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1. Introduction 
,• 

The investigation of hadron properties at finite temperature and density is very im­
portant in order to provide insight into phenomena occuring in the vicinity of the 
transition to the hypothetical quark-gluon plasma state of matter which is charac­
terized by hadron deconfinement and restoration of chiral symmetry. These studies 
become particularly interesting since in ultra-relativistic heavy ion collision experi­
ments performed and planned at BNL Brookhaven and CERN Geneva one is able 
to create matter at the extreme densities and temperatures necessary for tl\e phase 
transition. Different effects have been discussed as possible signatures for the chi­
ral/ deconfinement transition, in particular J /iJ! suppression [1], low-mass dilepton 
enhancement [2] and strangeness enhancement [3] have been studied. Among the 
signals of such a transition the photons and dileptons are the most interesting ones 
since they leave the hot and dense matter at an early stage without suffering strong 
interactions. 

One of the products of heavy ion collisions is the pion gas. Therefore it is 
interesting to investigate the behaviour of such a gas at large temperature and/or 
density, in particular the study of its radiation is of interest. The main channel of 
this radiation is the annihilation of two pions into one photon. With help of this 
reaction it is possible to study _the behaviour of the intermediate p- meson under the 
influence of a hot and dense medium [4, 5, 6]. Among other radiation processes of the 
pion gas, the annihilation of two pions into two photons is of particular importance. 
In the vacuum this reaction contributes to the amplitude with noticeable probability 
for the charged pions only by the Born diagrams. Recently, the importance of this 
process in a hot medium for the explanation of excess low-mass dileptons has been 
discussed without assuming p- mass shift or quark-substructure effects [7]. However, 
for large temperature and density the quark-substructure terms (box and a-pole 
diagrams) become more important and give a remarkable contribution to the cross 
section which is comparable to that of the Born terms. It is important to investigate 
these effects since they could permit a better understanding of the properfo,s of the 
scalar meson and phemomena connected with deconfinement of hadrons. 

The paper is organized as follows: In Section 2 the annihilation process of the 
two pions into two photons is presented and discussed. It is shown that the a 
pole diagram [8-12] plays a very important role at large chemical potential, when­
Mu = 2M,r. In Section 3 the Compton effect for the pions is discussed in hot and 
dense matter.In this section the singularities at the Mott point are investigated.Some 
proposals for the observation of this property are discussed in sections 4,5. We 
summarize and conclude in Section 6.. In Appendix I there we show that in the 
amplitude of the process 1r1r -+ 11 the singularities· are absent at the Mott point. 
In Appendix II we show that these singularities exist in the Compton effect of the 
pions and calculate the coefficients of the singular terms. 



2. The process 1r1r ~ 11 at finite chemical poten­
tial 

The process 1r1r-+ 11 is described by the Born terms (for charged pions, see Fig. 1) 
· and the terms connected with the inner structure of the pions (11, 12] (for charged 

and neutral pions, see Fig. 2). The u-pole diagram (Fig. 2a) and the box diagrams 
(Fig. 2b-d) are the most important contributions. 

The Lagrangian describing the diagrams Fig. la,b has the form 

L = ieAµ{1r-8µ1r+ - 1r+oµ1r-) + A~1r+1r-. (1) 

The vertices of the Fig. 2 in the local approximation in the Nambu-Jiona-Lasinio 
(N JL) model [13] are described by the following langrangians in local approximation 
(NJL model) (11, 12, 14, 15]. 

Lbox 
a + -
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L""" 2mgzl/2 COS'Y0"7r2, 

L""l"I 
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= -9 F (5coq + v'2sin,..,)uF2 

7r" / ~' 
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where u and 1r are the scalar meson and pion fields, a= :: = 1!7 , Fµ,, = oµA 11-811 Aµ, 
the pion decay constant F" = 93 MeV, the strong pion coupling constant g = ;,,_, 
the dynamical quark mass m = 280 MeV. The renormalization coefficient Z = 
(1 - ~• )-1 is due to the 1r - a1 mixing [11], the mixing angle 7 describes the 

a1 

· deviation of the singlet-octet mixing angle from the ideal mixing (, = 23°),[15]. At 
large temperatures T and chemical potentials µ we can set 1 = 0 and Z = 1, (see 
(15, 16]). Then for charged pions the a.n'iplitude describing the sum of the Born 
diagram as well as the u-pole and the box graphs become 

µ. V µ. JI' 

T, _ 2 (2( µv ql q2 q2 ql ) 
(1r(q1)+1r(q2)->"fµ(k,)+"lv(k2)) - e g - -k- - -k-

q1 1 q2 1 
+ A(gµ,,k1k2 - k~k~)]eµ(ki)e,,(k2), (3) 

where q; and k; are the momenta of pions and photons respectively, eµ{ki) and e,,(k2) 
are the polarizations of the photons. 

A- 1 [ 40m2 
- (61rF1r)2 M;-s-iMur/1(µ,T)-!2(µ,T)] (4) 

is the contribution of the a- pole and the box diagram [11, 12, 14]. Mass and width 
of the u meson are given as 

M'; = M;+4m2 

3m4 c-TMf 
f" = 21rMuF;ZV 1 - -;-cos2 'Y· (5) 
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The functions f1 and h describe the dependence of the quark triangle and the quark 
box diagrams on temperature and chemical potential [14] and are given as follows 

3 f')O k3 E+k[ . ] f 1(µ,T) = 1- 2m2
}

0 
dkE6 lnE-k n(k,T,µ)+n(k,T,µ) (6) 

f2 = 3m2100

dk~:[1-n(k,T,µ)-n(k,T,µ)]. (7) 

. 
The Fermi distribution function n(k, µ, T) = [1+exp[(E(k)-µ)/T]r

1 
describes the 

dependence on temperature and chemical potential for particles and antiparticles of 
the energy E(k) = ✓k2 + m2 [16]. The functions f;(µ, T) describe the dependence of 
the triangle 0-71 and the box quark diagrams on temperature and chemical potential 
[14]. For the square of the amplitude (3) we obtain 

I 1
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T = 4e + " (k1q1)2 + (k2q1)2 + (k1q1)(k2q1) 

-2q1q2(_1_ + _1_) + ReA(3k1k2 + (k2q1)2 - (k1k2)(q1q2) + 
k1q1 k1q2 k1q1 

+ (k1q1)
2 

- (k1k2)(q1q2)] + IAl
2 

(k1k2)2). (8) 
k2q1 2 

Let us consider the following coordinate system l?d = lkl = w, k1 = (w, k), 
k2 = (w,-k),q1 = (w,if), q2 = (w,-if), w2 = M; + if, c = cos(qi,k1), s = (q1 + 
q2)2 = 2M; + 2q1q2 = 4w2 = 2k1k2, w2 = s/4, /32 = 1 - M;/w2 = 1 - 4M;/s, 
k1q1 = k2q2 = w2(1 - f3c), q1q2 = s/2 - M;, k2q1 = k1q2 = w2 (1 + f3c). 

The calculation of the cross section for this process gives 

(T "/"I = ---- ----8 q1 + q2 - k1 - k2)ITI "+"-_, 1 1 / d3k1 d3k2 4 ( 2 
(21r )2 4s/3 2w1 2w2 
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s/3 2/3 1 - /3 
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2 +s( ReA)-

13
- ln 

1 
_ /3 + 4 1AI ]. (9) 

Let us test how the radiation of the photons with the w = 170Mev ( s = · 
0.115Gev2) will change when we go from vacuum to the case with the finite T 
and µ. For that we shall calculate the contributions to the total cross section from 
the Born terms and from structure terms.1 

Here we shall consider only the main quark-substructure terms and neglect the 
vector and axial-vector pole diagrams. At first we consider the zero temperature 

1The value s = 0.115Gev2 (w = 170 Mev) corresponds to the resonance of the u-pole term in 
eq. (4) at the T = 100 MeV, µ = 270 MeV (s = m~)-
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and density case with s = 4M;(l + 1:). In our model [11] we fix the constituent 
quark mass at m = 280 MeV and obtain M,, = JM; + 4m2 = 580 MeV. If we 
consider the low energy reaction whens= 0.115 GeV2

, 1: = 0.44 and fJ = 0.55 then 
we obtain from Eq.(5) 

M,,r,, = 0.19GeV2 

and the last term of Eq. (9) equals to (Ji= h = 1) 

(10) 
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2
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2
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2 

4sfJ (l+c:)(311"F) (M;-4M;(l+c:))2+(M,,f,,) 2 -l 

( 
.40m2 M,,r,, 2] 

+ (M;-4M;(l+c:))2+(M,,f,,)2 ) 

71"02 

= 4sfJ0.07. (11) 

·, The interference term is equal to 

sReA = 0.26. (12) 

Then for the total cross section we obtain 

2 . 

o-"+,,- .... 'Y'Y = 'll"o (10.8 + 0.4 + 0.07] = 3µb. 
4sfJ · 

(13) 

We can see that the quark-substructure terms together with the interference terms 
give only the small corrections to the contribution of the Born terms, composing 
4% of the total cross section. 

For the neutral pions we obtain the very small cross section 

71"02 
0-""

0 

.... 'Y'Y = - · 0.07 = 0.02µb. 
4(3s 

(14) 

Now let us consider this process in dense matter. Then we can choose such values 
ofµ, when the real part of the denominator in (4) goes to zero. Using the results 
of the paper [16] we can see that forµ= 276 MeV, T = 100 MeV, M,, = 160 MeV, 

.m = 150 MeV, F,, = 61 MeV 

M';- 4M;(l + 0.1) = 0 , m = 0.92M,,. 

Here we again consider the case, s = 0.115 GeV2 however now c: 
f3 = 0.3. Then instead of Eqs (11-13) we obtain 
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0.1 and 

.. 

s2 IAl2 

sReA 

,r+1r--....,..., 
(1 

40m2 

0.007(1 +[Mr ~ 44]2)!; = 14.1 · J; 
u u 

= -0.085 . !2, 
71"02 
~[14.2 - 0.16/2 + 14.1 · J; ~ 21] ~ lOµb. 
4/Js 

(16) 

( 17) 

Here we put Z cos2
1 ~ l, Ji = 0.7. We see that the contributions of the structure 

terms are comparable with the Born terms and the total cross-section increases 
3.3 times. The cross section of the neutral pions increases 175 times and becomes 
comparable with the one of the charge pions. 

IAl2s2 = 0.007[1936 + 100 = 2036]Ji2 = 15/; = 7.3, 

• 71"02 
o-"

0
"

0
-+'•n = -(15 · J; = 7.3) ~ 3.5 µb . 

4(3s 

(18) 

(19) 

The total radiation of the pion gas increases 4.5 times compared with the' case 
where µ = 0. We can observe the radiation of the photons with the energy w ~ 170 
MeV. 

In the Appendix I it is shown that the amplitude 71"71" - Tl has no other singu­
larities for all values µ and T (The Mott point singularity is absent in the box and 
triangle diagrams). 

3. Compton effect of pions at the Mott point 

The Compton effect of the charge pion is described by the Born diagrams (Fig. 1) 
and the diagrams describe the pion structure (Figs. 2 - 3). From these diagrams 
only the box diagrams 2 b-d and the vector pole and axial-vector pole diagrams 3 
a-b contain the singularities at the Mott point. The box diagrams 2 b-d contain the 
maximal singularities at this point (see Appendix II) and in future we shall consider 
only these diagrams in order to describe the behaviour of the Compton effect at this 
point. 

The Compton effect of the neutral pion is described by the structure diagramR 
2 a-d and 3a, b and we also shall consider only the box diagrams in the vicinity of 
the Mott point. 

The pole behaviour of the diagram with the a-meson 2a disappears for the Comp­
ton effect because this part of the amplitude takes the form ( see ( 4)) 

A"= 10 m2 
(311"F,,.)2 (M; + 2q1q2)" 

(20) 
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Now let us show that the box diagram indeed contains the strong singularity at 
the Mott point. 

In the Appendix II we have shown that all box diagrams describing the Compton 
effect off pions contain terms of the type 

C 11 
d4x 8('E1 x; - l)f(x2, X3, x4 ) 

o D~ ' 
(21) 

where D1 , has the form [17] ( see Fig. 4) 

D1 = m 2 
- sx1X3 - tx2X4 - M;x1(x2 + x4), (22) 

and the identical forms for the other box diagrams, theres = ( k1 +q1 )2
, t = ( k1 -k2 )2

, 

u = ( k1 -q2 ) 2 and s + t + u = 2M;. In the region of the small k; where we investigate 
the Compton effect we can set s ~ u ~ M; and M; > > -t ~ 0. 

Then D1 takes the form 

D1 ~ m2 
- M;x1(l - xi) 

and we can integrate over x 1 in the eq. (21 ). 

- ----------1+ 1 11 
dx 1 2 [ 

m4 
0 [1 - px 1(1 - xi)]2 - m4(4 - p) 

+ 4 
atan ✓ p ] · 

Jp(4- p) 4 - p 

Here p = ~ and we see that the term contains the singularity of the type 

canst 
(4 - p)3/2 

(23) 

(24) 

(25) 

at the Mott point where M; = 4m2
• 

Th_e other terms of the box diagrams and the vector (axial-vector) pole diagrams 
also can contain the Mott singularities however the more weak type 

1
1

dx 1 4 ~ - = --:---;=:;=== atan --
0 D1 m 2 Jp(4-p) 4-p 

(26) 

and we are allowed to neglect those terms. 
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Contributions of the box diagrams to the amplitude of the Compton effect at 

the vicinity of the Mott point is of the form 

T!0 x IP"'4= (
4 

-dp)312 e,,(k1)ev(k2) [a"(kf.k~ - g""k1k2)m
2 

+ 

+b.-(k1q1 · k~qr + krqr · q1k2 - k2k1 · qiqf - k1q1 · k2q1 · g"")]. (27) 

Here the new gauge invariant structure appears in eq. (27) in comparison with 
eq. (3) where we considered only k2(q2) approximation. Now we consider all terms 
containing the lowest degrees of the k;. The coefficient d near the Mott point is 

equal to 

80 "[ 1 11 d lp"'4= D'2 2 1 - l + !!!::;E. fJ.=!'Mott,T=TMott • 
r,.m e T 

(28) 

The coefficients a.- and b,r ~re calculated in the Appendix II and equal 

26 
a,r± = 144' 

125 
a,ro = 144' 

95 
b"± = 576' 

(29) 50 
b"o = 575· 

Now let us calculate the cross section of the Compton scattering effect off pious 
at the vicinity of the Mott point and discuss the different phenomena and processes 
where we could observe this singular behaviour of the amplitude ,1r-+ ,1r. 

For the square of the amplitude (27) we obtain 

I T!ox 12 = ( d2 )
3
(1d1rl22(k1k2)2m4 +2m2M;Re(a"b")(k1k2)

2
+ 

4-p 

+ I b" 12 [(M;k1k2 - k1q1 · k2q1)2 + (k1q1)2(k2q1)2]). (30) 

Using the coordinate system where k; = (w;,wqfJ), k1k2 = w1w2(1 - c), c = 
cos(£, k~), q1 = (M1r, 0, 0, 0), k;q1 = w;M,r we can rewrite eq. (30) in the form 

I r;ox 12 
fl 2 2 12 4 a·w1W2 (2(1 - c)2 I a" m 

= (4- p)3 
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+ 2(1 - c)2m2M; Re(a1rb1r) + (1 + c2 )M;(b1r)2) 

~ 2(
8;;~;:·ptt ((1- c)

2 
I a" 1

2 
+4(1- c)2 Re(a"b") + 

+ 8(1 + c2) I b" 12t~4' (31) 

where 

1 
6,. = 1- 1 + em,J:"1' (32) 

At T = 100 MeV, µ = 305 MeV, m = 95 MeV, M" = 193 MeV, F" = 39 MeV, 
6'. = 0.11; at T = 150 MeV, µ = 223 MeV, m = 93 MeV, M" = 186, F" = 40 MeV, 
6,. = 0.3 [16]. The last set of the date corresponds to a fit of hadron spectrum at 
CERN SPS experiments [19]. 

Calculating the cross section of this process we obtain 

duCompt - W2 21IT_ 
de - ( w1 ) 641r M; · 

The cross section for the Born terms has the form 

du -y1r±-+-y1r± 
B a? = 7r (W2 2 Af2 w-) (l+e2) de W2 " 1 , 

- - (1 W1 W1 - + M (1 - e))-1 

duT""--Y"" 
B 
~=0. 

?f ' 

(33) 

(34) 

(35) 

Now let us write the cross section for the box diagrams at the vicinity of the 
Mott point 

du"l"-"I" box 
~ 

2 OW~/;). 2 1 ( )2[I 2 
;(M"F;) (4-p)3 (1-e a"I 

+ 4 Re(a"b;)] + 8(1 + e2
) I b" 1

2
) lp~4 • (36) 

For the neutral mesons this cross section is four times larger then for the charged 
mesons and the both cross sections can contribute more than the cross section for 
the Born terms at the vicinity of the Mott point 
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) 

+ 

du"l"±-"I"± 
box• 

du"l"±--y,r± 
B 

du"l"
0 --Y"0 

box 
du1"+- -y,r+ 

2-6,.2 

(4 - p)3' 

8.6. 6..2 

(4 - p)3 
(37) 

with w ~ 100 Mev,<w~,)
2 
~ 40 and C = 0. 

Let us discuss the t':no different possibilities where we could observe this effect. 

4. The change of the photon spectra of the pho­
ton-pion gas the heavy-ion collisions. 

If the chemical potential of the matter after the heavy-ion collision will be 11 ;:::: 
233 MeV, T = 150 MeV then M" = 186 MeV, m ~ 93 MeV [16] and the Mott 
singularities appear when M" ~ 2m. Then the photons begin to scatter very in­
tensively off pions and their energy (frequency) decreases noticeably. In the case 
when the number of pions exceeds the number of photons in an equilibrium plasma 
then the interesting phenomenon of a shift of the photon spectrum may occur. For 
wi/M" = 0.54,w1 ~ 100 MeV: 

6'.w (w1 - w2) 
W1 W1 

= 1 -11 de W2 duaox I 11 de duaox ~ 0.33. 
_1 W1 de _1 de . 

(38) 

In the case when the number of photons exceeds the number of pions this effect leads 
to the increasing of the dispersion in the (gaussian) photon spectra of the plasma. 

5. Appearance of the possibility of observation 
of the "equivalent photon" scattering off the . 
pion gas . 

Consider the photons connected with the ion electrons. We can not observe them if 
they do not scatter off external objects. However, through the Compton effect off 
the pion gas these photons become observable (see Fig. 5). 

Let us calculate the cross section of the process e1r -t e1r1 (w2 , c), where w1 is 
the photon energy and e = cos(nk~). n is the axis of the ion cluster and k; is tlw 
photon momentum. 
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The probability of finding of the photon with the energy w1 in the electrons with 
the energy £ which fly together with ions is [18] 

Z 2a 4£2 dx x 2 
dn(x) = -ln(-)-(1 - x + -), 

7f m~ X 2 
(39) 

terms has the form where Z is the number of the electrons on the ion, accompanying 
of one, £ is the electron energy. If we have 100 GeV per nucleon in the ion cluster 
then £ = 100 • me = 50 MeV where m, is the electron mass. x = 7, w1 is the 
energy of the photon radiated by the electron and w2 is the energy of the photon 
after scattering off the pion 

dx _ dw2 ( W2 ( ))-l ---1--1-c . 
X W2 M,.. 

In the Weizsiicker-Williams [18] approximation we obtain 

W2 
Wt 

dcr1t ➔ e1ty 

[1 + '; (1 - c)i-1
, 

,r 

duCompt 

dn(x) de , 

and for the cross section of the process e1r -. e1r1 we get 

dae1r-e1r...., 

dcdw2 
Z2a ln(4£: )!(1 _ w2 + !t2)2)2w2( aw\)2 x 

1r m, a £a 2 £a 1r M,..F,.. 

x (
4 
~ p) 3~1- c)2[1 a,.. 1

2 +4a,..b,..] + 8(1 + c2)b;], 

where a= 1 - xr,;-(1 - c). 

( 40) 

( 41) 

(42) 

At the Mott point we shall observe an intensive radiation of the photons with 
the energy 

W2 ~ £ = 100 · me ~ 50M e V. (43) 

if the ion cluster has 100 GeV per nucleon and the chemical potential of the medium 
is~ 305 MeV, T = 100 MeV, or for instanceµ= 223 MeV and T = 152.5 MeV. 

6. Conclusions 

We have investigated the processes 1r1r -. 17 and 1 7f -. 11r in a hot and dense 
hadronic medium. We have shown that the behaviour of these processes at large 
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chemical potential(µ > 200 MeV) is very different. Indeed in the first case (process 
1r1r -. 11) at large µ when M,, ~ 2M,.. the u- pole diagram begin to play a very 
important role and other quark-substructure diagrams (box diagrams and vector 
(axial-vector) pole diagrams) have not any singularity behaviour in this domain. 
On the other hand, in the second case (process 11r-. 11r) the u- pole diagram does 
not play any important role because the pole behaviour of this diagram disappears 
in this process. However, strong singularities appear in the box diagrams and in the 
vector (axial-vector) pole diagrams at the-Mott point where M,.. ~ 2m. Especially 
strong singularities appear in the box diagrams (nox ~ (M;-:m2p/2 ). 

The inner properties of the box diagrams, connected, for instance, with the 
Mott singularity can play an important role in the domain where we have a large 
µ. Indeed, the confinement potential is weak in this domain and can not strongly 
influence on the box diagram. The strong coupling constant is g,.. = 2.55 in this 

2 
domain (see Sect. 2), a,.. = ¾!- ~ 0.5 and we can use perturbation theory. Therefore 
the role of the box diagram increases. 

Taking into account these properties of the u-pole and the box diagrams we 
give in this paper some proposals for experimental tests of them in a heavy-ion 
experiments. 

For the process 1r1r -. 11 we propose to measure the additional radiation of the 
photons with the energy 160MeV < w < 180 MeV at 250 < µ < 300MeV. 

For the process 1 1r -. 11r we propose to measure the dispersion of the photon 
spectra, in the plasma where the maximum of the spectra has been shifted at µ = 230 
MeV by about 30 %.We also could observe the appearance of "equivalent photon" 
scattering off the pion gas during a heavy-ion collisions. 

This is only part of the possible experiments devoted to testing of the properties 
of the u-meson, pious and quarks and their behaviour in the dense matter. 

We are grateful to J. Hufner_ for fruitful discussions. One of us (M.K.V.) ac­
knowledges financial support provided by INTAS Grant No. W 94-2915 and the 
Max-Planck-Gesellschaft and the hospitality of the MPG Arbeitsgruppe "Theoretis­
che Vielteilchenphysik" at the Rostock Universitiit where,part of this work has been 
done. E.A. Kuraev acknowledges financial support pro~ided by RFFI Gra,nt No. 
96-02-17512 and A. Arbuzov and A: Belitsky for help. 

Appendix I 

Let us show that in the processes 7f7f -. 11 the box quark diagrams have not 
the Mott singularity at the point M,.. = 2m at finite temperature TM or chemical 
potential µM. 

Consider the box diagram described on Fig. 6 

1 · 2 2 8 1 2 J d4k N't' 
Tbox = ieg,..(21r)4eµev .(k2-m2)((k-q2)2-m2) 
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where 

Nµ." 
1 

1 
X 

((k + q1 - k1)2 - m2)((k + q1)2 - m2) , 

= ! Tr{(k + m),5(k- q2 + m),"(k + q1 - k1 + m) x 
4 

x 1µ.(k + q1 + mhs}, 

(44) 

(45) 

q1 , q2 are the momenta of the incoming pions and k1 , k2 are the momenta of the 
outgoing photons. k is the internal momentum of the quark. 

After the transformations 

1 

a1a2a3a4 

1 4 

= 6 I drlz= a;x;)-4
, 

lo i=I 

4 

dr4 = d4xo(L X; - 1) 
i=l 

and the replacement k = k' + b, where 

b = x4k2 + (x3 + x4)k1 - (x2 + x3 + x4)q1, 

we can integrate over d4 k in ( 44) using the formulae 

where 

J d4 k 
(k2 - D1)4 

J k"kµ. 
d4k (k2 - D1)4 = 

• 71"2 • 

i6D;' 

• 2 g/J.V l 

-i,r 12D1 

D1 = m 2 
- sx2x4 - tx1X3 - M;x1(x2 + X4), 

s = (k1 + k2)2, t = (k1 - q1)2; u = (k1 - q2)2, 

s+t +u = 2M;. 

(46) 

(47) 

(48) 

(49) 

Let us consider the part of the amplitude (44) which contains the combination 
of the photon momenta kf kt. It takes the form 

(l) _ 2 2 71"2 µ. vj [m2kfktB1 +Ai" v µ. C1] 
l:!,,Tbox - -e g (

2
,r )4 e1 e2 dr4 D; - k1 k2 2D

1 
, (50) 

where 

12 

:l 

],, 

B1 

C1 

Aµ.v 
I 

2x4(X3 + X4) - 3x4 - X3 + 1, 

-l6x4(x3 + x4) +· l8x4 + 6x3 - 4, 

-i Tr (b(b - q2),"(b + q1 - ki),µ.(b + qi). (51) 

In Ai" we conserve only terms contain kf kr The total amplitude has to contain 
the gauge inv. expression ( kf k~ - gµ.v k1 k2). 

Now we investigate the form 

/
1 

= /1 dr4 

lo D; (52) 

which could contain the maximal singularities at the Mott point where M; = 4m2
• 

Consider this form near the threshold where s ~ 4M;, t ~ 0, (p = ~; ): 

11 J dx 1dx2dx40(l - Xi - x2 - x4) = 
[l - p(4x2X4 + x1(X2 + X4))]2 

I 1
1

du 1 ~ p-3 2 
-[--- atan [u --] 

0 u ✓I - pu 1 - pu 

1 /+,; J atan[u -
1
--J]. 

1 - pu2 - pu 
(53) 

This integral does not contain a singularity at the value p = 4 (the Mott point). 
Other parts of the amplitude describing the process TCTC --> 11 also have not. the 
singularities at this point. 

Appendix II 

Consider the Compton effect off the pion using the quark box diagrams (Figs. •1,7) 
After the transformation ( 46) and the exchange 

k=k'+b 

we obtain ( after integration over d4 k'). 

2e2g2Q2 J Nµ.v Nµ.v Nµ.v 
T, q d[I 2 3]12 box= --(2_,r_)_2...:. T4 D; + D~ + D5 eµev, 

where Qq is the charge operator of the quark 

D1 = m 2 
- sx1x3 - tx2X4 - M;x1(x2 + x4), 

D2 = m 2 
- tx1x3 - sx2X4 - M;x2(x3 + x 1), 

D3 m 2 
- sx1x3 - ux2x4 - M;(x1x2 + X3X4), 

13 

(54) 

(55) 

(56) 



N"v 
1 

N"v 
2 

N"v 
3 

i 
4 Tr(-y5(b1 + m)·y5(b1 + q2 + m) x 

x ··((b1 + q1 + k1 + m),"(b1 + q1 + m)), 

1 = -Tr(,5(~ + m),"{~ -k1 + m) x 
,4 

x ··((~ + q1 - q2 + m)•-y5(b3 + q1 + m)), 

= ¼ Tr (,5(b2 + m)-((b2 + k2 + m) x 

x ·r5(bi + q1 + k1 + m),"(b2 + q1 + m), 

b1 -x2q1 - x3(q1 + k1) - x4q2, 

~ -x2q1 - xJ(q1 + ki) - x4k2, 

b2 = -x2q1 - x3(q1 - q2) - x4k1-

The eq. (55) contains only the maximal singular parts of the amplitude 1r7--> 1r7 

at the Mott point: 

s = (k1 + qt)2, t = (k1 - k2)2, u = (k1 - q2)2, 

s ~ u ~ M;, t ~ O. 

(57) 

In the domain of the small k; the all D; take the form (23) and after the integra­
tion over x1 (or u = x1 + x4 for D3 ) the amplitude (55) takes the form (24), where 
we have singularities of the type (25) at the Mott point. 

The numerators of the eq. (55) contain the two types of the gauge invariant 

structures in the k 2 approximation 

Tf" = -k~k; + g"vk1k2, 

Tfv = k1q1k"q~ + k2q1 · k~q'; - k1k2q~qi - k1q1 · k2q1 • g"". (58) 

The other parts of the (55) disappears through gauge invariance. The coefficients 

before these structures in N; have the forms 

N"v = NPJyµv + Nl2>r""· 
I l 1 I 2 ' 

N?l = NJ1l = m 2(1 - 2x4)(l - X3 - x4) 
+ M;[(l - x1 )2(2x4 - 1)(1 - x3 - X4) + (x3 + x4)(x1 + X4) 

+ (1 - X3 - X4)(l - X1 - X4) - X4), 
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(59) 

•:) 

NJ1l = m 2(1 - x3 - x4) + M;[(x2 + x3)2(x3 + X4 -1) 

- 2x3(l - xi) + 2x3 + x2)- (60) 

At the Mott point we can put x 1 = ½ in the eq. (59) and x2 + x 3 = ½ in the 
eq. (60). Then after integration over x; we obtain 

J dX-; d,; Td,,, 
0 0 

J (1) ·1 (1) 2 11 17 2 7 
dxN1 = dxN2 = m [4. 48 + p16. 48] lp=4= m 48' 

J dxN(l) - 2[~ _7_) I - g 
3 - m 48 + p 4 · 48 p=4 - 48 

The coefficients before the second structure have the forms 

N?> = NJ2> = 2x1 [2(1 + x1)(x3 + X4)x4 - X3 - 2x4], 

and 

c2> [ l N3 = 2 X2X4 + X1X3 

J dxN<2> = j dxN<2> = --5 -
1 2 2-64' 

5 J (2) __ 

dxN3 - 3. 64 

(61) 

(62) 

Taking into account the quark charges we obtain for the coefficients a,r and b" 
the values given in (29): 

15 { ( 7) (11)} 125 
a"0 = 23 4 48 + 2 48 = 144 j 

_ (~ !)(-?_) 2(-~)(11)_13_ a"± - 2 3 + 3 48 + · 3 48 - 72' 

b"o = ½~ { 4 C~8)-
2 

C!2)} = 2
2
:8; 

- (i !) (~) 2 (~) (~ )-~ b"± - 2 3 + 3 128 + 3 192 - 576. 
(63) 
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Fig. 1 Born Feynman diagrams for the.Pion Compton scattering. 
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Fig. 2 Two-photon annihilation of pions. 
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Fig. 3 Vector-meson contribution to pion Compton scattering diagrams. 
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Fig. 4 Typical box diagrams for pion Compton scattering. 

~ c~~~ -~-~_)j 71 

Fig. 5 Inelastic electron-pion scattering . 
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Fig. 6 Box diagram for two-quantum annihilation of pions. 
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Fig. 7 Feynman diagrams for the pion Compton scattering. 
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