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1 Introduction 

In this paper we continue a computer study of the heat kernel expansion of 
elliptic differential operators on curved manifolds and in the presence of arbi­
trary gauge field~ started in [l]. The coefficients in the asymptotic expansion 
of the diagonal heat kernel elements, called DeWitt-Seeley-Gilkey (DWSG) 
coefficients, are of fundamental importance in quantum field theory, quantum 
gravity, spectral geometry and topology of manifolds. Many quantities of in­
terest (such as the effective action, Green function, anomalies in quantum field 
theory, the invariants of manifolds in spectral geometry) are expressed in terms 
of DWSG coefficients [2]. 

The heat kernel of a positive elliptic differential operator A of the order 2r, 
acting on a bundle of k-tensors whose base is a compact closed n-dimensional 
manifold M, has a short-time expansion [3, 4, 5]. in terms; of geometrical in­
variants 

(x\e-tA\x} ~ L Em(x\A)t m2~n, t- O+. (1) 
m~O 

Up to now the most complete results were obtained for the second-order opera­
tor A= -□+X (Xis a matrix in internal space), based on the DeWitt ansatz 
for heat kernel matrix elements. However, the DeWitt method does not apply 
to higher-order operators and nonminimal operators whose leading term is not 
a power of the Laplace operator. The simplest example of nonminimal opera­
tor is the Navier-Lame operator of classical elasticity, µD.V + (,\ + µ)v(vV), 
involving a coupling among the components of a vector-valued function (the 
Lame constants, ,\ and µ, characterize the material). 

In recent years nonminimal operators of a similar sort have been encoun­
tered by physicists studying the quantization of gauge and gravitational fields 
in arbitrary gauges [2]. For example, the quantization of Yang-Mills field in 
an arbitrary covariant background gauge leads to the operator 

(2) 

where D = Dµ,Dµ, is the Laplace operator, Dµ, is a covariant derivative contain­
ing the external field potential Aµ,, Gµ, 11 is a corresponding field strength and 
rbc are the structure constants of a corresponding Lie algebra. For an analo­
gous operator in quantum gravity see [6, 7]. The nontrivial question worth of 
study is the interplay between the dependence of a heat kernel on the gauge 
parameter a and various invariants appearing in its expansion. This in turn is 
important for calculating the gravitational conformal anomaly for gauge fields 
in a general covariant gauge and for investigating the possible gauge parameter 
dependence of the anomaly [8]. 



The main aim of this paper is to study the heat kernel expansion for a 
generic operator with the structure of (2), 

-gµ"□ +aDµD"+Xµ", (3) 

where D is now a covariant generalization of the Laplace operator, Dµ is the 
covariant derivative involving affine and bundle connections, X is a tensor 
field and a is a scalar parameter (bundle indices are assumed implicitly). The 
expansion (1) is valid for nonminimal operators as well as minimal ones [3]. 
In view of inapplicability of the DeWitt method we follow the approach based 
on the technique of Widom's covariant pseudodifferential symbolic calculus 
developed in [9]. At present this is the most general method permitting one to 
handle operators of general type and of arbitrary order on curved manifolds. 

There are several computer implementations of the algorithms for second­
order operators based on general purpose computer algebra systems (for ex­
ample, in [10] Mathematica and in [11] REDUCE and FORM were used). 
However, the calculation of the DWSG coefficients for nonminiinal· operator"s 
is much more complicated than for second-order minimal ones and is out of 
abilities of these programs for nontrivial orders of coefficients. 

The algorithm developed in [9] was implemented as a C program [l]. Re­
cently we rewrote this program. The new version allowed us to get for the first 
time the complete expression of the coefficient E4 for the nonminimal operator 
(3) (earlier only partial results for E4 were known [2, 12, 13).) 

2 General Outline of Algorithm and Its Im­
plementation 

The heat operator exp(-tA) can be expressed in terms ·of the resolvent 
(A- ,\)-t: 

e-tA = 1 id,\ e-t,\(A - ,\rt' 
C 271' 

where the contour C goes counterclockwise around the spectrum of A. 

(4) 

For the matrix elements of the resolvent we take the following representation 

l J dn k ·1( , k) 
G(x,x',,\) = (xl--lx') = ----===·e' x,x, a(x,x',k;.\), (5) 

A-,\ . (27r)n~ 

where a is an amplitude, l is a phase function, g(x) = detgab(x), k is a wave 
vector. 

The resolvent of operator A satisfies the equation (A-.\)G = 1 which leads 
to an equation for the amplitude: 

. (A(x, Da + iDal) - ,\)a(x, x', k; ,\) = I(x, x'), (6) 

. •· -- ,,, -· ... 2-. 
:'. --; .,. .. ,., ' ,1, .. ,, 

:!. • ,,,._ ; 

.,-,f 

u 

' 

where I(x,x') is a transport function having both bundle and Lorentz in­
dices. Expanding the amplitude a in degrees of homogeneity of J,: : a = 
I::=l am(x, x', k; .\) we obtain the recursion equations for a,,, from Eq.(6). 
Solving these equations we can express DWSG coefficients by integrals of [am] 

J dnk 1 id.\ 
Em(xlA) = (? )n.j§ 9 e-\[am](:r, k, .\). 

-11' g C _-;r 

(7) 

where [ ... ] means transition to coincidence limit (x = x'). The integrals in 
Eq.(7) can be expressed in terms of gamma and Gauss hypergeometric func-

tions for a wide class of operators A [1]. 
The covariant generalization of the properties of the flat space phase and 

transport functions is reduced to the following relations 

[{Da
1

• •.Dam}[]= 0, m > 1; [{Da1 •.•Dam }J] = 0. 111 2 1. (8) 

where { ... } means symmefrizing in all indices. Eqs.(8) together with the 
"initial conditions" [Dal] = ka and [J] = E (E is the unit matrix) allow one 
to compute the coincidence limits for nonsymmetrized covariant derivatives 
[Da

1 
••• Daml] and [Da

1 
••• Dam!]. These all are universal polynomials in the 

torsion T:C, curvature tensors Rbcd• Wab and their covariant. derivatives and are 
obtained directly from (8) by reducing all terms to a unified index ordering 
with the help of the Ricci identity. Substituting these coincidence limits into 
Em we get the final result in terms of geometric quantities. 

During computation various tensor simplifications must be done using Ric­
ci, Bianchi and cyclic identities and other symmetry properties of tensors. 

The above algorithm has been implemented in the C language. The C code 
of total length about 10000 lines contains about 200 functions for different 
manipulations with tensors and scalars. These functions are gathered into two 

programs DWSGCOEF and COLIM. 
The COLIM program computes coincidence limits of the I and I functions 

and writes them to the disk. Once computed and stored the coincidence limits 

can be used in many calculations for different operators A. 
The DWSGCOEF program computes Em coefficients by the following steps: 

1. Reading input information (operator, order m, etc.) 
2. Computing a set of asymptotic operators for constructi11g rrcursio11 equa-

tions 
3. Computing am with the help of the recursion equations 

4. Taking the coincidence limit [am] 
5. Integrating [am] to obtain the coefficient Em 
6. Substituting tensor expressions for [Da1 ••• Dakl] and [Da, . .. D0 J] info E,,. 
7. Reducing hypergeometric to elementary functions in thr nonminimal case 

8. Output Em (and its trace in the nonminimal case) 
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To cut down the intermediate swelling we use term-by-term strategy, i.e., 
Steps 4-6 are applied consecutively to single terms of am generated at Step 3. 

3 Computation of E4 

We computed the coefficient E4 for operator (3) on a Pentium-75 PC. The 
full expression consists of 74 tensor terms with 56 different scalar coefficients 
and will be given elsewhere. Due to paper size limitations we can reproduce 
here only the trace of E4 • The expression for the trace still contains some 
novelties in comparison with the result of Branson et al. [13] who computed 
trE4 without gauge field. 

trE4 = (41r)-¥- {-C1 D;DiX/ - C2 D;DiXii - C3 D;DiXii 

~.. .. .. .. .. 
+2 (X;'X/ + X;iX'1

) + CsX;jX1
' + C6XiiW'1 

- C7 W;iX'1 

.. -~ .. .. . 
+CsW;iW'1 + C9RiiktR'1 

- C10R;iX'1 
- C11R;iR'1 + C12D;D'R 

2 . 
+C13R - C14RX;'}, 

where 

C1 = ---- (1 - a) 1
- 2 1 - a - - + - + -- + --1 { n ( na na

2 
n

2
a

2 
n

3
a

2
) 

a2(~ - 2)4 2 12 16 96 

C2 = 

C3 

-(1-a)2+-+-- --+-na2 n2a2 5n3a2 n4a2} 
3 48 96 96 ' 

_1 -{(l _ a)-¥-(a(l - a) _ 2n 9na _ 13na
2 

na
3 

3n
2
a 

a2(~ - 2)4 2 + 4 24 + 24 + 8 

--- - -- - -- - --- + 2n - - + -- + --
3n2a2 n3a2 n3a3) a(l - a) 9na 7na2 5n2 a 

. 16 48 96 2 4 24 8 

7n2a2 n3a2} 
-~+12' 

1 {( )_!!. (a(l - a) 3na na2 na3 3n2a -- 1-a 2 --'----'--+n----+----
a2( ~ - 2)4 2 4 24 24 8 

+ 3n2a2 + n3a2 _ n3a3) _ a(l - a) _ n + 3na _ 5na2 
_ n 2a 

16 24 96 2 4 24 8 

n2a2 n3a2} -w + 48 ' 
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C4 = 

Cs 

c6 = 

C1 = 

1 { n ( 1 a na) 1 a na} n-- (l-a)-2 --+-+- +---+- , 
a( 2 - 1)3 2 4 8 2 4 8 

1 { n (1 3a n 3na) (l-a)-2 ---+---aG- 1)3 4 8 4 16 

_ 1 + 3a _ n _ 3na _ n2a + n3a} 
4 8 4 16 8 16 ' 

1 { _1_!!. ( ' 2 9na 2 31na3 
(1-a) 2 4a(l-a) +3n---4na +--

a2G- 2)s 4 8 

5na4 3n2 lln2a 35n2a2 lln2a3 lln2a4 5n3a 
- 8 + 4 - 4 + 16 + 96 - 32 - 16 

lln3a2 23n3a3 n3a4 n4a2 5n4a3 n4a4
) 

+ 16 - 64 + 64 + 32 - 96 + 64 - 4a(l - a) 

3na 5na2 na3 3n2 n 2a 21n2a2 13n2a3 n3a 
-3n - - + -- - - - - + - - -- + -- - -

4 4 8 4 2 16 96 16 
n3a2 3n3a3 n4a2 n4a3} 

+16 - 64 + 32 + 192 ' 

1 { 1 n ( 2 25na 2 
n-- (1 - a)- - 2 -4a(l - a) + 3n - -- + 5na 

a2 ( 2 - 2)s 4 

17na3 3na4 3n2 9n2 a 27n2a2 37n2 a3 5n2 a4 n3a 
---+- + - - - + -- - --+-- - -

8 8 4 4 16 96 32 16 

+-+----+--- +4a(l-a)-3n+--
n3a2 n3a3 3n3a4 n4a3 n4a4

) . 13na 
8 64 64 96 64 4 

na2 na3 3n2 lln2a2 13n2a3 5n3a n3a2 3n3a3 
+- - - - - + -- + -- - - + - - --

4 8 4 16 96 16 8 64 
n4a2 n4a3} 

-16 + 192 ' 

Cs = --- (l-a)1-2 -2+--+-+---1 { n ( llna na
2 

n
2
a n

2
a

2
) 

a(~ - 1)2 24 24 48 48 

C9 = 

13na n2a n3a} +2-2a+----+-
24 16 48 ' 

(1 - a)2-¥ - 16 + n 

180 
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C10 
1 { n ( a n na na

2 
n

2
a n

2
a

2
) 

= a(%- 1)3 (l - a)-, -2 + 2 - 3 + 12 - 24 + 24 

a n na 5n2a} +---+---2 2 3 24 ' 

Cu 
1 { n (a n 37na 7na

2 
na

3 
n

2
a 

a(}- lh (l - a)- 2 4 - 4 + 180 - 90 - 360 + 24 
n2a2 , n 3 a n3 a2 n3 a3

) a n 37na 29n
2
a 

- 24 T 1440 - 720 + 1440 - 4 + 4 - 180 + 360 

n3a n4a} 
-1440 + 1440 ' 

1 { n ( a n na na
2 

na
3 

C12 = ---- (1-a)1
-2 l------+-+-

a2(% - 2)4 2 2 4 30 120 

13n2a2 n2a3 lln3 a2 n3a3 n4a2 n
4
a

3
) 

+24() + 120 + ~ - 480 + 480 - 480 

3a a2 n 3na 13na2 n2a 7n2a2 
n

3
a

2 
-1 + - - -+ - - -+ -- + - ...:.. -- + -

2 2 2 4 60 4 48 32 
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-96+ 480 ' 
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2 

na
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n
2
a 

C13 = --- (l-a)-2 --+-+-----+--
a(}-1)3 4 8 72 36 144 48 

n2a2 n3a n3a2 n3a3
) 1 a na · n

2
a n

3
a n

4
a} 

48 + 576 - 288 + 576 + 4 - 8 + 36 - 36 - 576 + 576 ' 

1 { n ( 1 a na na
2 

n
2
a n

2
a

2
) 

C14 = --- (l-at2 --+-+---+---
a(%-lh 2 4 6 24 48 48 

+ ½ _ ~ _ n:: + n::} · 
4 Conclusion 
The current version of the program computes E4 for operator (3) on a Pentium-
75 PC for 4 h 5 min, whereas computation of E2 ( and E4 for minimal operator) 
takes trivial time ( < 1 sec). The main reason for such a difference is tremen­
dous swelling due to tensor submonomials of the form 

(A-1) ·(A-l)i .. (A-l)k(A-1)1 o a, o j " o I O b· 
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D t (3) A-1 • • (A-1) 1 { aka kb } h r ror opera or O IS a matrix O ab= k2-.\ 9ab + (I-a)k2-.\ , w ereas 1or 
a minimal operator A01 = k2 }_>., i.e., a single scalar. However we can cope in 
part with this swelling by writing (Ao1 )ab in terms of projeclo1·s [10] Piab = 9ab­

kk;• and Aab = kk;b. We hope to increase considerably the performance of the 
next version of the program using standard properties of projectors. Besides, 
some additional work on structuring large output expressions is needed to make 
them as short and readable as possible.• 
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