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1 Introduction 

In this paper, we formulate main principles of the theory of time 
that is capable to answer the following questions of fundamental im­
portance: Is the time only a coordinate? Does the connection exist 
between the Euclidean metric on a manifold and Lorentz metric, 
i.e. between a positive definite metric and the one with signature 
( + - - -)? How can an invariant definition of the rate of change 
of the field be introduced into the theory, in analogy with classical 
mechanics? Why is one of the coordinates parametrizing a smooth 
real manifold called the time? The latter question requires expla­
nation. According to the modern standpoint, space-time theory 
is any theory that possesses a mathematical representation whose 
elements are a smooth four-dimensional manifold and geometrical 
objects defined on that manifold. However, the definition of a man­
ifold given in [1] contains nothing that could impartially, i.e. not 
going beyond the scope of this notion, point to one of the coordi­
nates on a manifold being distinguished. All the coordinates appear 
on equal status. 

The paper is organized as follows. In the next section, we 
present the definition of time, consider the problem on the rate 
of change of the field, formulate the general concept of the evolu­
tion form of field equations. In sec.3, we give the general-covariant 
definition of the strength of electric and magnetic fields on a four­
dimensional manifold. The Maxwell equations are written in the 
evolution form, which allows us to establish the connection of the 
Euclidean metric with the Lorentz one. Geometrical interpretation 
of the Lorentz metric is given in terms of the Euclidean metric. In 
sec.4, we analyze the connection between the gravitational field and 
temporal field, the field of time. Equations of the temporal field 
are derived. In sec.5, the obtained results are summarized. 
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2 Time 

Geometrically, Time is defined as a congruence of lines (lines of 
time) on a smooth real four-dimensional manifold .. We recall that 
the congruence of lines is a set of lines characterized by that the 
only element of the set crosses every point of the manifold or its 
part. According to the definition, lines belonging to the congruence 
do not intersect and fill either the whole manifold or its part. If the 
congruence of lines fills just a part of the manifold, Time will be 
local, otherwise, Time will be global. The lines of local time being 
continued outside the region of definition can either begin to branch 
or converge at one point, 'the source'. The simplest example is the 
congruence of rays coming from one point of the Euclide.,,n space. 
If Time is global, the Euler-Poincare characteristic of the manifold 
should be zero. For instance, for a 4-dimensional sphere it equals 
2 and th~refore a manifold like that is not globally stratified into 
lines of time. When a manifold is equipped with the structure of 
Time it will be called the space-time manifold. 

It is intuitively clear from the above geometrical definition of 
time that Time can be oriented. To give a strict definition of the 
time direction, note that Time can be given by indicating the field 
of nonzero vectors ti, tangent to the time lines on the manifold or 
on its part. This field will be called the field of time or temporal 
field. The temporal field defines not only the time direction but the 
coordinate of time and special systems of coordinates on a mani­
fold too. Analytically, Time is defined by the following system of 
differential equations: 

dxi i i . 2 3 4 . di= Ct (x (t), X (t), X (t), X (t)), i = l, 2, 3, 4, (1) 

where c is a scale constant. According to the Whitney theorem, 
any smooth manifold admits a positive definite (Euclidean) metric 
gij and hence it can be considered as a structure element of the 
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manifold. For this reason, the unit vector field 

g(t,t) = gijtitj = 1. (2) 

will be called the temporal field in what follows. The independent 
variable t is the time coordinate .. Equations (1) and (2) uniquely 
define the time coordinate up to the translation t -t t+a, where a is 
a constant. It can be shown that if the functions r./ ( t) are solutions 
to eqs. (1), the functions 7/}(t) = 1.1i(t + a) will also be solutions 
to the same equations. Thus, the interval of change of the time 
coordinate can be considered symmetric with respect to the change 
t -t -t. By definition, tJ:ie time coordinate is a measurable quantity 
and therefore the scale constant in eq. ( 1) is of the dimension 
of velocity since coordinates are of the dimension of length and 
components of the temporal field are dimensionless. 

Introduction of the temporal field allows us to build one more 
bridge between geometry and physics, the equations of the temporal 
field. (Derivation of these equations will follow.) If ds 2 = g;idxidx1, 

it follows from eqs. (1) that ds/dt = c. Thus, the length of the time 
line is a linear function of the time coordinate. It is natural to 
assume that the scale factor does not change when passing from 
one time to another and is a universal constant. 

We will assume that the temporal field is directed along the 
increase of the time coordinate. If we invert the direction of tem­
poral field fi = -ti we obtain a new time coordinate l, defined by 
the new temporal field. From eq. (1) it is not difficult to deduce 
that between the old and new time coordinates there is a one-to-one 
continuous correspondence given by the equation l = -t. Then we 
may conclude that the existence of the so-called 'time arrow' gives 
evidence that not all fundamental equations of physics are invariant 
under the reversal of the temporal field. 

Let us now show how the temporal field enters into equations of 
other physical fields. The magnitude of a physical field and the rate 
of its change in time are analogous to the position and velocity of a 
particle. From classical mechanics it is known that the velocity of 
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a particle is a well-defined quantity, which is also true from a geo­
metrical point of view. It is to be supposed that the rate of the field 
change is also a well-defined quantity provided that Time is defined 
correctly. \Ve will show that the above definition of Time allows an 
invariant coordinate-independent definition of the rate of change of 
the field. To do this , we will make some preliminary mathemati­
cal comments. All points of the manifold are indistinguishable of 
each other. There is no objective property that could distinguish 
between points. Hence it follows that if coordinates of one point 
take given numerical values, there should exist the system of co­
ordinates in which the coordinates of any other point assume the 
same numerical values. If a manifold admits the transitive group 
of transformations the above situation i_s always realizable. Let P 
and Q be two arbitrary points, then there exists a transformation 
o-,such that o-(P) = Q. Let xi(P), be the initial coordinate sys­
tem and let us introduce a new coordinate system as a function of 
the initial one xi(P), setting xi(P) = xi(o-- 1(P)). In the system of 
coordinates xi, point Q has the coordinates 

x\Q) = x\o--1(Q)) = xi(o--1(o-(P))) = xi(P) 

Q.E.D. A similar reasoning can be applied to construct new fields 
from the given ones. Let a field be given in the coordinate system xi. 
A new field is introduced so that its components in a new coordinate 
system take the same values as the old-field components in the 
initial coordinate system. We present the corresponding analytic 
expressions to be required below. In the coordinate system xi the 
transformation a- is given by smooth functions 

a-: xi=} cpi(x), o--1: xi=} /(x); cpi(f(x)) = xi. 

To be specific, we take the covector field Ai(x), and derive the 
following transformation formula for it: 

it(x) = Aj(f(x)) 8Ji(~) axi (3) 
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Then we write the solution to eq.(1) in the form r/(t,x), with 
,/(0, x) = xi. From the theory of differential equations it is known 
that ,/(t,cp(s,x)) = cpi(t+s,x). It is clear that Time defines a 
one-parameter set of transformations of a manifold. By using a 
formula of the type (3) one can construct a'line' in the space of 
field under consideration similar to the time line on the basis of the 
given field. According to (3), for the covector field we obtain the 
following analytic expression of the 'line': 

A(t,x) = Aj(cp(-t,x))8cpi(-~,x) axi (4) 

Hence it follows that the _rate of change of the field at the initial 
moment of time i:~ii naturally .be defined as follows: 

. d . 
Ai(x) = dtAi(t,x)lt=O· 

The rate at any subsequent moment of time can be found by the 
previous formula but, as will be shown below, the determination of 
the field evolution with time requires the knowledge of the rate of 
change of the field only at the initial moment. From (1) and (4) 
we derive the following formula for the rate of the covector-field 
change: 

. kaAi atk 
Ai = t 8xk + Ak axi. (5) 

and for the vector field we have 

A.i = kaAi -Ak ati 
t 8xk 8xk· (6) 

The above formulae are easily generalized to any geometrical ob­
jects. In mathematics, they are known since 1931 _and are called 
the Lie derivatives [2],[3]. In what follows, the Lie derivatives along 
the temporal field will be denoted by Dt. 

The evolution equation of a field W can be written in the form 

DtW = H(w), (7) 
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where the operator H is given not only by the temporal field buy 
also so~e other structures on a manifold.- Equation (7) allows us 
to calculate the formal exponential 

w(t) = exp(tDt)W. 

So, from eq.(7) it follows that to determine the dynamics of a field, 
it is sufficient to know its rate at the initial moment of time if 
the operators Dt and H commute. In the next section, the above 
definitions will be specified for the Maxwell equations, the basis of 
the whole field theory. 

3 Time in electromagnetic
1 

,, 

field theory - l 

Before to proceed to consider the problem of the role of time in 
electromagnetic field theory, we clarify some details connected with 
the positive definite metric 9ii on a manifold. Indices will, as usual, 
be raised and lowered through the metric fields 9ii and ii. The 
symbol Vi denoted the covariant derivative with respect to the 
connection 

. 1 ·1 
rjk = 2i (8j9kl + ak9jl - 819jk) 

of the metric 9ii; C:ijkl is a skew-symmetric Levi-Ci vita tensor with 
the main componen~ ,Jg, where g is the metric-tensor determinant. 
Since the metric is positive definite, g > 0. 

First, we consider the second group of equations since they writ- . 
ten on an arbitr<;1,ry manifold do_ not requir~ any structures apart 
from the structure of a smooth manifold. Let F;j be a tensor of the 
electromagnetic field, then the equations are written in the form 

aiFjk + ajFki + akFij = o. (8) 

To write these equations in the evolution form given by eq.(7), we 
introduce the strengths of electric and magnetic fields on a manifold 
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in an invariant coordinate-independent way. If the temporal field is 
known, we can make this as follows. Introduce two covector fields 

setting 

where 

Ei=lFki, 
k -

H; = t Fki, 

- 1 ·1 
Fki = ~C:kijtF1 

2 

(9) 

is the electromagnetic-field tensor dual to the tensor F;j, Fij = 
F;

1
. Equations (9) can be inverted, and as a result, we arrive at the 

relation 
F;j = ti~j - tjEi + iCijkl(l H1 

- t
1
Hk). (10) 

Equations (9) and (10) are compatible since the latter is invariant 
under the transformations E; - E; + )..t;, Hi - Hi + µt;, and, 
consequently, with an appropriate choice of scalars ,\ and µ we 

· obtain the following relations 

t'Ei=0; tiH;=0. (11) 

Inserting (10) into the equations VJ;iij = 0, adequate to eqs.(8) we 
arrive at the equations 

DtH1 - i(V;Ei - ViE;)c:ijklh + H 1Vi - t1V;Hi = 0, (12) 

under the condition that the temporal field obeys the equations 

V;ti - V 1t; = 0. (13) 

From eqs. (1) and (13) it follows that the congruence of time lines 
is a geodesic. Fromeqs. (2) and (13) we get Dtii = tkakt;+tkaitk = 
tkV kti + tk V;tk = 0. So, _from eqs. (12) it follows that 

V;H' = 0. ( 14) 
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I'n analogy with eqs.(12) we will write the first group of the Maxwell 
equations 

81E1 + tc,;\Hj - 'vjHi)cijkltk + E1'vi - t1'vjEj = J1
, (15) 

where J 1 is the vector of current. The validity of the first group 
of }Iaxwell equations in the form (15) will be proved below. De­
composing the current vector J 1 over the temporal field and its 
orthogonal field 

f = t1(tJi) + J1 
- t1(tJi), 

from eqs. ( 15) we derive the following equations 

D1E1 + }('viH1 ,- 'v1Hi)cijkttk + E1'vi = J 1 
- t1(tJt (16) 

'viEi + tJi = 0. (17) 

using the notation without indices, we will write basic operations of 
the vector algebra and vector analysis on a four-dimensional man­
ifold in the form of the relations 

(Ao B) = AB\ 

I 1 "kl [A x B] = 2(AiBi - AiB;)c1
J tk, 

/ 1 "kl (Rot A) = 2('viHi - 'vjHi)E1
J tk, 

Div A= 'viAi, (Grad</Ji ='vi¢= ii'v1¢ = i 18i<P· 

Setting that 
E ----+ Ei, H ----+ Hi, T ----+ ti, 

/ l . . , 
41rJ----+ J - t (tJ1

), 41rp = -tJ'., 

we write eqs. (12), (14), (16), and (17) in the canonical form 

D1 E + Rot H = 41rJ, 
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Div E = 41rp, 

-DtH +RotE = 0, 

DivH = 0. 

The~e equations should be supplemented with the orthogonality 
, conditions of E and H to T and the temporal field equations ob-

\j ~ai~ed so that the electromagnetic field equations look as simple as 
--+--·-,possible 

/; J (E o T) =(Ho T) = 0, 

-'1 I 
J / 

,I 

~' 
'J 

;}' 
,, 
J. 
t_ 
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(To T) = l, T = Grad¢, DivT = 0. 

_ Thus, it has been shown that the strength of electric and mag­
netic fields can be introduced on an arbitrary 4-dimensional mani­
fold and a canonical 4-dimensional system of equations can be writ­
ten for them if the temporal field is given. The problem remains 
open concerning the equivalence of the first group of Maxwell equa­
tions as equations for the electromagnetic field tensor. The answer 
is of interest and, which is important, admits the geometrical inter­
pretation on the basis of a simple connection between the Euclidean 
and Lorentz metrics. Before proceeding to that problem, we dwell 
upon two very important points. As is known [4], the·vector field ti 
can be connected with a special coordinate system where the field 
components acquire the form (0,0,0,1) simultaneously at all points. 
In this coordinate system it follows from (I) that x 4 = ct and, in 
accordance with (6), we obtain 

DtEi = ! f}Ei. 
C Ot 

So, the definition of the rate of field change given above is the 
invariant coordinate-independent form of the field change rate as 
a partial derivative with respect to time. Let a manifold be re­
alized as a 4- dimensional Euclidean space related with the sys­
tem of coordinates x1 = x, x2 = y, x3 = z, x 4 = ct, where 
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ti = (0, 0, 0, 1) and 9ii = (1, 1, 1, 1). Then provided the orthogp­
nality conditions ti Ei = ti Hi = 0, hold from the Maxwell eqva­
tions (12), (14),(16),(17) we obtain the so-called canonical thr&e­
dimensional form of these equations which contains the temporal 
field implicitly. 

By 9ii we denote the metric Lorentz tensor and by ii its ra::ip­
rocal tensor. It may be shown that equations (15) are derived 'r,y 
the variational method from the standard Lagrangian 

1 .. kl . 
L = - 4 FikFizf1 g + AJ\ 

if we set 
9ii = 2titi -gii, ii= 2titi -gii_ (18) 

It is seen that the Lorentz metric usually used for the description 
of the gravitational field and for writing equations of other fields 
is simply expressed in terms of the Euclidean metric and temporal 
field. However, the Lorentz metric, as was shown above for the ex­
ample of equations of the electromagnetic' field, does not allows us 
to represent equations of physical fields in the evolution dynamic 
form required for their physical interpretation. Nevertheless, the 
Lorentz metric is highly suitable for writing the equations in the 
geometric form since the transition from a geometric form of equa­
tions to their evolution form can be realized if the connection given 
by eq~.(15) is known. From the above consideration it follows that 
the Lorentz metric contains the temporal field implicitly. 

Let us show that equations (18) admit an intriguing and un­
expected geometrical interpretation. Let (Ao B) = 9iiAiBi = 
IAl]BI cos cp be a scalar product of vectors· given by the positive 
definite (Euclidean) metric. We expand the vector A into the tem­
poral field and its orthogonal field 

Ai= A~+ A~ = ti(tiAi) + Ai - t\tiAi), 

The vector 
Ai= Ai -Ai 

s - J_ 
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is a mirror image of the vector A relative to the temporal field T. 
Consider the Euclidean scalar product of vector A and its mirror 
image As: 

2 . . . . 
(AO As) = IAI COS 2cp = (2titi - 9ij )A' AJ = 9ijA' AJ, 

where cp is the angle between the vector A and temporal field. Hence 
it follows that the Lorentz scalar product is defined as the Eu­
clidean scalar product of a vector and its mirror image, The role 
of mirror plays just the temporal field. According to the termi­
nology accepted for the Lorentz metrics, vectors are divided into 
three classes: space-like, time-like, and isotropic vectors. In accor­
dance with the given interpretation of the Lorentz metric, vectors 
belong to a given class-depending on their angle with the temporal 
field. For instance, a vector orthogonal to the temporal field will 
be space-like, and a vector orthogonal to its mirror image with be 
isotropic, As we see, the division of vectors into three classes has 
a simple geometrical meaning from the viewpoint of the Euclidean 
metric. We have derived the temporal field equations by requiring 
the Maxwell equations being as simple as possible. In the next sec­
tion, the equations of temporal field will be derived on the basis of 
relations (18), 

4 Equa~ions of temporal field 

The Lagrangian of the temporal field will be obtained as follows. 
From relation (18) between the Lorentz and Euclidean metric we 
derive the connection between the Christoffel symbols belonging to 
these.metrics. Then we find the connection between the Rieman­
nian tensors, Ricci tensors, and scalar curvatures, Let 

. 1 ·1 
qk = 2g' (8i9kl + Ok9jl - 019ik) 

be Christoffel symbols of the Euclidean metric, and, respectively, 

- . 1 ·1 
qk = 21)' (8i9kl + Ok9il - 011}jk) 

11 



be Christoffel symbols of the Lorentz metric. Let us find explicit 
expression for the tensor 

Q~k = f'~k - qk 

in terms of ti and 9ii· We have '\7i9ik = 0, 

n - f) - - fl - fl 
V k9ij = k9ij - 9lj ki - 9il kj, 0 a - - r-1 - r-1 = k9ij - 9lj ki - 9il kj• 

From these equations it follows that 

n - - QI - QI 
V k9ij = 9lj ki - 9il kj· (19) 

Since '\7i9jk = O; from (19) we obtain 

. . I l 
Qjk = (2t't - g' )('\Jj(tkt1) + '\Jk(tjt1) - '\11(tjtk)). 

For calculations, it is convenient to represent thi_s relation in another 

form. We set 

Uij = '\J;tj - '\Jjti, 

As a result, we have 

k U; = t Uik, h;i = '\l;ti + '\liti. 

. . . ·1 . 
Qjk = 2t'(tjUk + tkuj) + (tjU/k + tkUij)g' + t'hjk• (20) 

Note that eqs. (15) can be derived from the equations vJ.~iik = Jk 
with the help of (10) and (20). From (2) and (20) it follows that 
the covector QL equals zero, 

Q~k = 0. (21) 

With the equality (21) and'the transformation law of the Riemann 
tensor under the connection transformation 

fl;j/ = R;j/ + '\7 ;Q~k - '\7 iQ~k + Q~m Qjk - Q~m Q?tc 
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we obtain the connection between the Ricci tensors Rjk 
- I l 
R1jk , Rjk = R1jk , 

- I I m 
Rjk = Rjk + '\11Qjk - QjmQkl· 

From this relation and (2), (20), upon some algebra, we obtain the 
connection between scalar curvatures 

- . . . . . . . k 
R = -R + 2uiu' - Uiju'3 + 2t't3 R;j + '\7;(2u' - 2t''\7 kt ) (22) 

The Ricci identity '\li'\ljtk - '\lj'\litk = Rij/t1 allows us to establish 
the relationship 

-u;juii + 2titi R;j = -2'\litj'\liti + 2('\7;ti)2 
- '\7i(2ui + 2ti'\7ktk). 

Inserting this relation into eq. (22) we get the following equality 

R = -R - 2'\7 ;tj '\litj + 2UjUi + 2('\7iti) 2 + '\Ji( -4ti'V ktk). (23) 

From eqs. (18) one can derive also a simple relation between deter­
minants of the Euclidean and Lorentz metrics g = -g. If we neglect 
an unessential divergent term in eq. (23), we find that the Einstein 
- Hilbert action splits into the action for the gravitational field and 
the action for the temporal field. In accordance with (23) we write 
the total Lagrangian of the gravitational and temporal fields in the 
form 

1 1 . . . . 2 

L = Lg + LT = -4 R + 2(-'\litj '\7't3 + UjU
1 + ('\lit') ). (24) 

from which by varying we obtain the temporal field equations 

(81- titk)('\Jj'\Jjti - ('\Ji+ Ui)'\Jjtj - ti('\JjUi + '\JiUj)) = 0. (25) 

Note that any solution to the equations '\litj- '\7/i = 0, '\l;ti = 0, 
that have been obtained in writing the Maxwell equations in the 
evolution form will be a solution to eqs. (25) if the gravitational 
field obeys the equations R;j . >..gij. 
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5 Conclusion 

We will summarize the results obtained and outline some future 
problems. The basis of any space-time theory is a smooth real 4-
dimensional manifold. It has been shown that Time is a geometrical 
structure on a manifold and is a specific field tightly connected with 
the gravitational field. Invariant definition has been given for the 
rate of change of the field and the evolution form of field equations. 
Basic relations of the vector algebra and vector analysis are written 
on a 4- dimensional manifold. Evolution form of the Maxwell equa­
tions on an arbitrary space-time manifold are derived. It has been 
found that the gravitational field is described by the positive defi­
nite (Euclidean) metric whereas the temporal field connected with 
the gravitational field is described by the unit vector field for which 
the field equations are deduced. Generally speaking, every physical 
process 

I 
should be described by its own time. To find this time is 

apparently a principal task of the theory of time whose fundamen­
tals have been formulated in this paper. The conclusion on the 
metric corresponding to the gravitational field being positive def­
inite makes substantial many fields of studies recently discovered. 
We mention the instanton theory [5] and quantization of the gravi­
tational field by the path integral method [6], where the Euclidean 
metric for a description of the gravitational field has been intro­
duced on the other basis. It goes without saying that difficulties 
are removed which are caused by the complex structure introduced 
on the manifold [7]. We note also the significance of the Eguchi­
Hanson space [8] acquired in the context of this paper. The ques­
tion suggests itself concerning the connection of Eguchi- Hanson 
metric with the Schwarzschild metric. Topological aspects of the 
introduced notion of time are related to the problem of existence 
of nonzero unit vector fields on 4-dimensional manifold. Maybe, 
this is tightly connected with the problem of singularities in Gen­
eral Relativity [9]. Of great interest is the problem of the evolution 
form of the Dirac equation on an arbitrary space-time manifold. 
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But this is a separate topic. 
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