
'1";;"‘;;:;;’3“ .«h 1 imm
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where a(TF) is cosmic scale factor, v;;dz*dz’ is the metric of the three-
dimensional space of the constant curvature

—6k o
G R(yi;) = o k=0,z%1, (3)

o

(o is a parameter characterizing a “size” of the Universe). As the con-
sequence of such a choice, one supposes that, in cosmology, physically
measured quantities are the ones which evolve in the proper (Fried-
mann) time Tr. The measured quantity of the metric (2) is the distance
Rp(TF) to cosmic objects: :

Re(Tr) = a(Te)R, R.= / (a)

1- 1;:7"2/7'2
and the “Hubble constant”
1 dXTF) 1 da(TF)
H R —_—
°TXTr) dTp T T oTp) dTF (5)

The alternative treatment of Hubble law was developed by Narlikar
(see review [13] and the literature cited therem) According to Narlikar
the measured quantity is the distance R,

Te(TF) iTr
R.= / w7y = TTp) (6)
in the conformal metric‘ _ ‘
(ds.)? = dT? — v;;dz'dz?. (7)

In the conformal (Narlikar) frame the Universe is stationary and the
“conformal wave length” of a photon does not change during the time. of

.# Dthe photon ﬂlght from a ”star” to the Earth. However, the * conformal

me(T.) = mpa(T) (8)

is time dependent and this leads to the red shift. In result the Hubble
law has the form

me(Te)

- mc(Tc - Rc) -1

3 Model

We begin from the Einstein — Hilbert action with the conformal scalar
field

DR(g,) 167G
- 4 — _ uv _
W“/d““'v g[ 167G (1 12

The Hamiltonian formulation of gravity is fulﬁlled in the ADM metric

(2]

@2) + %g“"a@a,@} . (9)

(dsp)? = N%dt? — gijda'ds’ 5  dz' = do' + N'd. (10)

In order to derive a set of equations which is completely equivalent
to the Friedmann - Einstein ones we choose the metric

(ds)? = a*(t)[N2dt? — y;;dz*d2?). (11)

and the ansatz for the scalar field

_ et
a(t)’

Instead of eq. (9) we get the action in the homogeneous approximation

(12)

t2

-2 2 ’2 2
Fo_ & ke ke
s /‘ltl ﬂ(?Nc 2r2N°>+V‘3’(2NC 2r3AC)+

o
t
gd
—— 1 —=]]. 13
toa | (13)
We retained here one of the total derivatives arising from the gravita-

tional part of the action (9)); V(3) is the volume of the three-dimensional
space with the constant curvature and 3 is a constant coefficient

6
B = lf(a)m i Vylk=s1 = 27270, (14)

One can easily be convinced that the set of equations of the model (13)
is equivalent to the Friedmann Universe filled in by the matter with the
equation of state of the radiation [15].



The variation of the action (13) with respect to the matter field leads
to equation of motion ¢

§W d [ do\ ko
_ _ L L Y 1
5o -0 T TN (cht) 2 =0 (15)

The consequence of this equation is the integral of motion

1 do \*  ke? d
E(p) = Vi3 [5 (m) + 207 ; a-t‘EcW) =0, (16)

which plays a role of the conformal energy E. for the massless scalar
field. :

~ The equation on the variable N, coincides with the known Einstein
balance of energy of expanding space and matter

W da \? ka2 ,
iN. 0 = B [(cht) + 2—7‘2 = E (). (17)

The Friedmann evolution results from equations (15), (16) and (17) when
the convention about the definition of the proper time of observing (5)

Ty = aN.dt = adT, (18)

is added to these equations. Substituting eq.(18) into (17) and solving
this equation under T, we get the Hubble law of the radiation dominant
Universe in the parametric form

T
a(TC):,/&C(ffﬁ"ﬁsk (TT) Tp(T,) = / dT.a(T,)  (19)

Sk=1(n) =sin; Sk=-1(n) =sinhn; Si=o(n)=7n.  (20)
Our problem is to find out the connection between the cosmological
observables and the Dirac observables of the Hamiltonian approach to
the model (13) and establish a bridge between the classical evolution and

the wave function of the Universe determined by the WDW equation
(3, 4]

where

1 d? ka  E.¢)
[_ﬁ%—f 27~ —a—]‘l’wz)w(a, ©)=0 (21)

which is the quantum analogy of the energy balance equation (17).

4 Gaugeless Hamiltonian reduction

According to the Dirac classification [16] the action (13) is a singular.
Following to the generalized Hamiltonian approach to singular theories
this action can be rewritten in the form

R |
Wb sipusal = [ dt{pop = [pui - 3 2 0ua)] - Mot} (22)

where

2 2
_ _(pa ka
Hee = (—2 5t o2 /3) +Hy , (23)

is the conformal version of the Einstein energy and

2 2
_ [ Pe ko '
e = (2‘/(3) "o V(3)>

is the part describing a homogeneous scalar field (matter).

The considered model (22) faces principal difficulties of the theory
of gravity. The main of these difficulties is the presence of nonphysical
(ignored) variables. In the phase space p,,, ¢; pa,a, one of the momenta
depends on the others due to the constraint '

Hg. = 0.

Let us discuss the Hamiltonian reduction in the case when an inde-
pendent variable is chosen as a matter momentum. For the complete
separation of the physical sector from the nonphysical one, we apply the
method developed in papers [8, 9]. In accordance with this method,
such a separation can be fulfilled using the canonical transformation to
new variables

(Paya) — (I, 7a), (24)
so that the gravitation part of the constraint for these variables becomes
a new momentum . kg

Po 2O 5
28 + 21"3’6 = II,. (25)



There are two possible canonical transformations

210,72
Pa(+) = v 2011,Ck(na) ; Aty = * B Sk(nu) (26)

where

(C41(ma) = cos g ; C-1(na) = coshn, ; Co(n2) = 1). (27)

. It is interesting to note, that the surface term of the gravitational part
of the Einstein — Hilbert action (15) is completely absorbed by the new
canonical structure [17] '

. d ] v
— (pat — :ﬁ(paa)) = Fl 070, (28)

In terms of the new variables (26) the action (22) reads
Wy (Tas s 203 Ne) = [ dt g F Maar = VTl 4 74,)] (29)

Expression (29) leads to the Hamiltonian equation describing the non-
physical sector of the variables (II,,7,)

§WFE '
) _ T
= 0 = +I,=0 (30)
5W(§)
T = 0 = 71,dny,=+Nddt (31)

and the physical (by the Dirac definition [16]) one

SWE ‘ d o
(£) _ P
=0 5 g =0} (32)
sWE d ~~ .
() _ Py _
——690 =0 = N.di = i{Hw,Pw} . (33)

From equation (31) we can see that after transformation (24) the new ig-
nored variable 7, turns into the parameter of time of the evolution of the

Dirac physical variables in the reduced phase space p,, ¢. This parame-
ter is invariant under the time-reparametrization group transformations
of the initial time ¢ which is not observable. We can call the parameter
7N the Dirac observable time. The role of the Dirac Hamiltonian in the
reduced space is played by the matter part of the Einstein Hamiltonian
E. (23) which coincides with the conventional definition of the matter
Hamiltonian in the flat space. For the description of the Dirac physical
sector, we can restrict ourselves to the action obtained from (29) by the
substitution of the constraint

I, =H,. (34)
As a result, we get the reduced action

ty

Wiln,=n, = W = / (Pl F HyTodns) (35)

t

which describes excitations of the scalar field in a cavity of the conformal
space with the constant metric 7;;.

Thus, instead of the extended phase space N, Pn;a, p,.0, P, and the
initial action invariant under reparametrizations of the coordinate time
(t — t' = t/(t)), we have got the reduced phase space which contains
only the fields of matter and the reduced action with the conformal
Hamiltonian H,, describing the evolution of these fields in the station-
ary conformal space (7) with respect to the conformal time. Al these
quantities are invariant under the coordinate time reparametrizations
and can be called the Dirac observables [16], including the conformal
time. - : ’
Our main conclusion is the following: the gaugeless Hamiltonian
reduction, satisfying the correspondence principle, leads to the Narlikar
conformal frame of reference [13] where the observable space seems
stationary and the observable time (7, = r,7,) is monotonic for all
types of the space [18, 19].



5 Construction of the Friedmann
observables in the Hamiltonian scheme

The Friedmann evolution of the Universe is based on the Einstein con-
vention about the observable (proper) time (2)

dTp = a(t)cht = a(na)rodna, (36)
proper distance
Rp = a(na) R, (37)
and proper energy .
Ep = Fe . (38)
a(7a)

Such an evolution is described by the quantity a(7,) defined through the
canonical transformation (26) on the constraint surface (34)

2F,
aw) = %4/ ﬂr Sk(7a)s (39)

where F, is a value of the energy.

6 Quantization in the reduced phase space

As in the case of a relativistic particle, two solutions of the energy con-
straint corresponding to two reduced actions erd, WEed mean that
the total wave function of the Universe represents the superposition of
two wave functions constructed from these actions

VU Red(Ma, ) = A+‘I’§2t31(77a,99)+A ‘I’Red(Um‘P) (40)

The functions ¥(*) satisfy the Schrodinger equations

1 + +
ir dn \pgieai - H‘P\pg?eai(na’ (10)’ (41)

and the coefficients A*, A~ can be treated as creation operators of the
Universe and anti-Universe [20].

10

The wave function ¥(¥)(5,, ¢) can be represented in the form of the
spectral representation over the complete set of eigenfunctions < ¢|n >
of the reduced Hamiltonian

Vi g) = D e e < pln > (42)
e(n)

V) (na,0) = Y eremere < pin > (43)
e(n)

where < ¢|n > satisfies the equations

Hy < ¢ln. >= £(n) < ¢|na >, (44)

/d(p < n1|<,0 >< (,0177«2 >*= 611111.2, (45)

n being set of conserved quantum numbers. There are two Universes
the evolution of which is governed by the invariant parameter of the

_conformal time 7,. In the following, we shall consider the case of a

closed space k = +1, where < ¢|n > are the Hermite polynomials, and
1 1
e(n):r—(n+§); n=0,1,2,3,.... (46)

The spectral decompositions (42), (43) represent wave functions of
quantum excitations of the massless scalar field, in a closed cavity of the
conformal space. The wave lengths of the excitations ( and the region of
validity of quantum theory ) coincide with the size of the space occupied
by the Universe.

Let us show that the obtained wave function (42), in contrast with
the WDW one (21), has a direct relation to the Friedmann classical
evolution with respect to the Friedmann observable time (36)

dTF = ax(Ma)rodna, (47)

where the scale factor a is expressed through the parameter 5, by the
formula of the canonical transformation (26)

age () = [ 25 i), (19)

11



for each term of the spectral decomposition (42). Taking into account the
connection of the Friedmann time (47) with the conformal one T, = 7,7,
we can verify that the result of the variation of the wave function (42)
with respect to the Friedmann time determines the Friedmann observ-
able energy of the red shift Ep = :i:s—a(il (7) for each term of the spectral

decomposition (42)

R S @) = —U e, P) =
idTFi(a) Red(n ) dn.(a) 1dnq R'ed(n )

= Z E—(E—)—e_ie(n)h“ro <¢ln>. (49)
e(n) o (

We can see that the wave functions (42), (43) constructed by the gauge-
less reduction have the correct correspondences with the classical evo-
lutions, in both the frames of reference the Einstein (2) and Narlikar
(7). In the conformal frame (7), the Dirac observables coincide with the
cosmological ones. In the Einstein frame (2), the cosmological observ-
ables connected with the Dirac ones by the conformal transformations
with the cosmic scale factor a.

7 Functional ihtegral

To connect the reduced wave function with the WDW one (21) it is
useful to write the spectal decomposition of the Green function

Glm,mle,2) = 3 [e"s(”)(’”"") < @iln >< njpg >* +
e(n) ‘ : ‘

+e—is(ﬁ.)(.7n‘"7l2) < ‘Plln >*< ’I‘LIQO2 >] (50)

in the form of the functional integral over the variables of the Dirac
physical sector:

Py =¥2 . ) o

G(m, malpr, 92) = DepDp, [+ ped) 1 WI0e)] | (51)

Ym =1

12

where W4 are given by formula (35)

72

. d

Wf ‘= [ dn, (pw'd';;ﬁ + ero) ) (52)
m

and the role of time is played by the parameter 7,. Formally, we can
return to the initial time coordinate ¢ so that ¢; = ¢(t1), Y2 = @(t2)
and the action (52) has the form "

na(t2)=m p ‘ p
W:}h%d = / dt (pv—(f' F Heto 77a> (53)

na(ti)=m

In the following, we should take into account that 7, is not the variable
but the parameter. With the help of the functional é-function

- 4t2 ‘
/DHaé(—Ha+H¢) - /DNCDH,, exp i/dth(—Ha +H,) | (54)

t

one can also introduce additional integration and restore all variables of
the extended phase space except for the ignored ”variable” 7,

n2,¥2
G(m,maler, p2) = / DeDp, DI, DN, [€+in +e"I (55)

n1,¥1

where the actions W{ are defined by eq. (29). Integration over the
ignored ”variable” 7, results in the infinite gauge factor /

Dna(t) = A. (56)

1 <t<t2

This factor can be removed by introducing a é-function

Da(£)6(na(1))- (57)

11 <t<ty

13



We call this additional constraint the ”canonical” gauge. Let us insert
(57) into (55) and make the transformation to initial variables (pa,a)

a2 t
u(par0) = (24 558 5 a(pay )l = arctan (55 ) . (58)

Two items in (55) can be joined keeping in mind that

(% - (- £30)) =

V2B 8 (pa = /Tl - 2,.2ﬂ)+6(zna+,/n - 26)]-

As a result, we got a functional integral in the Faddeev — Popov form
(5] in the canonical gauge (57)

G(U1,772|991,992) =

72,¥2
/ DypDp,Dp; DaDN.6 [arctan( ﬂ; )] eiWF(p‘P’w;p°’°;N°)(-59)
71.%¥1 ore

We remind that the naive functional integral over the whole phase space
has the form

¥2,a2
/ DwachNchaDae"WfDM (60)

¥1,81

G(01,02|991,992) =

and differs from the canonical result (59) as follows:
i) by the infinite gauge factor (56),
ii) by the surface term

W%M=WF—/ﬂbﬂ@a]- (61)

Just the same naive functional integral including the infinite gaugé
factor has been discussed by Hartle and Hawking [21] and until now is
used by many others (see, for example, [22]).
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8 Wheeler — DeWitt equation

" In this section we shall discuss the connection between the obtained wave

function (42), (43) and the solution for the Wheeler — DeWitt equation

(21).
A conformal version of this equation has the following form:
‘ 2 pg?
[— (gﬁ s ﬂ) IR ] Ty pw(,a) = 0. (62)

The conserved quantum number (&, ) corresponds to classical integral of
motion (H,). Then, factorization of the wave function takes place

Ywpow(p,a) = Z U(a,e(n)) < nle >, (63)
&(n)
and ¥(a,¢,) satisfies the equation

- (B+57) + o] v@emy =0 (64)

" A solution of this equations will coincide with the wave functions of the

Hamiltonian reduction (42), (43) if we use the ordering of the operators
in (64), so that the momentum () acts later than variable (a), and add
a phase multiplier resulting from the surface term (61) contained in the
initial Einstein — Hilbert action.

‘The prescribed ordering rule leads to the solution

Ywow = AT pw + A” Yy pw (65)

7 ”
Uiy pw (a,€(n)) = exp l:ii\/éﬁ/da'vﬁ(n) - ;Tf} (66)
DT pw = £V/2B4[(n) ﬂ Vi pw- (67)

Taking into account the phase multiplier with the phase formed by the
surface term in eq. (61)

S(a) = \/S—Baﬂs(n) - ;jg (68)

15




leads to the relation between the wave functions: the reduced one (42)
and the WDW function (21)

W (a,0) = EIE) < oln = FIOYE L (a,e(n)) < pln >
(69)
As the variable a turns into a parameter, we can demand normalizability
of this function only for the variables of the reduced phase space, for the
variable ¢ in this case. '

Thus, we show that a solution of the WDW equation can coincide
with the wave function of the Dirac gaugeless quantization in the reduced
phase space where the wave function is normalizable and describes the
geometric evolution of the Universe for the Einstein comoving frame of
reference (49): .

_4 [‘1’i (a 6(n))e:Fis(“)] £(n) [\I' (a 6(n))e:Fis(“)]
idTr(a) L~ WOWL™ a(Tp) L WDWL™ ‘
(70)
We see that variation of such a WDW function with respect to the
Friedmann time T gives the "observable” Friedmann energy (49).

9 Interpretation and conclusion

The aim of the present paper is to investigate relations between the
Friedmann cosmological observables and the Dirac physical ones in the
Hamiltonian approach to quantization of the Universe using a simple
but important example of the homogeneous Universe filled in by the
scalar field excitations. ]

An essential difference of the research presented here from the anal-
ogous papers on the Hamiltonian dynamics of cosmological models is
complete separation of the sector of physical invariant variables from the
pure gauge sector by the application of the gaugeless reduction [8, 9].
The main point is that in the process of the reduction one of variables
converts in to the observable invariant time. We have shown that this
conversion of the variable to the time parameter leads to the normaliz-
ability of the Wheeler — DeWitt (WDW) wave function and removes an
infinite factor in the Hartle —~ Hawking functional integral. The gaugeless
reduction gives us the definite mathematical and physical treatment of

16

the: WDW wave function and clears up its relation to the observational
cosmology.

The obtained wave function of the Friedmann Universe filled in by
the homogeneous scalar field is nothing but the one of the scalar field
excitations in the finite cavity of the conformal space occupied by the
Universe. . The time evolution is governed by the reduced Hamiltonian
that coincides with the conventional Hamiltonian for the massless exci-
tation in field theory. :

The considered gaugeless reduction distinguishes the conformal ([13])
frame of reference. It was shown that, in both the classical and quantum
theories, the Friedmann observables are connected with Dirac ones by
the conformal transformatlons with the cosmic scale factor.
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R BbUJEJIﬂCT Kon(bopmnyro cncreMy oTquTa Hapnm(apa

‘onnnr,~,

Torunnmse C.A. u 1p. T S " E2-96-475

[Jupakosckue u q)pmmanoscxue naomonaemme B' KBAHTOBOH Bcenennon o

c pa,nnaunen T - c '
Hpn nomouru 6ecxanu6poaoqnou FaMUBTOHOBOI penyxumr ycranannnaaercx OTHO-.

LIEHHE MEXIy (ppmmanoscxnmn HaboaeMbIMH B PacLIHPAIOLUEHCS BCENeHHOI (3aKoH

Xa66na u. KPacHOe . CMEILICHHE) M JHPaKOBCKHMH Hab/MoaeMbiMH B 0606 1UeHHOM -

raMUILTOHOBOM NOAXORE Afs dpuamanosckofi KOCMONOTHYECKOi1- MOZIeN | Bcenermon’ i

3aM0HEHHOI TIO/IEBLIMH BO3OYXNEHUAMH, HMHTHDYIOLMMH pannaumio. . -

. Belnonugerca nonmHoe . oTaenenue Epmuqecxoro CexTopa ' OT Kanuﬁpoaoquoro

: npu TOMOLLH 6ecxanu6posoqnou raMHILTOHOBOI PEAYKIHH, B KOTOPOIi rpaﬂnrauuouuaa
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- [loxasauo, uto 372 penykuus ycrpamer GecKoHeuHbli xanu6poaonnmn tbaxrop

o s (pyHKuHonanbnoro HHTCTpaIa XaanH—Xoqura, oGecnetuaeT HOPMHpYeMOCTD. | -
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| Dirac and Frredmann Observable‘; in Quantum Umverse wrth Radranon

Relatrons between the Frredmann obﬁervables of the expandmg Umveree,‘

"{ and' the. Drrac ‘observables in "the generalized Hamiltonian’ approach are established
» “for the Friedmann cosmologrcal model ofthe Umverse wrth the ﬁeld excrtanons 1m1tat1ng
* | radfiation. -

S Afull separatron of the physrcal sector from the gauge one'is fulfrlled by the method
of the gaugeless reduction 'inwhich the. gravitational part: of the energy constraint
is considered as-a’' new. momentum.' We show- that this reduction: removes an infinite "

| factor ‘from the Hanle-——Hawkrng functional integral, provides  the normalrzabrlrty
‘of the Wheeler — DeWitt wave function, ‘clarifies  its relanon to, the observauonal
'cosmology, and prcks out a conformal frame of Narlrkar ‘

The 1nvest1gat10n has been performed at the Laboratory of Theoretlcal Physrcs
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