
E2-96-475 

S.A.Gogilidze1, A.M.Khvedelidze2, V.V.Papoyan3, 
Yu.G.Palii, V.N.Pervushin 

DIRAC AND FRIEDMANN OBSERVABLES 

IN QUANTUM UNIVERSE WITH RADIATION 

Submitted to «Gravitation and Cosmology» 

1Permanent address: IHEP, Tbilisi State University, 380086, Tbilisi, Georgia 
2Permanent address: Tbilisi Mathematical Institute, 380093, Tbilisi, Georgia 
3Permanent address: Yerevan State University, 375049, Yerevan, Armenia 



-~.;. 
•• 1, 

,·+ i.' 
i 

';': 

'? - 'l :. Statenien:t' of the problem'· 

There is a hop~ of solving fundame~tal problems of cos~~logy of the · 
. · early Universe by 'help, of quantum; gravity' [1, 2, 3, 4, 5]. The prob-
. · lem of qua~tization •has stimulated th.e developm'ent of th.e Hamiltonian 

~pproach to the theory'of-gravity and cosm~logicaJ models of the.Uni-
. v·erse., A lot of papers and some monographs·(se'e e.g; [6, 7]) have been 

devot.ed to the Hamiltonian description .of cosmological models· of the 
Universe. The main peculiarity ofthe Ha~iltonian' theory of gi:avity is 
the presence of, nonphysical yariables <;1,nd constr_aints. They arise due 
to the diffeomorphism· invariance of the theory· which is the basis of the 
difficulties with the solutionfor the important conceptuaLproblelllS 
- treatment of the observabletirile in classical cosmology - interpretation 
ofthe wave function and its' non-normalizability , 
- 'relations between the observational cosmology (the Hubble law and 

.red shift) and the Dirac observ~bles, in _the Hamiltonian description of 
the classical and quantum 'cosmologies. . . 

One of the possible solution of these problems in the Hamiltonian 
· approachis to reduce the initial codstral:rif system to unconstrain.ed one. 
. by separation of pure gaug~ degrees of freedom· ·from physicai o'ues; In 
the present· paper; we wimld lik:e · fo apply rece~tly developed method· of 
the Hariiiltonian r·edudion pf singular syst,ems with the fuU'separation of 

. the gauge sector · [8, 9]. to a simple, but i~portant; cosmological model 
of theU niverse with scalar field to investigated the probl~ins listedabove 
and to compare, ~ur' r~duced quantization with .the ~xtend~d approach 
[3, 4,' q]'. · · · ·, . · ' . . . · 

. The Content of th~. paper is the following. Section 2 is d~voted to 
.. observational cosmology.· In Sect.ion 3, we present the Lagrangian model 
. the equations of which coincide. with the ones of the Fri~dmann .Uni-· 
'verse filled in.by-radiation'. In Section 4, the gaugeless version of the .. ' . . ' . . .\ . 
Dirac Hamiltonian description [8, 9) of the. model .is expounded,. and· 
the phase sp'ac~ reduction is fulfilled byseparating of the physical and 
nonphysicalsectors. In Section. 5, we establish the relation between the 

,,Dira~observables in. the Hamilt,onian appr~ach ~nd the Friedmann ones 
· ·in the classical cosmology. Section.6..~,,devoted to the quantization ~f the · 

model in the.reduced phase space an~d.the description of the cosmological· 
observabb~ in quantum theory .. In Section 7, the functional integral is 
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constructed which is adequate to the gaugeless quantization. In Section 
8, we show how to modify the Wheeler - DeWitt wave function so.that 
it describes the Friedmann cosmological observables. The conclusion is 
devoted to the discussion and physical interpretation of the results. 

2 Observational cosmology. 

2.1 Experimental data. 

One of the main facts of the observational cosmology is correlation be­
tween the distance of an astronomical object (RF) to the Earth and the 
red shift z (in 1i = c = l units) 

>-.(TF) 1 d)..(TF) 
z = >-.(TF - RF) - l = >-.(TF) dTF RF + ... RF~TF (1) 

where >-.(TF) is wave length of photon radiated by an atom on the Earth 
and >-.(TF - RF) wave length of photon radiated by an atom on an 

. astronomical object at the time (TF - RF). 
The quantity ,\(~F) d~'{;) = H 0 is known as the "Hubble constant". 

The present value of this constant [10], [11] 

km 
H0 ex (70± 15) -M, 

s pc 

gives the scale of the observational cosmology. 

2.2 Theoretical interpretation. 

There are two interpretations of this experimental fact. The recent the­
oretical cosmology is based on the Friedmann solution of equations of 
general relativity for the case of homogeneous and isotropic distribution 
of matter in the Universe [12]. It is important to emphasize that classi­
cal cosmology uses the comoving frame of reference with the Friedmann 
- Robertson - Walker metric 

2 2 2 . . 
(dsF) = dTF - a (TFhiidx'dx3

, (2) 

, .... ~-.. -~--
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where a(TF) is cosmic scale factor, 'Yijdxidxi is the metric of the three­
dimensional space of the constant curvature 

(3)R(,ii) = -~k; k = 0,±l, 
ro 

(3) 

( r O is a parameter characterizing a "size" of the Universe). As the con­
sequence of such a choice, one supposes that, in cosmology, physically 
measured quantities are the ones which evolve in the proper (Fried­
mann) time TF. The measured quantity of the metric (2) is the distance 
RF(TF) to cosmic objects: 

RF(TF) = a(TF )Re 
dr' 

Re= J Jl _ kr'2 /r'{ 
(4) 

and the "Hubble constant" 

l d>-.(TF) 1 da(TF) 
Ho = >-.(TF) dTF RF = a(TF) dTF . (5) 

The alternative treatment of Hubble law was developed by Narlikar 
0

( see review [13] and the literature cited therein). According to N arlikar 
the measured quantity is the distance Re 

Tc(TF) 

J dTF 
Re = a(Tc) = Tc(TF) (6) 

0 

in the· conformal metric 

(d )2 - dT2 · ·d id i Sc - c - /IJ X X • (7) 

In the conformal (N arlikar) frame the Universe is stationary and the 
"conformal wave length" of a photon does not change during the time of 

_;: the photon flight from a "s_tar" to the Earth. However, the " conformal 
mass" 

mc(Tc) = mFa(Tc) (8) 

is time dependent and this leads to the red shift. In result the Hubble 
law has the form 

z = mc(Tc) _ 1. 
mc(Tc - Re) 
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3 Model 

We begin from the Einstein - Hilbert action with the conformal scalar 
field 

W = Jd4 x c-;; [- (
4
)R(gµv) (l - l67rG <I>2) + ~gµva <I>& <I>]. (9) v -g l67rG • 12 2 µ v 

The Hamiltonian formulation of gravity is fulfilled in the ADM metric 
[2] 

(dsE) 2 = N 2dt2 - 9ijdxidxi; dx' = dxi + N'dt. (10) 

In order to derive a set of equations which is completely equivalent 
to the Friedmann - Einstein ones we choose the metric 

(ds)2 = a2(t)[N;dt2 - 'Yiidxidxi]. 

and the ansatz for the scalar field 

<I>= <p(t). 
a( t) 

(11) 

(12) 

Instead of eq. (9) we get the action in the homogeneous approximation 

WF - Jt
2 

[ ( a,2 ka2 ) ( 'P2 k<p2 ) dt -/3 - - -
2 

Ne + V(3) - - - 2 Ne + 
2Nc 2r0 2Nc 2r0 

t1 

f3 d ( aa)] + 2 dt Ne . (13) 

We retained here one of the total derivatives arising from the gravita­
tional part of the action (9)); V(3) is the volume of the three-dimensional 
space with the constant curvature and /3 is a constant coefficient 

6 
/3 = v(3) 27rG j v(3)1k=H = 27r

2
r~. (14) 

One can easily be convinced that the set of equations of the model ( 13) 
is equivalent to the Friedmann Universe filled in by the matter with the 
equation of state of the radiation [15]. 
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The variation of the action ( 13) with respect to the matter field leads 
to equation of motion rp 

bW =0 
brp 

=> d ( drp ) krp 
- Nedt Nedt - r; = O. (15) 

The consequence of this equation is the integral of motion 

[
1 ( drp ) 

2 
krp

2
] d 

Ee('P) = V(3) 2 Nedt + 2r; ; dtEe('P) = O, (16) 

which plays a role of the conformal energy Ee for the massless scalar 
field. 

The equation on the variable Ne coincides with the known Einstein 
balance of energy of expanding space and matter 

bW =O 
bNc 

=> [( 
da ) 

2 ka2] 
(3 Nedt + 2r; = Ee(rp). (17) 

The Friedmann evolution results from equations (15), (16) and (17) when 
the convention about the definition of the proper time of observing (5) 

dlp = aNedt = adTe (18) 

is added to these equations. Substituting eq.(18) into (17) and solving 
this equation under TF, we get the Hubble law of the radiation dominant 
Universe in the parametric form 

a(Te) = 1/ 2Eer)r;Sk (:e) Tc 

TF(Te) = J dTea(Te) (19) 

0 

where 

Sk=I(TJ) = sin T/; Sk=,-I(TJ) = sinh T/; Sk=o(TJ) = T/. (20) 

Our problem is to find out the connection between the cosmological 
observables and the Dirac observables of the Hamiltonian approach to 
the model (13) and establish a bridge between the classical evolution and 
the wave function of the Universe determined by the WDW equation 
[3, 4] 

1 d2 ka Ee( rp) [--- + (3- - --]\llwnw(a,rp) = 0 (21) 
2a(3 da2 2r; a 

which is the quantum analogy of the energy balance equation (17). 

6 

4 Gaugeless Hamiltonian reduction 

According to the Dirac classification [16] the action (13) is a singular. 
Following to the generalized Hamiltonian approach to singular theories 
this action can be rewritten in the form 

WF[Pc,,, rp; Pa, a] = J dt {Pc,,<f' - [~aa - ½ ! (paa)] - Ne1-iEc} , (22) 

where _ (P~ ka
2 

) 
1-iEc - - 2(3 + 2r;(3 + 1-tcp (23) 

is the conformal version of the Einstein energy and 

_ ( P! krp
2 

) 
1-tcp - 2~

3
) + 2r; ~ 3) 

is the part describing a homogeneous scalar field (matter). 
The considered model (22) faces principal difficulties of the theory 

of gravity. The main of these difficulties is the presence of nonphysical 
(ignored) variables. In the phase space Pc,,, 'Pi Pa, a, one of the momenta 
depends on the others due to the constraint 

1-iEe = 0. 

Let us discuss the Hamiltonian reduction in the case when an inde­
pendent variable is chosen as a matter momentum. For the complete 
separation of the physical sector from the nonphysical one, we apply the 
method developed in papers (8, 9]. In accordance with this method, 
such a separation can be fulfilled using the canonical transformation to 
new variables 

(Pa,a) -+ (ITa,T/a), (24) 

so that the gravitation part of the constraint for these variables becomes 
a new momentum 

2 
Pa + ka

2 
_ 

2(3 2r2 (3 - Ila. 
0 

(25) 
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There are two possible canonical transformations 

lnirrT ( ) ✓ 2n. r~ Pa(±)= ±y L,fJHaCk 1Ja j a(±)=± -.-(3-Sk(1Ja) (26) 

where 

(C+1(1la) = COS1Ja; C_1(1Ja) = cosh7]a; Co(1Ja) = 1). (27) 

It is interesting to note, that the surface term of the gravitational part 
of the Einstein - Hilbert action (15) is completely absorbed by the new 
canonical structure [17] 

- (paa - ! (paa)) = =t=IIa'ljaTo- (28) 

In terms of the new variables (26) the action (22) reads 

W8iIIa, 1Ja,P<p, <p, Ne)= J dt [pc,ocp =f IIa1)aro ~ Nc(-IIa + 1ic,o)]. (29) 

Expression (29) leads to the Hamiltonian equation describing the non­
physical sector of the variables (Ila, 1Ja) 

8W{~) 
--=0 ⇒ 

D1Ja 
±Ila= O 

8W{±) 
DIIa = 0 ⇒ r0d1Ja = ±Ncdt 

and the physical (by the Dirac definition [16]) one 

F 
8W(±) = 0 ⇒ 

8p<p 

F 
8W(±) = o ⇒ 

8<p 

d<p = ±{1i<p,' <p }. 
Ncdt 

dpc,o = ±{1ic,o,P<p} · 
Ncdt 

(30) 

(31) 

(32) 

(33) 

From equation (31) we can see that after transformation (24) the new ig­
nored variable 1Ja turns into the parameter of time of the evolution of the 
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Dirac physical variables in the reduced phase space Pc,o, <p. This parame­
ter is invariant under the time-reparametrization group transformations 
of the initial time t which is not observable. We can call the parameter 
1Ja the Dirac observable time. The role of the Dirac Hamiltonian in the 
reduced space is played by the matter part of the Einstein Hamiltonian 
Ee (23) which coincides with the conventional definition of the matter 
Hamiltonian in the flat space. For the description of the Dirac physical 
sector, we can restrict ourselves to the action obtained from (29) by the 
substitution of the constraint 

Ila = 1icp . (34) 

As a result, we get the reduced action 

t2 

W{lna=rl<p = w:ed = J (pc,od<p =f 1i<prod1Ja) (35) 

t1 

which describes excitations of the scalar field in a cavity of the conformal 
space with the constant metric 1;1. 

Thus, instead of the extended phase space N, PN; a, Pa;c,o, Pc,o and the 
initial action invariant under reparametrizations of the coordinate time 
(t .....- t' = t'(t)), we have got the reduced phase space which contains 
only the fields of matter and the reduced action with the conformal 
Hamiltonian 1ic,o describing the evolution of these fields in the station­
ary conformal space (7) with respect to the conformal time. All these 
quantities are invariant under the coordinate time reparametrizations 
and can be called the Dirac observables [16], including the conformal 
time. 

Our main conclusion is the following: the gaugeless Hamiltonian 
reduction, satisfying the correspondence principle, leads to the N arlikar 
conformal frame of reference [13] where the observable space seems 
stationary and the observable time (Tc = T 01Ja) is monotonic for all 
types of the space [18, 19]. 
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5 Construction of the Friedmann 
observables in the Hamiltonian scheme 

The Friedmann evolution of the Universe is based on the Einstein con­
vention about the observable (proper) time (2) 

proper distance 

and proper energy 

dTF = a(t)Ncdt = a(11a)rodT/a, 

RF = a( T/a)Re, 

Ee 
EF = a(T/a). 

(36) 

(37) 

(38) 

Such an evolution is described by the quantity a( T/a) defined through the 
canonical transformation (26) on the constraint surface (34) 

~ . 
ll(±) = ±y ~Sk(T/a), (39) 

where Ee is a value of the energy. 

6 Quantization in the reduced phase space 

As in the case of a relativistic particle, two solutions of the energy con­
straint corresponding to two reduced actions wfed' w~ed mean that 
the total wave function of the Universe represents the superposition of 
two wave functions constructed from these actions 

'11 Red( T/a, <p) = A +wt~( T/a, <p) + A-'11~~( T/a, <p ). ( 40) 

The functions w(±) satisfy the Schrodinger equations 

± _l~llt(±) - • (±) 
ir d'f/ Red - 1-lcpllt Red(T/a, <p), 

o a 
(41) 

and the coefficients A+, A- can be treated as creation operators of the 
Universe and anti-Universe [20]. 
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The wave function w(±)( T/a, <p) can be represented in the form of the 
spectral representation over the complete set of eigenfunctions < rpln > 
of the reduced Hamiltonian 

wt~(T/a,'P) = 

(-) ( ) '1t Red T/a, 'P = 

L e-ie(n)7JaTo < rpjn > 
e(n! 

L e+ie(n)7Jaro < rpjn > 
e(n) 

where < rpln > satisfies the equations 

Hep -:::: 'PIT/a >= c:(n) <'PIT/a>, 

j dcp < n1l'P >< rpjn2 >*= bn1n2 , 

(42) 

(43) 

( 44) 

(45) 

n being set of conserved quantum numbers. There are two Universes 
the evolution of which is governed by the invariant parameter of the 

. conformal time T/a• In the following, we shall consider the case of a 
closed space k = +l, where < rpln > are the Hermite polynomials, and 

1 1 
c:(n) = -(n + -) ; n = 0, 1,2,3, .... 

T0 2 
(46) 

The spectral decompositions ( 42), ( 43) represent wave functions of 
quantum excitations of the massless scalar field, in a closed cavity of the 
conformal space. The wave lengths of the excitations ( and the region of 
validity of quantum theory ) coincide with the size of the space occupied 
by the Universe. 

Let us show that the obtained wave function ( 42), in contrast with 
the WDW one (21), has a direct relation to the Friedmann classical 
evolution with respect to the Friedmann observable time (36) 

dTff = a±(T/a)rodT/a, (47) 

where the scale factor a is expressed through the parameter T/a by the 
formula of the canonical transformation (26) 

2c:(n)r~ . 
ll(±)(T/a) = ±\/ /3 sm(11a), (48) 

11 



for each term of the spectral decomposition ( 42). Taking into account the 
connection of the Friedmann time ( 4 7) with the conformal one Tc = T/a r O , 

we can verify that the result of the variation of the wave function ( 42) 
with respect to the Friedmann time determines the Friedmann observ­
able energy of the red shift EF = ±ft) (7) for each term of the spectral 

decomposition ( 42) 

d _q,(±) ( 
idT"J;(a) Red T/a,'P) (

dTF(a))-
1 
~q,~~(T/a,'P) = 

drya( a) idTJa . 

= L c(n) e-ie(n)TJaTo < c.pln >. (49) 
a± . 

e(n) 

We can see that the wave functions ( 42), ( 43) constructed by the gauge­
less reduction have the correct correspondences with the classical evo­
lutions, in both the frames of reference:"the Einstein (2) and N arlikar 
(7). In the conformal frame (7), the Dirac observables coincide with the 
cosmological ones. In the Einstein frame (2), the cosmological observ­
ables connected with the Dirac ones by the conformal transformations 
with the cosmic scale factor a. 

7 Functional integral 

To connect the reduced wave function with the WDW one (21) it is 
useful to write the spectal decomposition of the Green function 

G(TJ1,T/2l'P1,'P2) = L [eie(n)(TJi-TJ2) < 'P1ln >< nlc.p2, >* + 
e(n) 

+e-ie(n)(TJ1-TJ2) < 'P1ln >*< nlc.p2 >] (50) 

in the form of the functional integral over the variables of the Dirac 
physical sector: · 

'-Pr,2='-P2 

G(TJ1,T/2l'P1i'P2) = J Dc.pDpr.p [e+iw_fed(p,,,,r.p) + eiW,::ed(p,,,,r.p)]' (51) 

'-Pr,1 =r.p1 

12 

where wfed are given by formula (35) 

T/2 

wfed = j drya (pr.p :: =f= Hr.pro), (52) 

T/1 

and the role of time is played by the parameter T/a. Formally, we can 
return to the initial time coordinate ·t so that <p1 = c.p( t1 ), ',?2 = ip( t2) 

and the action (52) has the form 

Wfed = 
T/a(t2)=TJ2 

J ( dc.p drya) 
dt Pr.pdt =f= 1tr.prodt (53) 

T/a(t1 )=T/1 

In the following, we should take into account that T/a is not the variable 
but the parameter. With the help of the functional <5-function 

j DII0 6(-II0 + Jt,) = j DN,Dil0 exp (i l dtN,(-II. + Jt,)) (5,t) 

one can also introduce additional integration and restore all variables of 
the extended phase space except for the ignored "variable" T/a 

T/2,'-P2 

G(TJ1,T/2l'P1,'P2) = j Dc.pDpr.pDITaDNc [e+iW.f + eiW.:], (55) 

T/1,'-PI 

where the actions Wf are defined by eq. (29). Integration over the 
ignored "variable" T/a results in the infinite gauge factor 

j Drya(t) = D.. (56) 

t1 <t<t2 

This factor can be removed by introducing a <5-function 

j DTJa(t)b(TJa(t)). (57) 

t1 <t<t2 

13 



We call this additional constraint the "canonical" gauge. Let us insert 
( 5 7) into ( 55) and make the transformation to initial variables (Pa, a) 

( 
p2 ka2 ) , ( [3a ) 

IIa(Pa, a)= 2~ + 2r~ /3 ; 1Ja(Pa, a)lk=l = arctan T~Pa . (58) 

Two items in (55) can be joined keeping in mind that 

(
p2 a2 ) 6 W - (Ila - 271/3) = 

./2fJ [a (Pa - Jrra - 2a:~/3) + 6 (Pa+ Jrra - ;r2

~/3)] . 

As a result, we got a functional integral in the Faddeev - Popov form 
[5] in the canonical gauge (57) 

G( 1]1, 112l<p1, <p2) = 
'72 ,'1'2 J D<pDp'{)DpaDaDNcb [arctan (~;a)] eiWF(P,p,'{);pa,a;Nc){59) 

'71,'f'I 

We remind that the naive functional integral over the whole phase space 
has the form 

'1'2,a2 

G(a1,a2l<p1,<p2) = j Dp'f'D<pDNcDPaDaeiWf.vM (60) 

'f'1,a1 

and differs from the canonical result (59) as follows: 
i) by the infinite gauge factor (56), 
ii) by the surface term 

F F J, [1 d ] WADM = W - dt 2 d/Pall) . (61) 

Just the same naive functional integral including the infinite gauge 
factor has been discussed by Hartle and Hawking [21] and until now is 
used by many others (see, for example, [22]). 

14 

8 Wheeler - De Witt equation 

In this section we shall discuss the connection between the obtained wave 
function ( 42), ( 43) and the solution for the Wheeler - DeWitt equation 
(21). 

A conformal version of this equation has the following form: 

[ (
P2 ka2/3) • ] 

-
2
~ + 2r~ + H'f' \llwvw(<p,a) = 0. (62) 

The conserved quantum number (en) corresponds to classical integral of 
motion (H'f'). Then, factorization of the wave function _takes place 

\llwvw( cp, a)= L \ll(a, c(n)) < nl<p >, 
e(n) 

and '11( a, en) satisfies the equation 

[ (
P~ ka

2
[3) ] - 2/3 + 2r~ + c(n) '11(a,€(n)) = 0. 

(63) 

(64) 

· A solution of this equations will coincide with the wave functions of the 
Hamiltonian reduction ( 42), ( 43) if we use the ordering of the operators 
in (64), so that the momentum (ft) acts later than variable (a), and add 
a phase multiplier resulting from the surface term (61) contained in the 
initial Einstein - Hilbert action. 

The prescribed ordering rule leads to the solution 

'1lwvw = A+wtvw + A-'11wvw (65) 

a'2f3 

[ 
a l . Wii>vw(a,e(n)) = exp ±i,/2ft f da' e(n) - 2r) (66) 

Pa wtvw = ±y'2fi)c(n) - a
2

2

~ wtvw· 
ro 

(67) 

Taking into account the phase multiplier with the phase formed by the 
surface term in eq. (61) 

./2{] J a2[3 S(a) = -a c(n) - -
· 2 2r~ 

(68) 
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leads to the relation between the wave functions: the reduced one ( 42) 
and the WDW function (21) 

wtAa,cp) = e±ie(n)ro1Ja(a) < cpln >= e'fiS(a)wtvw(a,c:(n)) < cpln >. 
(69) 

As the variable a turns into a parameter, we can demand normalizability 
of this function only for the variables of the reduced phase space, for the 
variable cp in this case. 

Thus, we show that a solution of the WDW equation can coincide 
with the wave function of the Dirac gaugeless quantization in the reduced 
phase space where the wave function is normalizable and describes the 
geometric evolution of the Universe for the Einstein comoving frame of 
reference ( 49): 

d [•Tr± ( ( )) =fiS(a)] _ c(n) [1Tr± ( ( )) CfiS(a)] 
idTF(a) '£WDW a,c: n e - a(TF) '£WDW a,c: n e . 

(70) 
We see that variation of such a WDW function with respect to the 
Friedmann time TF gives the "observable" Friedmann energy ( 49). 

9 Interpretation and conclusion 

The aim of the present paper is to investigate relations between the 
Friedmann cosmological observables and the Dirac physical ones in the 
Hamiltonian approach to quantization of the Universe using a simple 
but important example of the homogeneous Universe filled in by the 
scalar field excitations. 

An essential difference of the research presented here from the anal­
ogous papers on the Hamiltonian dynamics of cosmological models is 
complete separation of the sector of physical inv.ariant variables from the 
pure gauge sector by the application of the gaugeless reduction [8, 9]. 
The main point is that in the process of the reduction one of variables 
converts in to the observable invariant time. We have shown that this 
conversion of the variable to the time parameter leads to the normaliz­
ability of the Wheeler - DeWitt (WDW) wave function and removes an 
infinite factor in the Hartle - Hawking functional integral. The gaugeless 
reduction gives us the definite mathematical and physical treatment of 
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the WDW wave function and clears up its relation to the observational 
cosmology. 

The obtained wave function of the Friedmann Universe filled in by 
the homogeneous scalar field is nothing but the one of the scalar field 
excitations in the finite cavity of the conformal space occupied by the 
Universe. , The time evolution is gov.erned by the reduced Hamiltonian 
that coincides with the conventional Hamiltonian for the massless exci­
tatio·n in field theory. 

The considered gaugeless reduction distinguishes the conformal ([13]) 
frame of reference. It was shown that, in both the classical and quantum 
theories, the. Friedmann observables are connected with Dirac ones by 
the conformal transformations with the cosmic scale factor. 
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rornmmJe C.A. II .up. 
JJ:11paKOBCKlle II <ppH,llMaHOBCKHe Ha6mo,uaeMbie. B, KBaHTOBOH Bcenem1oi1 
'c pa.u11at111ei1 

E2-96-475 

Tipll IlOMOlUII 6ecKan116pOBO'IIIOH raMHnbTOHOBOH pe.UYJ<UIIH ycrnHaBJUIBaeTCll OTHO· 
rneHne Me)K,lly <ppH,uMaHOBCK_IIMH ua6.r110.uaeMb1M11 B pacw11pJ1101UdicJ1 Bcenemmii (3aKOH 
Xa66na II KpacHoe, CMe1UeH11e) II .UllpaKOBCKIIMII. 11a6nJO.uaeMblA1ll B o6o6meHHOM 
raMl!nl,TOHOBOM no.uxo.ue ,llnll cpp11.uMa110Bcimi1 KOCMOnOrn'!eCKOH MO.Uen11 Bcenemmi1, 
JanonHeHHOH noneBblMII _ B036y)K,lleHHJIMII, IIMIITHpyJOIUmlll pa,u11au11JO. ' . 

. 8bmom1J1eTcJ1 nomme 0T,uene1111e Ql113ll'!ecKoro ceKTopa · OT Kam16poBO'lttoro 
, nptt IlOMOlUII 6eCKM116poBO'IHOH ffiMIIJlbTOIIOBOH pe.U)'KUIIII, B KOTOpofi rpaBIITa.LIIIOllllal! 
'!aCTb raM11nbTOIIOBOH CBll3II npeo6paJyeTCll B IIOBblH IIMnynbC. 

IloKaJaHo, '!TO :na pe,llYJ<Ullll ycTpaHlleT 6ecKClHe'lllblH Kan116poBO'lllbiii <paKTOp 
113 <pyHKUIIOHaJ!bl!Oro llHTCrpana Xaprn11 _'._XOKHHra, o6ecne'!HBaeT HOpM11pyeMOCTb 
BOnHOBOH <pyHKUIIII Yminepa c- JJ:e 811rra OTHOCII_TenbHO IIHBapmUITllblX nepeMellllblX 
<pll3ll'ICCKOro ceKTopa, ,ue.naer llCllblM IIX. OTIIOWeime K 11a6nJO,uaTeJJbHOii KOCMOnonm 
11 Bb1,uenJ1eJ KOH<popMHYJO c11c-reMy oTc'l'ern _Hapn11K-apa. · · · · · 

.,_ 

Pa6oTa BhmOnlleHa B Jla6oparnp1111 i:eopern'leCKOii' <p113IIKII IIM.H.H.Eo
0

roni~60Ba 
mum. 1 • -· 

ITpenpHHT 06oe11H_11e1111oro 1111cn11yra_ ll.11epHb1X_ IICCJJC/IOBaHllii. )ly6Ha, 1996. 

(_ 

Gogilidze S.A. et al. · E2-96-475 
Dirac and Friedmann Observables in Quantum Universe ,with Radiation 

' . , 

Relations between the Friedmann observables of .the · expanding Universe 
and'. the Dirac observables in . the generalized Hamiltonian approach . ¥e established 
for the Friedmann cosmological model of the Universe with the field excitation~ imitating 
radfiation. ' . . · · . . . · · · · · .. - ·> 

A full separation of the physical sector from the gauge onei; fulfilled by the method 
of the gaugeless reduction in which the gravitational part of the energy constraint 
is considered as a new momentum. We show that this reduction removes an infinite 
factor from the Hartle_;_· Hawking functional integral, · provides the normalizability 
of the Wheeler-:- DeWitt wave function, · clarifies its · relation to the observational 
cosmology; and picks out a conformal fra~e of Narl!kar. · · 

The investigation has 'been performed at. the;Laboratory of Theoretical Physics, 
JINR. , . -. . . -
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