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1. - Introduction 

As it is known (see, e. g., [1] for a review and references) the 
hypothesis of faster-than-light bodies (tachyons) contradicts drastically 
the causality principle if we suppose the strict validity of the principle 
relativity. One of the logical contradictions which exists in the standard 
formulation of the tachyon theory is that accepting the validity of the 
principle of relativity for faster-than-light bodies permits us in some 
situations to send informations to the past. E. Recami argued [2, 3] that 
situations like that never occurs in reality, however, his arguments are 
not very convincing as discussed by many authors (see the review [1]). 
The second serious difficulty· of tachyon theories is the impossibility 
of a non-contradictory superluminal generalization of the Lorentz 
transformations what is necessary for any consistent description of the 
tachyon kinematics [4]. 

Meanwhile tachyon-like objects appear in various string models, in 
theories with high-order lagrangians, by supersymmetric generalizations. 
Many authors are of the opinion that this fact is not only a 
disappointing theoretical failure and think that an improvement of our 
view of the universe that produces a space-time model compatible with 
superluminal phenomena and free of logical contradictions is necessary. 
Researches in this direction can be found, e.g., in papers [2, 6]. 

There are now many strict mathematical investigations proving 
the existence of families of non-dispersive wave packets propagating 
in homogeneous media even in vacuum, with arbitrary superluminal 
speed v > c = 3.1010cm/s (see, e.g., papers [7, 8, 9, 10, 11, 12, 13] 
and, especially, a review [14]) 1• Such packets correspond to solutions 
of the homogeneous wave equations, Klein-Gordon, Dirac, Weyl and 
Maxwell equations which are, dispersion-free, i. e. in contrast to the 
usual wave packets made of superpositions of plane waves they don't 
spread even in media and, therefore, can be considered as completely 
independent space-time localized material objects ("wave torpedos", 
purely electromagnetic particles etc.). We call these kind of solutions 
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"undistorted progressive waves" (UPWs), a name suggested in [13, 14] 
and which seems to the authors to correctly express the essence of their 

nature. 
It is important to emphasize that like the plane-wave solutions 

of the relativistic wave equations UPWs have infinite energy. 
However, it is possible to exhibit arbitrary (0 $ v < oo) speed 
solutions of such equations that have finite energy. Making special 
superposition of UPWs, in particular, in some cases using the 
Rayleigh-Sommerfeld theory of dift'.raction, it is possible to obtain finite 
aperture approximations (FAA) to a given solution of the relativistic 
wave equations that have finite energy [13, 14]. One can verify also 
that such finite energy solutions (subluminal, luminal or superluminal) 
are quasi-undistorted progressive waves (QUPWs). For the QUPWs 
solutions of the Maxwell equations it can be proved that they decay 
into solutions travelling with the usual light speed c. In this sense 

QUPWs looks like instable particles. 
The existence of QUPWs-type solutions for the case of sound has 

been proved by J.-Y. Lu and J. E. Greenleaf [12]. The existence of 
QUPWs satisfying eq. (Ll) and traveling with speeds either v < c* 
or v > c* where c*, called speed of sound, is a characteristic of the 
properties of the· medium, e. g., the temperature,Young modulus etc is 

proved also experimentally [14, 15] 2
• 

It is very important for all considerations that follows to take into 
account the following. Usually the velocity of propagation of energy of 

a wave satisfying the equation 

(1.1) 
1 a

2
q> _ v2q> = o, 

2 8t2 
c* 

where 4>( t, x) is the pressure at the point x at the time t is defined as 

(1.2) Ve= S/u. 

21n the experiments the so-called X-wave packet travels only with speed 0.2441(8)% 
greater thari c. and skeptics can have doubts. A new experiments with QUPWs having 
speeds V ~ c. should be done. Such "superfast waves", especially in-water,-arl! of 

great practical importance. 
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Here Sis the momentum flux and u is the energy density given by 

(l.3) S = v'4>84>/8t, u = (1/2)[(v'4>)2 + (1/c;)(84>/8t)2
]. 

From these expressions it follows that 

(1.4) Ve$ c. 

One can easily prove that for plane waves Ve = c. indeed. However, 
the acoustic experiments described in the papers [14, 15] show that the 
FAA to the limited band sound X-wave travels with a speed v > c •. This 
speed is also the speed of the propagation of the energy carried by the 
wave, since the hydrophone located at a distance d from the transducer 
is activated by the energy carried by the wave at a time t = d/v after the 
launching of the wave at a moment t = 0. It means that the definition 
(1.2) is devoid of sense. For the case of the FAA to the limited band 
sound X-wave the speed Ve is a complicated function of (x, t), so we 
must be careful when discussing the velocity of a propagation of energy 
of UPWs and QUPWs solutions, particularly, of Maxwell equations. 

From the viewpoint of current quantum theory a sound wave is 
composed of phonons and excitations that travel in the medium with 
speed c*. The problem of understanding the acoustic waves travelling 
with speeds v < c. or v > c* using quantum field theory will be analyzed 
in another paper where we show that they correspond to a new kind of 
boson condensate. 

Another important remark is necessary to be emphasized here. The 
superluminal UPWs or QUPWs solutions of the free Maxwell equations 
share with the above mentioned classical tachyons only the property 
that both travel with speed v > c. The analogy ends here because 
any classical tachyon is a material object ( an elementary particle, a 
macroscopic body) whose Lorentz change of the longitudinal dimension 
in the laboratory frame is defined by the cut of the tachyon world tube 
by a plane t = constant. Since tachyons are always moving we can 
write 

(1.5) L(v)/L(v') = (v2 /c2 -1)112/(v12 /c2 -1)112
. 
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This means that the tachyon mass and energy distributions in the 
laboratory frame must be ellipsoidal also, but in contrast to the case 
of subluminal bodies instead of a contraction the mass and energy 
distributions will show a dilation which increases with the tachyon 
speed v [16]. It differs essentially from the X-like form of some UPWs 
or QUPWs solutions of the wave equation. The conclusion about 
X-like shape of the moving tachyons obtained by E. Recami [2] is a 
consequence of the formal Lo~entz transformation to the laboratory 
frame from a superluminal reference frame. However, as mentio~ed 
above, such a transformation is contradictory. So, the coincidence of 
the tachyon shape predicted by E. Recami with the X-wave solutions of 
the Maxwell equations should be· considered as accidental and doesn't 
prov~ the breakdown of the well known relativistic shape change law 
for the tachyons. 

After these remarks we complete the introduction by saying that the 
main purpose of our paper is to analyze the physical meaning of the 
various wave velocities that appear (i) in some extraordinary solutions 
of the Schrodinger equation (Section 2), (ii) in the case of UPWs v > c. 
solutions of the wave equation for sound waves (Section 3) and (iii) in 
UPWs v > c solutions of the free Maxwell equations (Section 4)where, 
in particular, we analy~e the energy velocity paradox quoted by W. 
Band.[9]. 

Obviously, with the analysis of the superluminal electromagnetic 
UPWs in Section 4 we are not proving that it is sure that such waves cari 
be launched in physical space, and, of_ course, if we believe in the strict 
validity of the principle of relativity which is one of the main dogmas of 
current physics, to launch a "wave torpedo" with v > c is impossible. 
Nevertheless the detailed computer simulation to the finite aperture 
approximation to the superluminal electromagnetic waves presented in 
the paper [14] suggests that it is worth to try the experiment. Sure, if 
the FAA to a given superluminal electromagnetic wave can be launched, 
we will see a breakdown of the principle relativity as it is known today, 
thus determining the limits of validity of the special theory of relativity. 
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2. - Non-dispersive solutions of Schrodinger equation 

In dealing with waves we have several velocities involved, e. g., phase 
and group velocities, velocity of transport of energy, signal speed, front 
velocity etc ... Of course, the meaning of all these quantities depends on 
the particular theory to which the wave motion is associated. In order 
to reveal theii; relations more clear let us take the case of non-relativistic 
quantum mechanics where a free particle has associated to a wave 
function W satisfying the equation 

(2.1) in aw + !!_ v'2w = o. 
ot 2m 

Now, if the particle is m~ving with the kinetic energy E = mv2 /2 and 
the momentum p = mvz, then the associated wave function in the 
solution of eq. (2.1) given by the plane wave 

(2.2) W = Aei(wt-kz) 

with A is a constant and 

(2.3) E = nw = mv2 /2, p =:= nk = mv 

The function W is simultaneously eigenfunction of energy and 
momentum operators: 

(2.4) Ew = (ino/ot)w = nww, pw = (-ino/oz)w = tikw. 

The connection between w and kin order for eq. (2.2) to be a solution 
of eq. (2.1) gives the dispersion relation 

(2.5) w = nk2/2m. 

The phase and group velocities associated with W are 

(2.6) Vph = v/2, v9 = dw/dk = v 

and we see that for plane waves the speed of the particle is equal to v
9

• 

Now, as it well known, the function W given by eq. (2.2) is not an 
element of the Hilbert space ( H) of wave functions. A probability wave 
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w(z, t) E H describing a particle moving with speed v = vz is given by 
the wave packet 

(2.7) w(z,t) = A j dkB(k)ei(kz-wt), 

where B( k) is a weight function centered in k0 and decaying rapidly 
outside the interval k0 - i}.k < k < k0 + i}.k. For W given by eq.(2.7) 
the group velocity is defined by 

(2.8) Vg = (~jdk)ko• 

The function W is than interpreted as associated with a particle moving 
with expectation kinetic energy and momentum 

(2.9) Eo = mv2 /2 = (wlElw), Po= mvo = (wlfizlw). 

The important point to be emphasized here is that W 1s a 
spreading wave packet, and the question naturally arises here: are there 

any non-spreading wave packets which are solutions of Schrodinger 
equation? If the answer is positive, which is the meaning of such 
solutions? 

If we solve eq. (2.1) in cylindrical co-ordinates for a wave moving 
along the z-axis, we immediately get a family of solutions 

(2.10) WJn = Anein0 Jn(o:p)ei(kz-wt), 

where An is a constant, p = (x2+y2)112 and o: is the so-called separation 
constant what means that a is not a function of (x,_t) but, of course, it 
may be a general function of k,w and other parameters. 

In what follows let us consider for simplicity the solution with n = 0. 

The dispersion relation 

(2.11) 
1i 

w=-(k2+0:2) 
2m 

must hold in order for the function WJ
0 

to be a solution of eq. (2.1). 
To interpret the physical meaning of this relation we recall that W J

0 
is 

a simultaneous eigenfunction of E and fj. Indeed, we have 

(2.12) Ew J0 = hww J 0 = Ew J 0 , pw J 0 = hkw J0 = pw J0 • 
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Then, we may write 

(2.13) 
;,,2 ;,,2 

E=-
2 

(k2+c.i)=-+mc2, 
m 2m 

p= hk 

where we put 

(2.14) m = 1io:/v2c 

interpreted as the mass of the particle. We have then, as usual, the 
particle, phase and group velocities 

(2.15) v = p/m = hk/m = v2ck/o:, Vph = w/k, v9 = dwjdk = v 

Let us now introduce; following J.-Y. Lu and J. F. Greenleaf [15}, 
the axicon angler, by 

(2.16) k = w€cosr,, a= w€sinr, 

where€ is determined by the dispersion relation (2.11) as 

(2.17) e = (2mjnw) 112 = y2c-l sinr, .. 

Taking into account now the relation between o: and m, given by 

the eq. (2.14) we have 

(2.18) w = mc2 /h sin2 r, 

Then we have for the velocities in the eq. (2.15: 

(2.19) v = v2ccotr, 

(2.20) Vph = v9 = v2c/sin2r, = v/2cos2
17 

In contrast to the plane wave solution here 'llph = v9 , but in genera~ 
v9 =/. v. For all this, as the Schrodinger equation is a non-relativistic, 

(2.21) v / c = v'2 cot r, ~ 1, 
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1. e. the axicon angle has to be close to 1r /2, and, respectively, 

(2.22) V '.::::'. \/'2c COS 7] ~ C 

(2.23) Vph = Vg '.::::'. \/'2c/ COS'f/. 

The interpretation of the velocities are now clear. If we want that 
W J 0 describes a free particle moving with the speed v, then we cannot 
attach a physical meaning to Vph or v9 , i. e. in this case the transport 
of energy will not be given by v9 • 

We can now construct a wave packet 

(2.24) Wn = Aneine J dwB(w)Jn(wv'2c_1psin2T/)eiw(2zv-1cos211-t). 

which is, obviously, dispersive solution of eq. (2.1) if we consider the 
mass (2.14) as a constant, because in this case the axicon angle T/ and, 
respectively, the velocities (2.19), (2.20) are frequency dependent. In 
this connection it should be noted that the results presented in the 
paper [17] claiming the existence of X-wave solutions for the Schrodinger 
equation are seen unfortunately to be incorrect for analogous reasons. 

In a paper [18] A. Barut tried to construct non-dispersive solutions 
of the Schrodinger equation using spherical symmetry. If we suppose 
that there is a stationary solution of eq.(2.1) of the form 

(2.25) w(x,t) = e-imc2t/21if(x) 

then putting W into eq. (2.1) we see that the function f ( x) satisfies the 
Helmholtz differential equation 

(2.26) '12f(x)+cif(x)=O 

with a = mc/n. 
A simple solution of this equation in spherical coordinates is sin ar /r 

where r = (x2 + y2 + z2 ) 112
• Then, really a non-dispersive packet exist 

which is stationary in the laboratory frame and is given by 

(2.27) 
,T, - ) sinar . 'Jf(X, t = --e-,mc2

t/21i r . 
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It is clear that W(x, t) given by eq. (2.27) is not an eigenfunction 
of the momentum operator, but, nevertheless, it is an eigenfunction of 
the energy operator. 

A. Barut claims to have constructed a non-dispersive wave packet 
solution of the Schrodinger equation by first writing 

(2.28) · w(x, t) = tp(x, t)e-imc2 t/21i 

where the function tp(x, t) satisfies the equation 

(2.29) 
Otp ti2 mc2 

in 8t + 2m '72tp + 21P = 0. 

Then the author of the paper [18] used a ansatz 

(2.30) tp(x, t) = f(e)exp [-in-1mv(z - vt/2)] 

with e = [x2 + y2 + (z - vt)2]112
• Substituting this expression into eq. 

(2.29) gives 

(2.31) a [ n2 
mc

2 l in 8tf(e) + 2m '1
2 
J(e) + 2 J(e)J = 0. 

As the next step A. Barut proposed to put 

(2.32) v 2 J(O + (mc/n)2 J(e) = o. 

However,to be satisfied it is necessary that 

(2.33) 8f(e)8t = 0. 

This equation has a solution only when v = 0 which, particularly, 
produces as a possible solution our stationary wave packet given by 
eq. (2.27). 

We can think that an X-wave solution of Schrodinger equation can 
be constructed by relaxing the condition that a in eq. (2.13) is a 
constant. Unfortunately even in this case a simple calculation shows 
that there is no such a solution. Nevertheless, it is worth to try to 
construct ion beams with the wave function like that given in eq. (2.10) 
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in an experiment analogous to a light experiment by Durnin [8] but 
using instead of an optical lens a magnetic one. 

3. - UPW s solutions of the wave equation 

The solution of the homogenous wave equation in cylindrical 
coordinates has the same form (2.10) but with the different dispersion 

relation 

(3.1) w2 = c;(k2 + ci). 

Consider a quantum mechanical meaning for these expressions. If 
we write E = nw and Pz = c*c-1nk then 

(3.2) E 2/c2 
- p~ =_m2

, m = nac*/c. 

Putting now 

(3.3) k = c*w cos '1J, a = c*w sin '1J 

we can define the velocities 

(3.4) V = PzC2/E = CCOS'fJ, 

(3.5) Vph = v9 = w/k = c*/cos'f}. 

We see that the massless wave equation has solutions propagating 
with phase and group velocities (3.5), and v would be the velocity of a 
excitation-like particle with the mass depending on the frequency: 

(3.6) -le -1 . m = HC*C W Sln 'f}. 

Using relations (2.10) and (3.5), one can build the packet 

(3.7) <I>xn = AneinO j dwB(w )Jn( c-:; 1wp sin 'I} )eiw(c;
1 

cos7J-.t) 

10 

which moves rigidly, without any distortion: 

(3.8) 4>xn(x,y,z,t) = 4>xn(x,y,z - (c./ COS'f})t,O). 

We remark that the packet <I>xn, if interpreted, for example, 
as a classical sound wave, has in~nite energy. However, a finite 
approximation to <I> x n with an appropriate function B( w) has been 
seen to travel with the speed c*/ cos 'I} [14]. Thus, for this case, as said 
in Section 1, this is the velocity of propagation of the wave energy - a 
non-trivial fact showing again that the interpretation of the velocities 
associated to a wave depends on the theory, that the wave is supposed 
to describe. 

From the quantum-mechanical point of view sound is composed of 
phonons. 'V xn is a kind of field configuration defining a. new kind of 
boson condensate. This will be studied later. 

4. - Superluminal wave packets 

If c* = c the homogenous wave equations have superluminal 

solutions with Vph = Vg > c (see eq.(3.5)). As shown in [13, 14] 
such solutions exist also for massive Dirac and Klein-Gordon particles. 
If we strictly believe in the presently known relativistic physics these 
superluminal packets, of course, cannot be generated. What, however, 
is the physical meaning of such faster-than-light solutions in this case? 

Solutions of this kind describe inertia-free processes like, for 
example, a neon advertisement string where each letter flashes 
independently of the preceding one. Neither information nor energy is 
transferred in these processes and the problem concerning the velocity 
of energy transport simply doesn't exist here. 

A superluminal electromagnetic beam can be launched in physical 
space with a boundary, like in W. Band's gedanken experiment [9] 
where a charged c:r,l_inder with an appropriate charge density is used. 

Iii''""-- ... ,.... -· 

Band's solution "with;' v9 > · c describes an inertia-free process if we 

change the charge of each tiny cylinder segment ("switch" it up) quite 
independently according to Band's solution. One should say that the 
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situation is here quite clear, again there is no transfer of information 
and energy, and Band's problem concerning the ratio ISl/u < 1 (of 
Poynting vector over energy density) is trivially no problem at all. 

As we said already in the Introduction, the "mathematical 
experiments" done in [14] for the electromagnetic X-waves solutions 
of free Maxwell equations seem, however, to indicate that eventually 
these waves can be generated with appropriate antennas. Of course, 
if this really can be done we will find a violation of the principle of 
relativity. · 

5. - Conclusions 

We see that both the sub- and superluminal non dispersive 
soliton-like solutions of the homogeneous linear relativistic equations 
describe physical situations that can be realized in practice. For 
superluminal solutions there is surely a real transfer of energy and 
information, superluminal wave packets describe 'inertia-free processes 
without any transfer. Nevertheless it remains to verify if real, i. e. 
energy transferring, faster-than-light electromagnetic pulses suggested 
by mathematical simulation can be launched. The properties of UPWs 
are so extraordinary that only experiment can decide, and if such beams 
exist then we have a first case of a breakdown of the current form of 
the theory of relativity. 
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