


1 Introduction

Although the Vavilov-Cerenkov effect is a well established phenomenon widely used in physics
and technology {1], many its aspects remain uninvestigated up to now. In particular, it is not
clear how a transition takes place from the sublight velocity régime to the superlight one. Some .
time ago [2,3] it was suggested that alongside with the usual Cerenkov and bremsstrahlung shock
waves, the shock wave associated with a charged particle overcoming the light velocity barrier
should exist. The consideration presented there was pure qualitative without any formulae and
numerical results. It was grounded on the analogy with phenomena occurring in acoustics and
hydrodynamics. It seems to us that this analogy is not complete. In fact, the electromag-
netic waves are pure transversal, while acoustic and hydrodynamic waves contain longitudinal
components. Further, the analogy itself cannot be considered as a final proof. This fact and
experimental ambiguity to distinguish the Cerenkov radiation from the bremsstrahlung one [4]
make us consider effects arising from the charge particle overcoming the light barrier in the
framework of the completely solvable model. To be more precise, we consider the straight-line
motion of the point charge with a constant acceleration and evaluate the arising electromagnetic
field (EMF). In accordance with refs. [2,3] we confirm the existence of the shock wave arising
at the moment when charged particle overcomes the light velocity ( inside the medium) barrier.
This wave has essentially the same singularity as the Cerenkov shock wave. It is much stronger
than the singularity of the bremsstrahlung shock wave. :

Previously, the accelerated motion of the point charge in a vacuum was considered by Schott
[5]. Yet, his qualitative consideration was pure geometrical, not allowing the numerical investi-
gations. . :
The plan of our exposition is as follows. In sect. 2, the initial statement of the physical problem
is given. The necessary mathematical details are presented in sect. 3. In particular, we solve
the fourth-degree algebraic equation for the retardation times. The difficulty is not in solving
the equation itself, but in the determination of gpace-time regions where the solutions exist.
The physical analysis of the solutions obtained is given in sect. 4. In sect. 5, we consider a
simplified case when the observation point lies on the axis of motion. The results of numerical
calculations presented in sect. 6 and semi-analytic determination of the shock wave positions
presented in sect. 7 seem to support the existence of the afore-mentioned shock waves suggested
in [2,3]. A brief discussion and account of the results obtained are presented in sects. 8 and 9.

2 Statement of the physicalv problém

Let a charged particle move inside the medium with polarizabilities ¢ and u along the given
trajectory £(t). Then, its electromagnetic field (EMF) at the observation point (p, z) is given
by the Lienard-Wiechert potentials i
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Here

G= (G =17 0] ~ 57§ o

and c, is the light velocity inside the medium (¢, = ¢/(/€f3). Summation in (2.1) is performed
over all physical roots of the equation

enlt =) = |7~ &) (22)

| DL Riet Nl GUSTRIYY
§ unepsMx uccaegasaed §
| EBMSMMOTEHA t



To preserve the causality, the time of radiation #' shonld be smaller than the observation time
. #*, Obviously, ¢’ depends on the coordinates 7,t of the point P ai which the EMF is observed.
With the account of (2.2) one gets for B;

By = ealt — ) = (7 — Et) . 23)

Consider‘ the motion of the charged point-like particle nioving inside the medium with a constant
acceleration along the Z axis: :

, E=at? (2.4)
The retarded times t' satisfy the following equation ‘
ealt = ¢) = [o* + (z — )T (2.5)

It is convenient to introduce the dimensionless variables

f=atfcn, Z=az/, F=aplci (2.6)
Then, : _
i-?=[+GE-PI" 2.7)
In order not to overload exposition, we drop the tilda signs:
. t—t = [pz + (z - tn)zll/z (2.8)

For the treated case of one—dimensiona.l»motion the denominators H; are given by:
_Ca _ 2
R; = -;r.-, rn=(t—1t)— 2ti(z - t‘-) (2.9)

We consider the following two problems :
L A charged particle rests at the origin up to a moment ¢ = 0. After that it is uniformly
accelerated in the positive direction of the Z axis. In this case only positive retarded times ¢’
have a physical meaning. , C ‘ o
L A charged particle decelerates uniformly moving from z = co to the origin. After the moment
£ = 0 it rests there. Only negative retarded times are physical in this case.
It is our aim to investigate space-time distribution of the EMF arising from such particle motions.

3 Mathematical preliminaries
Eq.(2.8) is reduced to the following equation of fourth degree

4+ pt?+ '+ R=0 ‘ (3.1)

Here p = —2(z + 1/2), ¢ =2t, R=r>—1t% To find the roots of (3.1), it is preliminary

needed to solve the following equation of the third degree [6 |: S
0° - 200+ (" —4R)0 + ¢ =0 (3.2)

-The substitution © = 8, + %p reduces (32) to the canonical form

0+ pO.+q1 =0 (3.3)

Here py = —1p? — 4R, ¢, = 2Zp*— 2pR+ 48 i
g 3 y 1 §4 pR+ 4t%. The solutions of Eq.(3.2 i 1
ot 27 3 , Eq.(3.2) axe.determmed by its

D, = —4p3 - 274 ‘ (3.4)
In what follows we need the following three representations of I;:
Dy _ 6 a2, 2,5 1
e 5 1 2rn 4 1 1 5
56 t® =t (302 + 22 + 2z+ ]6)+t [30 +2z(zz+z+T€)+2p2;’+ 5p’z+2p7]_
_aa_ 15
Pt ~2-3) (3.5)

D _ a2 _ I a3, 2 1 1
g =Pt (> -2(z+ Z) -3+ p [(.r.+z)2 -2z + 2)+3t‘—t2(222+ % + g—)]-—

1
—[t? — 23242 — ,\2
[t* ~ (= + ) - 2) . (3.6)
D, 1, 1 5,5, 1 9 . : :
ot S Y R S} 7 2 27
256 = 16F TP 1 TP KA pe R ond' + B (3.7)

Then it follows that D; > 0 for p — oo and z,t fixed; D, > 0 for {z] = oo and p,t ﬁxe;l;Dl <0

. for ¢ — 0o and g, z fixed. The solution of (3.2) has the form

2r 1
0= L+ pz) + (A ),

3
2 1 2 ! » ; )
e, = —3’3 ~ gl 2 + (02l = S=lloz) = (0, 20),
2 1 ) 2 J » 2
0 = 3 = 5llo.20) + (P2l + s l(p 1) - ()] (3:8)

Here '
_ 2T 33— 2 ) —
(p, Il) - (_'Z_'ql + 5 —301)113) (p’yzl) = ('—'E.qu = % _:ilDl)lI3

(the notation ©;, (p,z1) and (p?, z,) is taken from the V. ;
' ! ’ der W
The following equalities should be satisfied e Van der Waerden treatise [6]).

(p) 31)(/’2, Z]) = “3}’1, 616268 = _4t2 :

As ©; .65 > 0, it should be

2
el = §P+ %[(szl) + (pZ, :1)] <0 (3'9)

The roots of (3.1) are expressed through 6;:
1
tl = -2~(‘V —6, + \/ —6, + \/ —63 s tq = %(\/—-61 - \/ —-62 — -—(-)3 y
IR , 1 :
b=3/8 Ve - V), L= VeV -V G

The following condition should also be satisfied:

V=0,1/=8;1/=6; = ~2t v (3.115
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If we choose V=83 v/—=6; > 0, then /=0, should be negative for t > 0 and positive for ¢ < 0.
The retarded times ; have different forms for D; > 0 and D; > 0. For D, < O:

_ t La 2 + B2 =____t____1_a a2 + b2 1/3’
tl——_——\/a"—-i-b_i-l-\/i[ +\/( +b)] y b2 \/m \/5[ +\/( +b)]
__t____ —i—a 2 4+ B3 =____t____i__a 22 1+ b2 .
t,_m+ﬁ[+ﬁ +E, = et ﬁ[+\f( +B)P? (3.12)
Here
o=+ )+ 2o+ Pial b= pallen) -zl

ty and £, in (3.12) contain imaginary parts and, therefore, are not admissible.

For D, > 0 (only p; < 0 is possible in this case) there are two different cases corresponding to
Q1 >,0and @ <0 : ;

For ¢; > 0 one has:

22— 2 1 — $ .1 )
61 =3p-3V —3p, cos ﬂ, 6; = 3P+ 3V -3p1 COS":} + ﬁv—ap?sm '3—1,

3 3
2 1 ¢ 1 —
=3 V™ - AV~ -_— 3.13
6, = 3P+ 3\/ 3p, cos 3 \/5\/ 3p; sin 3 (3.13)
Here cos s = Zlarl/v/=27% sind = 3v3Dy/v/=27p}, O £9:% T,

It is easy to check that ©; > ©; > 0,. Furiher, 8; > 0 and 65 > 0 forp > 0. Ast; ate
obtained by extracting square roots of —8;, all ¢; in (3:10) contain imaginary parts, which is
not physically permizsible. For p < 0 one has @, < 0, while both ©; and €3 are negative if

2 1 h 1 . ¢

il — 2y /= o/ L2 3.1
3lp| 3\/ 3picos 3 \/5\/ 3n sin 3 >0 (3.14)
Thus, a physical solation for D, >0, ¢ > 0is possible only if p < 0, which éorresponds to

z>-1/2.
For ¢; < 0 one has:

22 b o 2 Lt L B
91—§p+§ —3p1COB-?, eg—gp—s 3p1C093 'l'\/5 3}71‘5111 3

1

2 1 $1 . ¢
Dy S /- = 3.15)-
G, = 3p 3 3p; cos 3 7 3p18m 3 { )

In this case 8, > 6, > O,. Further, &, > 0 for p > 0. This leads to the appearance of
imaginary paris in all ©;, which is not allowable. It turns out that 8; < 0,8; < 0 for p <0,

while ©, is negative if )
2 !
3l = 5\/-3p1cos";—‘ >0 : (3.16)

We conclude: the physical solution can appear for D, > 0 in those space-time regions for which

conditions z > —1/2, (3.14) and (3.16) are fulfilled. - .
To distinguish the space-ime regions where D, > 0 from those where D, <0, one should find

the roots of equation D, = 0. For this we present D, in the form:

D, = [Pz -t z)l[P2 - P’l(t)z)ltpz = pa(t, 2)] (3-]7)

For (8, z) fixed the roots p; define the space regions in which D, as a function of p changes its

aign. To find p;, one should find the discriminant D; of th ti =0 wi i
the form (3.6). ’It equals ? © cdustion Dl 0 with Dy taken in

27 ~
Dy = —16t5t* — (2 +1/2)°F , (3.18)

Obviously, D; < 0 for z < z, and Dy > 0 for z > z,. Here z, = —% + 3(%)2“. For z < 2z, the

equation D, = 0 has only one real root, while three real roots are possible for z > z.. For z < z,
one gets: ‘

1

D (A2 1 : 3
256 (P +8=-p)IF?, o= 5[(;’, z3) + (0% z2)], (p,22) = (5,/_3D2 - 221(]2)1/,3

16
2 2 1 2 2 )
I =l +645l(p 22) + (6% 2a))] +]]—2[(P, 2)= (" z)P, 6= %[22—2(z+%)—3t’] (3.19)

For z > z. one gets

2 3 27 27
(' 22) = (-3V-3D: = Sqa), qr= 3ot - -;—t’(z + %)’ + 2—27(z + %)“,

Dy (5= o)+ 6 145 ‘

555 = (0 p) "+ 86— ps)(p* +6—ps) , (3.20)
Here : . N ‘

.2 2 1 $
p2 = 5:5 —3p3cos 3 P =‘ :FE\/ —3pzcos ’32 + .~pgsin %‘2‘)
1 .
Py = ;5\/—3;;; cos % - V-ra sin,%

(the upper and lower signs correspond to ¢; < 0 and g; > 0, resp.) Further,
27_ gl 3D,

3
Y= AW =
4 Elaboration of the physical problem |

9 1., 1, 1
p=—3(z+ §)t2 =3+, cosdy=

Accelerated motion.

In this case the x:etarded times ¢; and the observation time ¢ should be positive. As t;'< 0 in
(3.12), it is ph)‘rsncally inadmissible. Thus, for the region whére D; < 0 only ¢; root survives
under the condition that 0 < ¢, < . ) ‘

Now we turn .to the case D, > 0,q1 > 0. The v/=6; entering into (3.10) are
2.2 $ 2 o : ‘
V8. = ~(lel + 3V eos )2, \/78; = Clpl ~ 3y/aprcos 8 - rein Byt

~5_ (2 i $1 . P
V=06;= (5‘1” -3 —3p1 cos 3 T V-pisin -5-)1/2 (4.1)
In what follows we enumerate the roots (3.10) corres ondi g o
\ . . ponding to Dy > 0 as t3,%,%5,ts. Substi-
tuting (4.1) into (3.10) we see that A ®
lg >t >ta>1ly, t4<0, >0, t>0 (4.2)

w.hile the sign of ¢t; may be different in different space-time regions. As t, < 0 it should be
discarded. Then, equations

0<ty<t, tg<t, tg<t @)



combined with (3.14) define the space-time regions where the particular solution ¢;(i = 3, ..., 6)
exista, '
The similar equations for D; >0, ¢ <0 are:

2 2 ¢ _ 2 1 - ﬁ_ — ﬁl,z
V-6 =-(3lrl -3 —3p1cos?’)"’, V=6; = (3lpl + 3V/=3p1cos - — V=pisin 3),

. ¢
V-6;= (%IP‘ + %V —3p; cos i—l ++v/—p18n ?l)llz (44)
One gets from (3.10) that
tyD>te >ty >ty t3>0, t4<0, t>0 (4.5)

- while the sign of ts varies from one point to another. Again, the retarded solution t, is not
physically admissible. Thus, the conditions

ts<t, tg<t, 0<tyg<t (4.6)

combined with (3.16) define the space-time region where the particular solution exists.
Deceleraied motion. . .
2) The second problem deals with the charged particle which decelerates umformly.. The charge
equation of motion is still given by (2.1), but the retarded times should be negative now. We
. . . L )y.
consider the positive and negative observation tm3es sepa:mte ' .
For t > 0, D, < 0 the retarded time ¢ is negative, while the sign of tl‘changer‘s from point
to point. Thus, solution t3 exists everywhere, while ¢; exists in those regions which meet the
condition t; < 0. ! ) i B )
It turns out that for D; > 0, ¢ > 0 Eqs. (4.2) are still valid. As. retardeq tm3es ty and g
are positive, they should be discarded. Further, the retarded solution t4 exists in the space
regions where Eq.(3.14) is satisfied, while t3 exists in the regions where Eqs.(3.14) and 3 < 0
are fulfilled. o
For D, >0, ¢ <0 Eqs.(4.5) are valid. The positivity of ¢5 and tg 1mph.es that they should be
discarded. The retarded solutions t; and ¢5 exist'in those space-time regions where Eqs. (3.16)
for t,) and (3.16) and t5 < 0 (for t;) are fulfilled. ‘
' %or t4)< 0 the retarded time t; > 0 that is not physically acceptable. On the other hand, t2
coniributes to those space-time-regions which meet conditions (39) and iz < t.
Fort <0, D;>0, ¢ >0ihe /=0 entering into (3.10) are given by

V85 = Cipl- 3/ Fpicon & v S il

Further, t; > ty > tg > ts. It turns out that ts > 0, ts < 0, tg < O while tl.1e sign of t,
changes from point to point. Thus, conditions for existence of these retarded solutions are

1 <t, tg<t, ty<t (4.8)

These conditions should be supplemented by Eq.(3.14).
For D) > 0,q, < 0 one gets: t3 > tg > 15 > t4,

2 2 2 1 o —. bup A
V=61 = (5lpl - 3v-3p cos(i—l)'/’, V=6; = (3lpl + 3V -3p1cos 3 v=pisin ) ;

V=6, = %‘Pl + %V —3p; cos %’- + +/—py1sin %)’/2 - (4.9)

Nowt3 >0, t, <0, t;< 0 while the sign of t; may vary. The conditions for the existence
of these retarded solutions are (3.16) and

ty <t, tg<t, tg<t (4.10)

5 Particular case

Before going to the numerical calculations it is instructive to consider a simple case correspond-
ing to the observation point lying on the Z axis (¢ = 0). In this case

- _Db 2 Lines 2
s I > 0 )2 -
=l - (e 1Y) - 1) (5.1)
The roots of Eq.b(3.l) are given by
t1=r,—l/2, t2=T2+l/2, t3=‘-7'g+l/2, t4=—1'1—l/2, (52)

n=yz+t+1/4 n=\z—t+1/4

In what follows we need also_the values of denominators R; entering into the definition of
electromagnetic potentials ¥, A:

‘ ri=2n(t+1/2-n), rz=2rg(—t+1/24- ),

ra=2nt-1/247), ri=-=2n(t+1/2+n) (5.3)

Accelerated motion.

For the first problem (uniform acceleration of the charged particle from the state of rest) the
physical retarded times are (fig.1):

i) t;.

This solution exists in the space-time region —t < z < 2. It cousists of three subregions.
Subregion t > 1/8, —t < z <t~ 1/4 cotresponds to D; < 0, while subregions t < 1/8, —t <
z<t’andt>1/8, t—1/4< z<t?correspondto D, > 0.

i) ¢g. )

This solution exists in the t > 1/2, t~1/4 < z < t? region and corresponds to D, > 0.

iii) t3.

This solution exists in the regions t < 1/2, t* <z <tandt>1/2, t—1/4< <t and
corresponds to Dy > 0. ’

Let the observer be placed at a particular point of the Z axis. We clarify now what he will
see at different moments of time. It is convenient to relate the current tinie t not to the retarded
time t,, but to the particle position z, at that moment of time (z, = t3).

Consider the particular point £ lying on the negative Z semi-axis (fig-2). Up to the moment
t = —z the observer sees the field of the charge resting at the origin. At the moment ¢t = —;
the shock wave arising from the beginning of the particle motion arrives at P. At later times
the radiation arrives from the retarded particle positions z, lying to the right of P,

Let the observation point P lie on the positive Z semi-axis in the interval § < z < 1/4
{fig.3). Up to a moment t = z the observer in P sees the electrostatic field of the charge resting
at the origin. At the momnent ¢t = z the bremsstrahlung shock wave frou the origin reaches P. In



the time interval z < ¢ < v/ the retarded solution is t; which describes the radiation from the
particle retarded positions lying in the interval 0 < z, < z. At the moment ¢ = /7 the charged
particle reaches the observation point P. At that point R, aud R; defined by Eq.(5.3) vanish and
the electromagnetic potentials are infinite. For time ¢ > /z the observer detects the radiation
from the retarded positions of the particle lying at the right of P and corresponding to ¢,.

Let the observation point lie in the interval 1/4 < z < 1 (fig.4). Up to a moment t = z
the observer sees the field of the charge at rest. At the moment ¢t = z the bremsstrahlung
shock wave originating from the beginning of the charge motion reaches P. In the time interval
z < t < /z the observer sees the radiation from the particle retarded positions (z3) in the
interval 0 < z, < (1 — /z)%. At the moment ¢t = /z the charged particle { or Cerenkov
shock wave) reaches the observation point. Again, electromagnetic potentials are infinite at
this point. After that (/z < t < z + 1/4) the observer in P detects the radiation from three
retarded positions of the particle. Two of them (z; and z3) he to the left of the observation
point P and on the opposite sides of the point z; = 1/4 at which the particle velocity is equal
to the light velocity in the medium. As time goes, these retarded radiation points approach z.
At the moment t = z + 1/4 they fuse at the point z; = 1/4 where particle velocity equals to c,.
It turns out (see (5.3)) that at this point R; and R; vanish while the electromagnetic potentials
take the infinite values. The disappearance of the ¢; and i3 solutions and the infinite values
of electromagnetic potentials suggests that the observation point is reached by the shock wave
originating from the point 2 = 1/4 where the particle velocity was equal to c,. The third of the
mentioned solutions (¢;) describes the radiation from the particle positions lying to the right of
the observation point. Fort > z + 1/4 only this solution contributes to the observation point.

Let the observation point P he in the region z > 1 (fig.5). Up to a moment t = /z the
observer sees the electrostatic field of the charge in rest. At the moment ¢ = \/z the charged
particle { with the Mach cone accompanying it ) arrives at P. The electromagnetic potentials are
infinite at this moment. In the time interval /z < ¢ < z the observer detects the electrostatic
field of the charge in rest and the radiation from two points lying to the left (z;) and the right
(#1) of P. At the moment ¢t = z the bremsstrahlung shock wave from the origin reaches P. In
the time interval z <t < z + 1/4 there are three retarded solutions (t,; t3, t;) which contribute
to P. At the moment t = z + 1/4 the retarded solutions ¢; and 3 annihiliate each other at the
point 21 = 1/4 where the particle velocity is equal to c,. This, as well as infinite values of the
electromagnetic potentials, imply the existence of the shock wave originating from z = 1/4.
For t > z + 1/4 only the radiation from ¢, solution reaches P.

Decelerated motion.
In the second case (uniform deceleration of the charge up to a moment t = 0 after which it rests
at the origin) the allowable retarded solutions are (fig.6):
1) t4. :
This solution exists in the regions t < —1/2, z>t?andt> —1/2, z> —t—1/4. In the first
of them D, > 0; the second region contains two subregions —1/2<t <0, z> —t—1/4 and
t>0, =z>t~1/4corresponding to D; > 0 and one subregiont >0, —t—1/4<z<t—1/4
corresponding to D, < 0. ’
i) ts.
This solution exists in regions £ <0, z>t>andt>0, =z >t and corresponds to D; > 0.
i) ;.
This solution is defined in the region —1/2 <t <0, —t—1/4< z <t? where D) > 0 and in
the region ¢ > 0, —t - 1/4 < 2 < —t where D, < 0.

Let the observer be placed on the negative Z semi-axis (fig.7). Up to a moment ¢t = —z—1/4

he does not obtain any information concerning the particle motion. At the fnomentt = —z—1 /4
the shock wave originating from the particle overcoming the light velocity barrier ( at 2z =
1/4, t1 = —1/2)) rcaches the observation point P ( the electromagnetic potentials are infinite
at this point). In the time interval —z — 1/4 < t < —z the observer detects the radiation from
two retarded charge positions lying to the left (z1) and right (z,) of 2. At the moment t = —z
the observer detects the shock wave arising from the termination of the particle motion. For
t > —z the observer sces the electrostatic field of the charge which rests at the origin and the
radiation from the remote retarded positions 2, of the charge.

Let the observation point lie within the interval 0 < z < 1/4 (fig.8). At the moment
t = —z— 1/4 the shock wave originating from the particle overcoming the light velocity barrier
(at z = 2z) reaches the observer. Again, the electromagnetic potentials are infinite at this
moment. In the time interval ~z — 1/4 < t < —/Z the radiations from two retarded positions
of the charge (2, and z) arrive to P. They lie on different sides of 21, to the right of the
observation point 2. As time goes, one of the radiating points (2,) approaches the origin, while
the other (z4) moves away from z. At the moment ¢ = —/z the electromagnetic potentials
become infinite as the charged particle arrives at P. At this moment the ¢, solution disappears,
but, instead, ¢; arises. In the time interval —/Z < t < z the observer sces the radiation from
two points lying on different sides of him. At the moment ¢ = 7 one of the retarded positions of
the charge (z3) comes to the origin and the corresponding bremsstrahlung shock wave reaches
the observer. For times ¢ > z the observer sees the electrostatic field of the charge at rest and
the radiation field from the remote retarded positions z; of the charge. -

Let the observer be placed at the point P with z > 1/4 (fig.9). There is no fidd in P up
to a moment ¢t = /z. At this moment the charge arrives at P. After that the observer sees the
radiation field from two retarded positions lying on different sides of P. As time goes, one of the
retarded positions (z;) approaches the origin, while the other (21) goes away. At the moment
t = z the observer sees that charge reaches the origin and detects the shock wave associated with
the termination of the particle motion. After that moment the observer detects the electrostatic
field of the charge which rests at the origin and the radiation field from one remote retarded
position of the charge. : .

Concluding this section we note the existence of two types of the shock waves. The brems-
strahlung shock waves associated with the beginning or termination of the 'charge motion cor-
respond to finite jumps of electromagnetic potentials. Therefore, the field strengths have the
6-type singularities. On the other hand, the gerenkov shock wave and the shock wave associated
with the charged particle overcoming of light velocity barrier correspond to infinite jumps of
electromagnetic potentials (due to the vanishing of denominators R;). Thus, they carry a much
stronger singularity.

1 Numerical results

We consider the typical case corresponding to |t] = 2. The space regions where D; > 0 and
D, < 0 are shown in fig. 10. There are no physical solutions outside the surface Cg).
Accelerated motion. )

For the first of the treated problems ( uniform acceleration of the charge which initially rests
at the origin) all the retarded times t; and observation time ¢ should be positive ( the negative
t corresponds to the electrostatic field of the charge at rest). As ¢, is negative ( see sect. 4) it
should be discarded. The calculations show that the retarded solution ¢, is positive only inside
the sphere Cj of the radius r = c.¢ (fig.11). In that region 0 < t, <t The spherical surface




Cy corresponds to the bremsstrahlung shock wave originating from the beginning of the charge
motion. The points lying inside Cy describe the radiation from the retarded positions of the
charge lying on the positive Z semi-axis. Inside the conic surface Cﬁ? lying on the right of z = 4
(see fig. 10) the following conditions are satisfied

t3<0, t,<0, tg>t, tg>t, (6.1)

which is not acceptable from the physical point of view { as t5 and tg should not exceed the
observation time t). The physical region of space where D; > 0 is bounded by the conic surface
C(z}) and by the surface Cg). The Mach cone C(L}) describes the Cerenkov shock wave, while the
surface Cg) closing the Mach cone describes the shock wave originating from the charged particle
overcoming the light velocity. With a high accuracy the Cg) surface is described by the equation
2%+ (z = 1/4)* = (¢t — 1/2)° of the spherical wave emitted from the point z = 1/4, ¢ =1/2
at which the charge velocity coincides with the light velocity in the medium ¢,. The region
D, > 0lying to the left of z = 4 consists of two subregions (fig.11). In the first of them lying to
- the right of Cp there are two physical solutions £5 and 5. The retarded solution t; is negative
there and, thus, has no physical meaning. In the second subregion lying to the left of C; there
are three physical solutions t3, tg and ts. The calculations show that the retarded solution ¢,
continuously goes into t; when one intersects the D, = 0 surface. The second subregion in-turn

consists of two subregions corresponding to g; < 0 and ¢; > 0 (fig.12). On the boundary g, = 0

the following equations are satisfied:
tslnn < 0)=te(nr > 0), ts(q <0)=ts(qr > 0), teler < 0)=ts(qr >0)

The resultin§ configuration of the shock waves is shown in fig.13. On. the internal sides of the
surfaces C$" and C(L}) ( where D, > 0 ) electromagnetic potentials acquire infinite values (as
R and R vanish there). On the external side of C(n}) lying outside of Cy the electromagnetic
potentials are zero (as there are no solutions there). On the external sides of CE}) and of the part
of the Cg}) surface lying inside Cy the electromagnetic potentials have finite values. With a high
accuracy the surface Cg) is described by the equation'p? +(z—1/4)* = (t—1/2)? of the spherical
wave C (shown by short-dash curve in ﬁg.l3) emitted from the point z=1/4, p=0, t=1/2
in which the charge velocity coincides with the light velocity c, in the medium.
Decelerated motion.

Now we turn to the second problem (uniform deceleration of the charged particle along the
positive z semi-axis up to a moment t = 0 after which it rests at the origin). In this case only
negative retarded times t; have a physical meaning.

For ¢ > 0, in the region where D1 < 0 the retarded time ¢, is everywhere less than zero, while ¢,
is negative only outside the circle Cy (fig.14). In the region where D; > 0 the retarded solutions
ts and t¢ are greater than zero and, thus, are not physically admissible. As t; >0, %, < 0
in the region D, > 0 bounded by the sphere C; and the surface'Cg) , 8o only ¢, has physical
meaning there. It turns out that t, continuously passes into t; on the surface Cg) and on the
part of the surface CE}) lying inside Cy. In the region D; > 0 lying outside Co both t; and t,
are negative. The calculations show that t; and i, pass continuously into ¢; and ¢,,resp., on
the surfaces C(A}) and Cg) lying outside Cy. Thus, surfaces C'(L}) and Cg) are pure fictitious for

the treated £ > 0,1’ < 0 case. Further, the retarded solutions ¢, and t; tend to the same finite.

values , while the denominators R, and R, tend to zero when one approaches the internal side
of Cf) surface (where D; < 0). The electromagnetic potentials vanish outside of Cf) (as no
solutions exist there) and acquire infinite values on the internal part of C.(2) (due to vanishing
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the denominators R; and R; there). Therefore, the surface Cp(2) represents the shock wave.
The head part of this blunt shock wave with a high accuracy is approximated by the sphere
P>+ (2 —1/4)* = (t + 1/2)? (shown by the short-dash curve in fig.14) describing the spherical
wave emitted from the point z = 1/4 at the moment ¢ = —1/2 when the charge velocity coincides
with c,. As aresult, for ¢t > 0,¢’ < 0 one has the shock wave Cf) and the bremsstrahlung shock
wave Cp arising from the termination of the particle motion. The retarded solution t, exists
everywhere inside C'f), while ¢, exists between C; and Cg) (fig.14).

Now let the observation time ¢ be less than,zero for the decelerated motion. Then all t
should be less than t. In the region D; < 0 the retarded solution ¢, > 0, which is not physically
acceptable. The retarded solution ¢, should satisfy the condition t; < ¢. As quantities @ and
b entering into the definition of i; (see Eq.(3.10)) do not depend on the sign of ¢, the equation
t; <t is equivalent to

t 1

—% + -\7_5(11 + Va2 +82)!2 > 1] {6.2)
On the other hand, for the accelerated motion (¢t > 0, t; > 0) the condition t; < t written in
an extended form is il .

~Taret E(G +Va+ ) <t (6.3)
As (6.3) is satisfied everywhere in the D; < 0 region, the condition (6.2) cannot be satisfied and
the retarded solution ¢; has no physical meaning.
Turning to the region where D, > 0, one easily obtains from (3.10),(4.1) and (4.7) that the
following equations are satisfied:

t(t <0)=—ts(t > 0), talt <0) = —t,(t>0), ts{t'<0)=—~ty(t >0),

ts(t < 0) = —t3(t > 0) (5.5)

Consider the solutions ¢; and {,. Taking into account the negativity of ¢ one may rewrite
conditions ¢; < £ and ¢4 <t in the form ¢5(t < 0) < —|t|, t4(t < 0) < —t]. Or, using (6.4) one
gets: '

t(t > 0) > {t], 3t > 0) > |t (6.5)

. But we have seen earlier that for ¢ > 0 the retarded time ¢ is everywhere negative, while
t3 is positive only inside the region bounded by the sphere C; and the surfaces Cg) and Cﬁ})
lying inside Cq. In that region ¢; is less than ¢, which disagrees with (6.5). This in turn neans
that for ¢ < 0,¢; < 0,t, < 0 the conditions t3 < ¢,t, < t cannot be satisfied and the retarded
solutions t3 and ¢; have no physical meaning.

Further, for t < 0,¢; < 0,¢; < 0 the conditions ¢5 < ¢ and ts < t can be rewritten in the form:

Jts(t < 0)] > Jt], - Jte(t < 0)] > |t|. Using (6.4) one gets: ts(t > 0) > [t], te(t > 0) > jt|. But

these inequalities are fulfilled only in the part of D, > 0 region bounded by the'(‘fﬁ) surface (see
Eq.(5.1) and Fig. 10). As a result, for t < 0,¢' < 0 the physical solutions t; and ts exist only
inside the Mach cone C(,,? {fig.-15). On its internal boundary (where D, > 0) the denominators
Rs and Rs are equal to zero and electromagnetic potentials acquire infinite values. On the
external boundary (where D) < 0) the electromagnetic potentials are zero ( as no solutions
exist there). Thus, for the case of decelerated motion and the observation time ¢ = —2 the only
physical solutions are t5 and t; which are contained inside the Mach cone C j}) {fig.1h).

It remains now to relate the simplified solutions found in sect.5 to the complete solutions
found in this section. For the case of .accelerated motion the ¢y retarded solution of this section
{see fig. 11) on the interval of Z axis —t < z < ¢ — 1/4 coincides with the ¢; solution shown
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in fig.1; on the part of the Z axis lying between the surfaces Cg) and ¢, = 0 (Fig. 12) the
golutions t3,ts, g of fig. 11 coincide with the retarded solutions ty,ts,t; of fig.1; on the part of
Z axis lying to the right of g, = 0 surface the retarded solutions t3, ts, ts of fig. 11 coincide with
tg,tl,tg Ofﬁgl. ,

For the decelerated motion and ¢t > 0 the retarded solutions ¢, and ¢; shown in fig.14 on the Z
interval —t < z < t — 1/4 coincide, respeciively, with the ¢, and t, solutions presented in fig. 6;
the t; and t; solutions shown in fig. 14 on the part of Z axis lying to the right of C.(1) surface
coincide, respectively, with the t; and t3 solutions (see fig. 6).

For the decelerated motion and t < 0 the retarded solutions ts and t5 (see fig.15) on the accessible
part of the Z axis z > t* coincide, respectively, with the simplified solutions ¢ and ¢, shown in
fig. 6.

7 Determination of the shock waves positions

So far, we presented the results of numerical calculations. However, a posteriori the boundaries
corresponding to the shock waves may be obtained as follows (this method has been extensively
used by Schott [5]). We seek the surfaces on which the denominators R; vanish. The equation
R; = 0 may be rewritten in the form:

G —(z+1/2ti+t/2=0 (7.1)
The form of solution depends on the sign of discriminant
D=4(z+1/2)* - 2?79
For z < 2z, = —1/2+ 3(t/4)*/* (in this case D < 0) the solution is

1 2 16 311/2y1/3 1 2 16 311/271/3
to=—g{t—t —ﬁ(z+1/2)]’}’ - gt - 5+ 172777 . (1.2)

Obviously, to < 0 fort > 0 and ¢, > 0 for ¢ < 0. For z > 2z, (or D > 0) one has

t = :F%\/z-k 1/2cos jg-, ty =%z + 1/2(%c0&%+sin (—g-),

ty=xy/z+ 1/2(%cos%—sin %) , (7.3)

Here cos¢ = @]t”z +1/27%%, 0 < ¢ < 7/2. The upper and lower signs in (7.3) correspond
tot>0andt < 0, resp. Obviously, t; <0, t3>t3>0fort>0andt; >0, t;<t3<0for
t <G :
Combining (7.1) with (4.1) one gets the following equation for p%:

. ' 3
of =tz +1/2) - St + 222 (7.4)
This equation defines the surfaces on which R; vanish.
Accelerated motion.

Consider the first problem (uniform acceleration along the positive Z semi-axis beginning from
the origin at the ¢ = 0 moment). Then ¢ > ¢; > 0. It follows from (7.2) and (7.3) that only ¢;
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and t3 have physical meaning. Substituting ¢; and t; into (7.4) we easily check that p; and g3
describe C’;}’ and Cg) surlaces. Thus, we obtain the physical picture shown in figa. 16-18 where
the positions of Mach cones consisting of the Cerenkov shock waves Cy and of the C’il) surfaces
closing Mach cones and representing shock waves arising from the charge overcoming of light
velocity barrier are presented for different moments of the observation time t. The dimensions
of the Mach cones strongly depend on the observation time ¢. They continuously tend to zero
ast— 1/2. '
Decelerated motion.

For the case of decelerated motion and the positive observation time (¢ > 0) the physical
solutions are t; and ¢; ( as only they are negative). Substituting them into (7.4) we get p; and
p3 describing the parts of the Cf) surface lying on the left and right of the z = z plane,resp.
For the same decelerated motion and ¢ < 0 the physical meaning have ¢; and ¢3 (as only they
are negative). For the treated case (t = —2) the function p?(t3) < 0, which is not accessible.
Further, t; > t for z < ¢* = 4, which is also not permissible (as only t; < t is allowable). For
z > t? the substitution of t; into (7.4) leads to the description of the Cﬂ) Mach cone shown
in fig. 15. The resulis of calculations for different times are shown in fig.  19. We see that
the sharp Mach cone presented in the right part of this figure (t = —2,v = 4¢,) continuously
transforms into the blunt shock wave (t = 2) shown in the left part of the same figure.

8 Discussion

Consider at first the accelerated motion of the charge beginning from the origin at the moment
t = 0. Al the Mach cones shown in figs. 16-18 exist only for ¢t > 1/2,z > 1/4, This means
the observer being placed in the space region z < 1/4 will not see either Cerenkov shock wave
or that of associated with the overcoming of the light velocity barrier. Only the shock wave
Cy (not shown in figs. 16-19) which is due to the beginning of the charge motion reaches him
at the moment t = cnt. Moreover, the detection of the aforementioned shock waves (Cil) and
C(1)) in the z > 0 region is possible if the distance p from the Z axis satisfies the equation

4 1 3/2 1
c = —=(2— - - 8.1
P <Pcs Pe 3\/5(2 4) ; 22> a ( )

Inside this region the observer sees at first the Cerenkov shock wave C‘;}’. Later he detects the
bremsstrahlung shock wave Cy (not shown in figs.16-19) and the shock wave C?) originating from
the overcoming the light velocity barrier. It is remarkable that the surface of the C’g) shock wave
with a high accuracy coincides with the surface of the sphere g% + (z — 1/4)* = c2(t — 1/2)* de-
scribing the spherical wave emitied by the charge from the point z = 1/4 at the moment ¢ = 1/2
when the charge velocity is equal to c,. These spheres are shown by the short-dash curves in
figs.16-18. Outside the region defined by (8.1) the observer sees only the bremsstrahlung shock
wave Cy which reaches himn at the moment c,t = r.

Further, for t < 1/2 only one retarded solution (¢,) exists. It is confined to the surface C; of
the radius r = c,t. Therefore, the observer will not detect either the Cerenkov shock wave or
that of originating from the overcoming of light velocity barrier. The dimensions of the Mach
cones shown in figs. 16-18 are zero for ¢ = 1/2 and continuously rise with time for t > 1/2. The
physical reason for this behaviour is that the Cg) shock wave cloging the Mach cone propagates
with the light velocity c,, while the head part of the Mach cone (i.e., the Cerenkov shock wave
Cg})) attached to the charged particle expands with the velocity v > cn.
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In the gasdynamics the existence of at least two shock waves attached to the finite body moving
with a supersonic velocily was proved on the very general grounds by Landau and Lifshitz
([10] , Chapter 13). In the present context we associate them with C{) and C{).

For the decelerated motion (see fig.19) the observer in the space region z < 0 detecis the blunt
shock wave C'(Lz) first and the bremsstrahlung shock wave Cp later.. It turns out that the head
part of this blunt wave with a high accuracy coincides with the sphere p*+(z—1/4)? = (t+1/2)?
describing the spherical wave emitted from the point z = 1/4 at the moment ¢ = —1/2 when
the charge velocily coincides with c,. The observer being placed in the z > 1/2 region detects
only Cerenkov shock wave Cg)

In order not to hamper the exposition, we did not mention, in this section, on the continuous
radiation which reaches the observer between the arrival of two shock waves or after the arrival
of the last shock wave. It is easily restored either from the simplified case considered in sect. 5
or from figs. 11-15.

However, some precaution is needed. For the motion law {2.4) the charge velocity may exceed
¢, the velocity of light in vacuum. Consider first the accelerated motion. The external 4-force
maintaining the accelerated motion (2.4) becomes infinite (due to the yfactor (y = (1—5%)~/?)
in it). Therefore, this motion cannot be realized for v close to c. In any case, the effects arising
from the proximity of charge velocity to ¢ do not produce any discontinuities and will be observed
after the arrival of the last of the shock waves considered earher.

The situation is slightly more complicated for the decelerated motion. To escape the troubles
with v > ¢ one may imagine that the charged particle is at rest at the point z = ~z; up to a
moment t = —tg, after which it instantly acquires the velocity ¢, < v < ¢. After the moment
t = —to the charge moves towards the origin according a law similar to (2.4). The radiation
field arising from such a velocily jump was studied in [9]. It turns out that the arising physical
picture insignificantly differs from that considered in previous sections. Let the observation
point P lie in the negative Z semi-space. Then, after the arrival of the Cf) shock wave, the
shock wave C, associated with the beginning of the charge motion (at ¢ = —t,) arrives at P.
For the observation point P in the positive Z semi-space (more accurately, for z > 1/4) the
shock wave C; reaches P after the arrival of the Cerenkov shock wave Cg). In both cases the
C) shock wave closes either the blunt shock wave C(Lz) or the Mach cone Cﬁ)'(likewise the shock
wave Cgl) shown in figs.10-14 closes the Mach cone CE)). The singularity of the C; shock wave
is the same as the singularity of Cy shock wave and, therefore, is weaker than the singularity
either of Cys or C.

So far we have considered the physical effects arising when the velocity of the point-like
charged particle continuously.passes through the medium light-velocity barrier. The electro-
magnetic fields of the uniformly moving charge are well-known both for v > ¢, and v < ¢,
[5,7-9]. But what happens if the particle velocity exactly coincides with the light velocity in the
medium ¢, ? (This question was posed by Prof. Tyapkin). For this case the equation defining
t'is

ealt = ¥) = [ 4 (2 = eatf2

Solving it relative to ¢’ one gets

= 172 - 212
& T2 z—cht
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Fig. 1. The space-time distribution of the retarded solutions for the particle in accelerated

motion and the observation point lying on the Z axis.
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Fig. 2, 3. The retarded positions of the radiating uniformly accelerated charge as functions
of time for the observation point lying on the motion axis at z = —2 (Fig. 2)
and z = 0.16 (Fig. 3).
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Fig. 4,5. Same as Fig. 2, but for z = 0.64 (Fig. 4) and for z = 1.44 (Fig. 5).
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Fig. 6. Same as Fig. 1, but for the decelerated motion.
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Fig. 7, 8, 9. The retarded positions of the radiating uniformly decelerated charge as

functions of time for the observation points on the motion axis at z = —0.5 (Fig. 7), z=1/8

(Fig. 8), and z =1 (Fig.9).
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Fig. 10. The space distribution of D; > 0 and D; < 0 regions and the shock waves positions
for |t] = 2. V
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Fig. 11. The space distribution of the retarded solutions and the shock waves positions for
the accelerated motion at t = 2. Here Cp denotes the shock wave assosiated with the beginning
of the charge motion; Cis(1) denotes the Cerenkov shock wave, C}ll) denotes the shock wave

originating from the charge overcoming of the light velocity inside the medium.
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Fig. 13. The distribution of the shock waves for the uniformly accelerated charge for ¢ = 2.

19



ol

LALAL AL DR L BLANL SN S B AL At A Bt A SN N B S S S SN S S S B B S Rt e e e e o ¢

ce

¢,A=0

,1..A:1....1...‘..,..1.:7

-3

-2 -1 0 1 2 3 4 5 ¢

Fig. 14. The distribution of the shock waves for the uniformly decelerated charge for ¢ = 2.
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Fig. 15. Same as Fig. 14, but for t = —2.
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Fig.16,17: The positions of the Cerenkov shock wave C,(‘}) and the shock wave C,(f) arising
from the charge overcoming of the light velocity"ba.rrier for the accelerated charge are shown
for the moment ¢ = 0.6 (Fig. 16) and for t = 0.75 (Fig. 17). Short dash curve C represents the
spherical wave emitted from the point z = 1/4 at the moment ¢ = 1/2 when the accelerated

charged particle overcomes the light velocity barrier.
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Fig. 18. Same as Fig. 16, but for t =1, 1.5 and t = 2.
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—-3.0

Fig.lQ: The continuous transformation of the Cerenkov shock wave shown in the right of
figure into the blunt shock wave shown in its left part for the decelerated motion. The numbers
1-9 refer to the moments of time ¢ = —2; —L.5; —1; —0.5; 0; 0.5; 1; 1.5 and 2, resp. Short-dash
curves represent the spherical waves emitted from the point z = 1/4 at the moment ¢ = —1 /2

when the decelerated charged particle overcomes the light velocity barrier.
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The nonvanishing components of the electromagnetic potentials are equal to

_ eB(cnt — 2) 4 = ec uB(cpt — z)
T oe{eat—2) " 7T cleat—2)

As A and ¥ do not depend on the cylindrical coordinates p and ¢, so B=H= E,=E;4=0

and 8% 194
: B=-miim
% _ _eé(cnt —2) , eO(cat —2) _1_3/1, _eb(cat — 2) _ eB(cat — 2)
8z eleat—2z) | eleat—2)2° ¢ Ot e(eat—2)  e(cat —2)

It turns out that £ and H vanish everywhere except, possibly, the plane z = cpt. In it, E;
reduces to the difference of two infinities and the final answer remains to be undetermined.
However, the integral of F taken over an arbitrary closed surface surrounding the charge should
be equal to 4me. As E is entirely confined to the plane z = cot, it should be infinite on this
plane ( to guarantee the finiteness of the above integral). As a result, the electromagnetic field
of the particle moving with the velocity coinciding with the light velocity in the medium differs
from zero only on the plane normal to the axis of motion and passing through the charge itself.
The same ambiguity arises if one takes the explicit formulae describing the charge motion with
u > ¢y, (see e.g., [9]) and will tend v — ¢, in them. i :

We observe that for v = ¢, the shock wave coincides with the z = c,¢ plane, ie., it has an
infinite extension. The same effect takes place in gasdynamics when the velocity of the body
coincides with the velocity of sound {[10}, Chapter 12).

9 Conclusion
Thus, we confirm the qualitative predictions of refs.[2,3] concerning the existence of the shock
waves associated with the charge overcoming the light velocity barrier (inside the medinm). It
would be interesting to observe these shock waves experimentally.

We would like to thank Prof. Tyapkin A.A. for the fruitful discussions and for attraction of
our attention to ref. [3].
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