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1 Introduction 

Although the Vavilov-6erenkov effect is a well established phenomenon widely used in physics 
and technology (l], many its aspects remain uninvestigated up to now. In particular, it is not 
clear how a transition takes place from the sublight velocity regime to the superlight one. Some . 
time ago [2,3] it was suggested that alongside with the usual 6erenkov and bremsstrahlung shock 
waves, the shock wave associated with a charged particle overcoming the light velocity barrier 
should exist. The consideration presented there was pure qualitative without any formulae and 
numerical results. It was grounded on the analogy with phenomena occurring in acoustics and 
hydrodynamics. It seems to us that this analogy is not complete. In fact, the electromag­
netic waves are pure transversal, while acoustic and hydrodynamic waves contain longitudinal 
components. Further, the analogy itself cannot be considered as a final proof. This fact and 
experimental ambiguity to distinguish the 6erenkov radiation from the bremBBtrahlung one (4] 
make us consider effects arising from the·tharge particle overcoming the light barrier in the 
framework of the completely solvable model. To be more precise, we consider the straight-line 
motion of the point charge with a constant acceleration and evaluate the arising electromagnetic 
field (EMF). In accordance with refs. (2,3] we confirm the existence of the shock wave arising 
at the moment when charged particle overcomes the li~ht velocity ( inside the medium) barrier. 
This wave has essentially the same singularity as the Cerenkov shock wave. It is much stronger 
than the singularity of the bremsstrahlung shock wave. 
Previously, the accelerated motion of the point charge in a vacuum was considered by Schott 
[5]. Yet, his qualitative consideration was pure geometrical, not allowing the nume.rical inve.sti­
gations. 
The plan of our exposition is as follows. In sect. 2, the initial statement of the physical problem 
is given. The necessary mathematical details are presented in sect. 3. In particular, we solve 
the fourth-degree algebraic equation for the retardation times. The difficulty is not in solving 
the equation itself, but in the determination of space-time regions where the solutions exist. 
The physical analysis of the solutions obtained is given in sect. 4. In sect. 5, we consider a 
simplified case when the observation point lies on the axis of motion. The results of numerical 
calculations presented in sect. 6 and semi-analytic determination of the shock wave positions 
presented in sect. 7 seem to support the existence of the afore-mentioned shock waves suggested 
in [2,3]. A brief discussion and account of the resuli;. obtained are presented in sects. 8 and 9. 

2 Statement of the physical problem 

Let a charged particle move inside the medium with polarizabilities f and µ along the given 
trajectory ({t). Then, its electromagnetic field (EMF) at the observation point (p, z) is given 
by the Lienard-Wiechert potentials 

Here 

e " l -(- eµ" Vi 
4i(r, t) = ; L...J IR;I' A r, t) = 7 L...J IR;I' 

- fµ. 
divA+-4i = 0 

C 

ii; = <1>11=1,, R; = Ir- ((t,)1- Vi(r- ((t,})/c.. 

(2.1) 

and c,. is the light velocity inside the medium (c.. = c/,.ftji). Summation in (2.1) is performed 
over all P,hysical roots of the equation · · 

c..(t - t') = Ir- ((t')I 
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To preserve the causality, the time of radiation t' should be smaller than the observation time 
. t'. Obviously, t' depends on the coordinates r, t of the point P at which the EMF is observed. 

With the account of (2.2) one gets for R.; 

R. = c,.(t - t;)- ii;(r-((t;)) (2.3) 

Consider the motion of the charged point-like particle moving inside the medium with a constant 
acceleration a.long the Z axis: 

e = at
2 

The retarded times t' satisfy the following equation 

c,.(t - t') = (p2 + (z - atr.z)2jl/'J 

It is convenient to introduce the dimensionless variables 

t = at/c,., z = az/<l,., p = ap/c; 

Then, 
l - l' = [p.✓.1 + (z - lr.2)2]1/2 

In order not to overload exposition, we drop the tilda signs: 

t-t' ':"' fp2 + (z-tr.z)2]lf2 

For the treated ~ase of one-dimensional motion the denominators R.; are given by: 

R; = ~r,, r, = (t - t;) - 2t;(z - tt) 
a 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

We consider the following two problems : 
I. A charged particle rests a.t the origin up to a moment t = 0. After that it is uniformly 
accelerated in the positive_ direction of the Z axis. In this case only positive retarded times t' 
have a physical meaning. 
II. A charged particle decelerates uniformly moving from z = oo to the origin. After the moment 
t = 0 it rests there. Only negative retarded times are physical in this case. 
It is our aim to investigate space-time distribution of the EMF arising from such particle motions. 

3 Mathematical preliminaries 

Eq.(2.8) is reduced to the following equation of fourth degree 

t14 +ptr.z+qt' +R= O (3.1) 

Here p = -2(z + 1/2), q = 2t, R = r2 - t2• To find the roots of (3.1), it is preliminary 
needed to solve the following equation of the third degree [6 ]: ' 

6 3 
- 2p02 + (p" - 4R)8 + q2 = O 

. The substitution 0 = 0 1 + fp reduces (3.2) to the canonical form 

9~ + P19e +qi= 0 

2 

(3.2) 

(3.3) 

Here Pi = -½F2- 4R, qi = ?,;p3 
- iPR + 4t2

• The solutions of Eq.(3.2) are determined by its 
discriminant · 

Di = -4p~ - 27q~ (3.4) 

In what follows we need the following three representations of D1: 

Di 5 1 1 1 5 
-- = t

6 
- t•(3p2 + z2 + -z + -) + t2(3/ + 2z(z2 + z + -) + 2p2z2 + -p2z + -p2J-

256 2 16 16 2 4 

-r2(p2 - .z - ~)2 (3.5) 

D1 s •[ 2 ( 1) 2] 2(( 1 )2 2( 1) • 2( 2 z 5)] - = p + p z - 2 z + - - 3t + p z + - - 2z z + - + 3t - t 2z + - + - -256 4 4 4 2 4 . 
1 

-(t2 
- (z + -)2](t2 

- z)2 

4 (3.6) 

D1 1 • 1 3 2 1 2 2 9 2 27 4 3 ( ) -=-pR--pq --pR +-pqR--q +R 3.7 
256 16 . 64 2 16 256 

Then it follows that D1 > 0 for p-+ oo and z, t fixed; D1 > 0 for lzl -+ oo and p, t fixed;D1 < 0 
for t -+ oo and p, z fixed. The solution of (3.2) has the form 

91 = 
2
; + ¾r (p, x1) + (p2, xi)], 

92 = 
2
; - ~[(p, X1) + (p2

, X1)]-
2
~[(p, X1) - (p2

, X1)], 

93 = ~ - i;[(p, X1) + (p2, X1)] + 
2
~[(p, X1) - (p2, X1)] 

Here 

( ) ( 27 3 f7n,D )113 ( 2 27 3 ~ 113 P, Xi = - 2 q1 + 2v-3.u1 , p , xi)= (-2 q1 - 2v-3D1) 

(the notation 9;, (p, x1) and (p2
, x1) is taken from the Van der Waerden treatise [6]). 

The following equalities should be satisfied 

(p, X1)(p2, X1) = -3p1, 919263 = -4t2 · 

As 92 · 9 3 > 0, it should be 

81 = ~p+ ¾[(P,X1) + (p2,x1)] < 0 

The roots of (3.1) a.re expressed through 9,: 

t1 =¾<..;=a;+ r-e; + ~). t2 = ¾<r-e; - v-e";- ~). 

t3 = ½< Fe; - r-e; - ✓-=a;'), t. = ½< ✓-=a; - r-e; - ~) 
The following conditio~ should also be satisfied: 

\ 

' 

r-e;r-e;~ = -2t 

3 

(3.8) 

(3.9) 

(3.10) 

(3.11) 



If we choose Fe;· Fe; > O, then F0i should be negative for t > 0 and positive for t < 0. 
The retarded times t, have different forms for D1 > 0 and D1 > 0. For D1 < 0: 

t I [ fi( 2 2)]1/2 t t1 = -~ + r,:; a+ v ta + b , t2 = -~ 
v~+P v2 v~+P 

I 
-/?.[a+ ./(a2 + b2)]1fl, 

t i t . 
t3 = Jal+ bl+ -/?.[a+ ./(al+ bl)]l/l, t4 = #+T,'it - ~[a+ ./(al+ bl)jl/l (3.12) 

Here 
a= ~(z + ~) + ~[(p, x1) + (p2

, xi)], b = 
2

7a[(p, x1) - (pl, xi)]. 

t
3 

and t
4 

in (3.12) contain imaginary parts and, therefore, are not admissible. 
For D1 > 0 (only Pl < 0 is possible in this case) there are two different cases corresponding to 

q1 > O and q1 < o. 
For q1 > 0 one has: 

2 2 r-;;:-· <h 
81 = 3p .- 3v -3p1 cos 3, 

2 } r;;:_- 'Pl · } r;;:_- . 'Pl 
82 = -p+ -y-3p1cos-+ r..v-3P1S1D -, 

3 3 3 v3 3 

2 1 . ,--;;:- <Pt 1 ,--;;:- . 'Pl 
83 = -p+-y-3p1cos- - -y-3p1sm-

3 3 3 VJ 3 
(3.13) 

Here cos<p1 = lflqil/✓-27pj, sin <Pi= ½,/3l5;/✓-27pj, 0 ~ ~, !: «h,. 
It is easy to check that 0 2 > 9 3 > 0 1. Further, 0 2 > 0 and 0 3 > 0 for p > 0. As t; are 
obtained by extracting square roots of -9;, all t; in (3;10) contain imaginary parts, which is 
not physically permissible. For p < 0 one has 0 1 < O, while both 82 and 83 are negative if 

21 I 1 ,--;;:- ¢1 I r-;;:- . ¢1 - p - -y-3p1cos- - -y-3p1sm- > 0 
3 3 3 J3 3 

(3.14) 

Thus, a. physical solution for D1 > 0, q1 > 0 is possible only if p < 0, which corresponds to 

z > -1/2. 
For q1 < 0 one has: 

2 2 r-:,;:- 'Pl 
81 = -p + -y-3p1 cos-, 

3 3 3 

2 1 r;;:_- 'Pl 1 r;;;:- . <Pl 
02 = -p - -y -3p1 cos - + -y -3p1 81D -, 

3 3 3 J3 . 3 

2 } ,--;;:- efi1 } ,--;;:- • 'Pl 
83 = -p - -y -3p1 COB - - -y -3p181D -

3 3 3 J3 3 
(3.15) · 

In this case 8 1 > 0 2 > 0 3. Further, 0 1 > 0 for p > 0. This leads to the appearance of 
imaginary parts in all 0;, which is not allowable. It turns out that 02 < 0, 03 < 0 for p < 0, 

while 0 1 is negative if 
2 2 ,;,:: <Pi -IPI - -y-3p1 cos - > 0 (3 16) 3 3 3 . 

We conclude: the physical solution can appear for D1 >. 0 in those space-time regions for which 
conditions z > -1/2, (3.14) and (3.16) are fulfilled. · 
To distinguish the space-time regions where D1 > 0 from those where D1 < O, one should find 
the roots of equation D1 = 0. For this we present D1 in the form: .. . 

D1 = [p2 - p1(t, z)][p2 - P2(t, z)][p2 - p3(t, z)] (3.17) 

4 

For (t, z) fixed the roots p; define the space regions in which D1 as a function of p changes its 
sign. To find p,, one should find the discriminant D2 of the equation D1 == 0 with D1 taken in 
the form (3.6). It equals 

D2 = -16t2
[
27 

tl - (z + 1/2)3]3 

16 (3.18) 

Obviously, D2 < 0 for z < Zc and D2 > 0 for z > Zc• Here Zc = -½ + 3(¼)213• For z < Zc the 
equation D1 = 0 has only one real root, while three real roots are possible for z > Zc- For z < Ze 

one gets: 

!~ = (p2 + 0 - pi)IFl2
, Pl = ¾[(p, x2) + (p~, x2)l, (p, x2) = (i✓-3D2 - 2

; q2)1IJ3 

( 2 ) ( 3 r-;;,;- 27 )1/3 27 4 5 2( 1 )3 2 ( 1 )6 
p,x2 = -2y-3D2-2q2 , q2=-l6t -2t z+2 +27 z+2, 

1 1 1 1 
IFl

2 = [p2+8+ 6((p, x2)+(p2, :z:2))]2+ 
12

[(p, x2)-(p2,:z:2)]2, 5 = 3[z2-2(z+ 4)-3t2J (3.19) 

For z > Zc one gets 

~~ = (p2 -f 5 - 1'2)(p2 + 5 - p3)(p2 + 0...: p4) (3.20) 

Here 
2 ,--;;:- ¢2 I ,--;;:- <P2 ~ • ¢2 

P2 = ±3y-3p2 cos 3 , p3 = ,=3y-3p2 cos 3 + v-P2 sm 3 , 

1 ,--;;:- <Pz ~ • <Pz 
p4 = ,=-y-3P2COS- - v-P2Sm -

. 3 3 3 
(the upper and lower signs correspond to q2 < 0 and q2 > O, resp.) Further, 

9 1 2 1 1 4 21 lqzl . 3 .,/3JJ; 
pz=--(z+-)t --(z+-), cos¢2= r;:;;:,::s• sm¢2=·-

2
_r-;;;;:-s 

2 2 3 2 2 v-27p~ v-27p~ 

4 Elaboration of the physical problem 
Accelerated motion . 
In this case the retarded times t; and the observation time t should be positive. As t2 < 0 in 
(3.12), it is physically inadmissible. Thus, for the region where D1 < 0 only t1 root survives 
under the condition that O < t1 < t. 
Now we turn to the case Di > O, q1 > 0. The ~ entering into (3.10) a.re 

. In (21 I 2 ,--;;:- 'Pl)l/2 . In (2 1 r-;;::- ¢1 ~ . ¢1)1/2 v -01 = - - p + -y -3p1 cos - y -02 = -IPI - -y -3p1 cos - - v -pi sm -
3 3 3' 3 3 3 3 

.j'::::e; = (~IPl-!~cos ¢i +~sin ¢1)* (4.1) 
3 3 3 . 3 

In what follows we enumerate the roots (3.10) corresponding to D1 > 0 as t3, t4, ts, ts. Substi­
tuting (4.1) into (3.10) we see that 

ts > ts > ts > t4, t4 < 0, ts > O, t6 > 0 (4.2) 

while the sign of t3 may be different in different space-time regions. As t4 < 0 it should be 
discarded. Then, equations 

0 < t3 < t, ts < t, ts < t (4.3) 
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combined with (3.14) define the space-time regions where the particular solution t,(i = 3, ... , 6) 

exists . 
The similar equations for Di > 0, qi < 0 are: 

..;::a;,= -(~lpl- ~-J=3Picos 'P1)1f\ 
3 3 3 

/0 (21 I l r-;;:- r/,1 ~ . ¢1 l/2 v-O2 = - p + -y-3p1cos- - y-p1sm -) 
3 3 3 3 , 

1a (2 I I 1 r-;;:- ¢1 r--::- . ¢1 )1,2 y-O3 = - p + -y-3p1cos- + y-p1sm -
3 3 3 3 

(4.J) 

One gets from (3.10) that 

t3 > t5 > ts > t¼, t3 > O, t¼ < O, t5 > 0 (4.5) 

while the sign of ts varies from one point to another. Again, the retarded solution t4 is not 
physically admissible. Thus, the conditions 

ts < t, t6 < t, 0 < ts < t (4.6) 

combined with (3.16} define the space-time region where the particular solution exists. 

Decelerated motion. 
2) The second problem deals with the charged particle which decelerates uniformly. The charge 
equation of motion is still given by (2.1), but the retarded times t; should be negative now. We 
consider the positive and negative observation times separately. 
For t > 0, D1 < 0 the retarded time t2 is negative, while the sign of t1 changes from point 
to point. Thus, solution t2 exists everywhere, while t1 exists in those regions which meet the 

condition t1 < 0. 
It turns out that for D1 > 0, q1 > 0 Eqs. (4.2) are still valid. As retarded times t5 and t6 

are positive, they should be discarded. Further, the retarded solution t4 exists in the space 
regions where Eq.(3.14) is satisfied, while t3 exists in the regions where Eqs.(3.14) and t3 < 0 

are fulfilled . 
For D1 > 0, q1 < 0 Eqs.(4.5) are valid. The positivity of t3 and t6 implies that they should be 
discarded. The retarded solutions t4 and ts exist'in those space-time regions where Eqs. (3.16) 
(for t4 ) and (3.16) and ts < 0 (for t5 ) are fulfilled. 
For t < 0 the retarded time ti > 0 that is not physically acceptable. On the other hand, t2 
contributes to those space-time-regions which meet conditions (3.9) and t2 < t. 
Fort< 0, D1 > 0, q1 > 0 the ..J-::e: entering into (3.10) are given by 

..;::a;= (~IPI +~~cos <$1)112 .,r-:e; = (~IPI-!~ COB rf,
1 

-~ sin rf,
1 

)
1
'

2 

3 3 3' 3 3 3 3 

fa (21 I l ,-:;-::- r/,1 ~. ¢1)1/2 v -03 = - p - -v -3p1 cOB - + v-P1 sm -
3 3 3 3 

(4.7) 

Further, t
3 

> t4 > ta > ts, It turns out that t3 > O, ts < 0, ts < 0 while the sign of t4 

changes from point to point. Thus, conditions for existe.nce of these retarded solutions are 

ts < t, t6 < t, t4 < t 

These conditions should be supplemented by Eq.(3.14). 
For D1 > 0,q1 < 0 one gets: t3 >ta> ts> t4, 

(4.8) 

/a 21 2 ~ ¢1)1/2 y-O1 = (- pj- -y-3p1cOB- , 
3 3 3 

/a (21 I l ,-:;-::- 'Pl r-:- . ¢1 )1/2 y-O2 = - p +-y-3p1c0B- -y-p1sm-
3 3 3 3 J 

6 

.pi; (2
11 

]~ rfi1 r-:;:-. <P1)i/2 = - p + - -3p1 COS - + V -p1 Sill - (4.9) 
3 · 3 3 3 · · 

Now t3 > 0, t4 < 0, ts < 0 while the sign of t6 may vary. The conditions for the existence 
of these retarded solutions are (3.16) and 

t4 < t, t5 < t, t6 < t (4.10) 

5 Particular case 

Before going to the numerical calculations it is instructive to consider a simple case correspond­
ing to the observation point lying on the Z axis (p = 0). In this case 

-~ = [t2 - (z + ~ )21(t2 - z)2 
256 4 (5.1) 

The roots of Eq.(3.1) are given by 

t1 = Ti - 1/2, f2 = T2 + 1/2, f3 = -T2 + 1/2, f4 = -Ti - 1/2, (5.2) 

Ti= Jz+t + 1/4, r2 = Jz-t + 1/4 

In what follows we need also the values of denominators fl. entering into the definition of 
electromagnetic potentials 4', A: 

ri = 2r1(t + 1/2- Ti), r2 = 2r2(-t + 1/2 + r2), 

r3 = 2T2(f - J/2 + T2), r4 = -2T1(t + 1/2 + Ti) (5.3) 

Accelerated motion. 
For the first problem ( uniform acceleration of the charged particle from the state of rest) the 
physical retarded times are (fig. I): 
i) t1, 

This solution exists in the space-time region -t < z < t2 • It consists of three subregions. 
Subregion t > 1/8, -t < z < t- 1/4 corresponds to D1 < 0, while subregions t < 1/8, ~t < 
z < t2 and t > 1/8, t - 1/4 < z < t2 correspond to D1 > 0. 
ii) t2, 

This solution exists in the t > 1/2, t - 1/4 < z < t2 region and corresponds to D 1 > 0. 
iii) t3. 
This solution exists in the regions t < 1/2, t2 < z < t and t > 1/2, t - I /4 < z < t and 
corresponds to D1 > 0. 

Let the observer be placed at a particular point of the Z axis. We clarify now what he will 
see at different moments oftime. It is convenient to relate the current time t not to the retarded 
time t., but to the particle position z, at that moment of time (z, = t;). 

Consider the particular point Plying on the negative Z semi-axis (fig.2). Up to thl' moment 
t = -z the observer sees the field of the charge resting at the origin. At the moment t = -z 
the shock wave arising from the beginning of the particle motion arrives at. I'. At later times 
the radiation arrives from the retarded particle positions z1 lying to th<> right of P. 

Let the observation point P lie on the positive Z semi-axis in the interval O < z < 1/4 
(fig.3). Up to a moment t = z the observer in P sees the electrostatic field of the charge resting 
at the origin. At the moment t = z the bremsstrahlung shock wave from the origin reaches P. In 
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the time interval z < t < ,It the retarded solution is t.3 which describes the radiation from the 
partide retarded positions lying in the interval O < z, < z. At the moment t = ,/z the charged 
particle reaches the observation point P. At that point Ri and R3 defined by Eq.(5.3) vanish and 
the electromagnetic potentials are infinite. For time t > ,/z the observer detects the radiation 
from the retarded positions of the particle lying at the right of P and corresponding to t1. 

Let the observation point lie in the interval 1/4 < z < 1 (fig.4). Up to a moment t = z 
the observer sees the field of the charge at rest. At the moment t = z the bremsstrahlung 
shock wave originating from the beginning of the charge motion reaches P. In the time interval 
z < t < ,/z the observer sees the radiation from the particle retarded positions (z.,) in the 
interval O < z, < (1 - ,/z)2• At the moment t = ,/z the charged particle ( or 6erenkov 
shock wave) reaches the observation point. Again, electromagnetic potentials are infinite at 
this point. After that ( ,/z < t < z + 1/4) the observer in P detects the radiation from three 
retarded positions of the particle. Two of them (z2 and z3) lie to the left of the observation 
point P and on the opposite sides of the point z1 = 1/4 at which the particle velocity is equal 
to the light velocity in the medium. As time goes, these retarded radiation points approach z1. 

At the moment t = z + 1/4 they fuse at the point z1 = 1/4 where particle velocity equals to Cn• 

It turns out (see (5.3)) that at this point R2 and R3 vanish while the electromagnetic potentials 
take the infinite values. The disappearance of the t2 and t3 solutions and the infinite values 
of electromagnetic potentials suggests that the observation point is reached by the shock wave 
originating from the point z1 = 1/4 where the particle velocity was equal to c,.. The third of the 
mentioned solutions (ti) describes the radiation from the particle positions lying to the right of 
the observation point. Fort > z + 1/4 only this solution contributes to the observation point. 

Let the observation point P lie in the region z > 1 (fig.5). Up to a moment t = ,/z the 
observer sees the electrostatic field of the charge in rest. At the moment t = ,/z the charged 
particle ( with the Ma.ch con~ accompanying it ) arrives at P. The electromagnetic potentials are 
infinite at this moment. In the time interval ,/z < t < z the observer detects the electrostatic 
field of the charge in rest and the radiation from two points lying to the left ( z2) and the right 
(zi) of P. At the moment t = z the bremsstrahlung shod<: wave from the origin reaches P. In 
the time interval z < t < z + 1/4 there are three retarded solutions (ti; t2 , t3) which contribute 
to P. At the moment t = z + 1/4 the retarded solutions t2 and t3 annihiliate ea.ch other at the 
point z1 = 1/4 where the particle velocity is equal to c,.. This, as well as infinite values of the 
electromagnetic potentials, imply the existence of the shock wave originating from z1 = 1/4. 
Fort > z + 1/4 only the radiation· from t1 solution reaches P. 

Decelerated motion. 
In the second case ( uniform deceleration of the charge up to a moment t = 0 after which it rests 
at the origin) the allowable retarded solutions are (fig.6): 
i) t4. 

This solution exists in the regions t < -1 /2, z > t2 and t > -1 /2, z > -t - 1 /4. In the first 
of them Di > 0; the second region contains two subregions -1/2 < t < 0, z > -t - 1/4 and 
t > 0, z > t - 1/4 corresponding to D1 > 0 and one subregion t > 0, -t- 1/4 < z < t- 1/4 
corresponding to D1 < 0. 
ii) t3. 
This solution exiBts in regions t < O, z > t2 and t > 0, z > t and corresponds to D1 > 0. 
iii) t1. 
This solution is defined in the region -1/2 < t < 0, -t - 1/4 < z < t2 where Di > 0 and in 
the region t > O, -t - 1/4 < z < -t where Di < 0. 

Let the observer be placed on the negative Z semi-axis (fig.7). Up to a moment t = -z-1/4 
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he does not obtain any information concerning the particle motion. At the inoment t = -z-1/4 
the shock wave originating from the particle overcoming the light velocity barrier ( at z1 = 
1/4, ti= -1/2)) reaches the observation point P ( the electromagnetic potentials are infinite 
at this point). In the time interval -z - 1/4 < t < -z the observer detects the radiation from 
two retarded charge positions lying to the left (z1) and right (z.) of Z/. At the moment t = -z 
the observer detects the shock wave arising from the termination of the particle motion. For 
t > -z the observer sees the electrostatic field of the charge which rests at the origin and the 
radiation from the remote retarded positions z• of the charge. 

Let the observation point lie within the interval O < z < 1/4 (fig.8). At the moment 
t = -z - 1/4 the shock wave originating from the particle overcoming the light velocity barrier 
(at z = z1) reaches the observer. Again, the electromagnetic potentials are infinite at this 
moment. In the time interval -z - 1/4 < t < -,/z the radiations from two retarded positions 
of the charge (zt and zi) arrive to P. They lie on different sides of zc, to the right of the 
observation point z. As time goes, one of the radiating points (zi) approaches the origin, while 
the other (z.) moves away from z. At the moment t = -,/z the electromagnetic potentials 
become infinite as the charged particle arrives at P. At this moment the t1 solution disappears, 
but, instead, t3 arises. In the time µiterval -,/z < t < z the observer sees the radiation from 
two points lying on different sides of him. At the moment t = z one of the retarded positions of 
the charge (z3) comes to the origin and the corresponding bremsstrahlung shock wave reaches 
the observer. For times t > z the observer sees the electrostatic field of the charge at rest and 
the radiation field from the remote retarded positions z• of the charge. 

Let the observer be placed at the point P with z > 1/4 (fig.9). There is no field in P up 
to a moment t = ,/z. At this moment the charge arrives at P. After that the observer sees the 
radiation field from two retarded positions lying on different sides of P. As time goes, one of the 
retarded positions (z3) approaches the origin, while the other (z.) goes away. At the moment 
t = z the observer sees that charge reaches the origin and detects the shock wave associated with 
the termination of the particle motion. After that moment the observer detects the electrostatic 
field of the charge which rests at the origin and the radiation field from one remote retarded 
position of the charge. 
Concluding this section we note the existence of two types of the shock waves. The brems­
strahlung shock waves associated with the beginning or termination of the charge motion cor­
respond to finite jumps of electromagnetic potentials. Therefore, the field strengths have the 
6-type singularities. On the other hand, the Cerenkov shock wave and the shock wave associated 
with the charged particle overcoming of light velocity barrier correspond to infinite jumps of 
electromagnetic potentials (due to the vanishing of denominators Jl;). Thus, they carry a much 
stronger singularity. 

1 Numerical results 

We consider the typical case corresponding to It! = 2. The space regions where D1 > 0 and 
Di < 0 are shown in fig. 10. There are no physical solutions outside the surface q 2>. 

Accelerated motion. 

For the first of the treated problems ( uniform acceleration of the charge which initially rests 
at the origin) all the retarded times t, and observation time t should be positive ( the negative 
t corresponds to the electrostatic field of the charge at rest). Ast• is negative ( see sect. 4) it 
should be discarded. The calculations show that the retarded solution t1 is positive only inside 
the sphere Co of the radius r = c,.t (fig.11). In that region O < t1 < t. The spherics.I surface 
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0 0 conesponds to the bremsstrahlung shock wave originating from the beginning of the charge 
motion. The points lying inside C0 describe the radiation from the retarded positions of the 
charge lying on the positive Z semi-axis. Inside the conic surface c~> lying on the right of z = 4 
(see fig. 10) the following conditions are satisfied 

t3 < O, t4 < O, ts > t, ta > t, (6.1) 

which is not acceptable from the physical point of view ( as t5 and t6 should not exceed the 
observation time t). The physical region of space where D1 > 0 is bounded by the conic surface 
c<J> and by the surface c'},1>. The Mach cone cZ> describes the c':erenkov shock wave, while the 
surface q1> closing the Mach cone describes the shock wave originating from the charged particle 
overcoming the light velocity. With a high accuracy the q1> surface is described by the equation 
p2 + (z - 1/4)2 = (t - 1/2)2 of the spherical wave emitted ·from the point z = 1/4, t = 1/2 
at which the charge velocity coincides with the light velocity in the medium c,,. The region 
D1 > 0 lying to the left of z = 4 consists of two subregions (fig.11). In the first of them lying to 

. the right of Co there are two physical solutions ts and ts, The retarded solution t3 is negative 
there and, thus, has no physical meaning. In the second subregion lying to the left of 0 0 there 
are three physical solutions t3, ts and ts, The calculations show that the retarded solution t3 
continuously goes into t1 when one intersects the D1 = 0 surface. The second subregion in turn 
consists of two subregions corresponding to q1 < 0 and q1 > 0 (fig.12). On the boundary q1 = 0 
the following equations are satisfied: 

t3(q1 < 0) = t6(ql > 0), ts(q1 < 0) = t3(q1 > 0), ta(ql < 0) = t5(q1 > 0) 

The resulting configuration of the shock waves is shown in fig.13. On the internal sides of the 
surfaces q1l and o<J> ( where D1 > 0 ) electromagnetic potentials acquire infinite values (as 
Rs and Rs vanish there). On the external side of ci> lying outside of C0 the electromagnetic 
potentials are zero (as there are no solutions there). On the external sides of ci1> and of the part 
of the ci> surface lying inside 0 0 the electromagnetic potentials have finite values. With a high 
accuracy the surface q1

> is described by the equation·p2 +(z-l/4)2 = (t-1/2)2 of the spherical 
wave C (shown by short-dash curve in fig.:\)) emitted from the point z = 1/4, p = 0, t = 1/2 
in which the charge velocity coincides with the light velocity c,, in the medium. 

Decelerated motion. 
Now we turn to the second problem (uniform deceleration of the charged particle along the 
positive z semi-axis up to a moment t = 0 after which it rests at the origin). In this case only 
negative retarded times t, have a physical meaning. 
Fort > 0, in the region where D1 < 0 the retarded time t2 is everywhere less than zero, while t1 
is negative only outside the circle 0 0 (fig.14). In the region where D1 > 0 the retarded solutions 
ts and t6 are greater than zero and, thus, are not physically admissible. As t 3 > 0, t4 < 0 
in the region D1 > 0 bounded by the sphere Co and the surface q1

> , so only t4 has physical 
meaning there. It turns out that t4 continuously passes into t2 on the surface ci1

> and on the 
part of the surface c~> lying inside Co. In the region D1 > 0 lying outside Co both t3 and t4 

are negative. The calculations show that t3 and t4 pass continuously into t1 and t2 ,resp., on 
the surfaces c<J> and c<i> lying outside 0 0 • Thus, surfaces c<J> and c<,,;> are pure fictitious for 
the treated t > 0, t' < 0 case. Further, the retarded solutions t1 and t~ tend to the same finite 
values , while the denominators R1 and ~ tend to zero when one approaches the internal side 
of q2

> surface (where D1 < 0). The electromagnetic potentials vanish outside of q2> (as no 
solutions exist there) and acquire infinite values on the internal part of CL(2) (due to vanishing 
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the denominators R1 and R2 there). Therefore, the surface 0£(2) represents the shock wave. 
The head part of this blunt shock wave with a high accuracy is approximated by the sphere 
p2 + (z - 1/4)2 = (t + 1/2)2 (shown by the short-dash curve in fig.14) describing the spherical 
wave emitted from the point z = 1/4 at the moment t = -1/2 when the cl1arge velocity coincides 
with c,,. As a result, for t > 0, t' < 0 one has the shock wave ci2> and the bremsstrahlung shock 
wave 0 0 arising from the termination of the particle motion. The retarded solution t2 exists 
everywhere inside cf>, while t 1 exists between C0 and q 2> (fig.14). 

Now let the observation time t be less than.zero for the decelerated motion. Then all t, 
should be less than t. In the region D1 < 0 the retarded solution t1 > 0, which is not physically 
acceptable. The retarded solution t2 should satisfy the condition t2 < t. As quantities a and 
b entering into the definition of t2 (see Eq.(3.10)) do not depend on the sign oft, the equation 
t2 < t is equivalent to 

!ti 1 
✓a2 + b2 + h(a + Ja2 + b2)1/2 > !ti (6.2) 

On the other hand, for the accelerated motion (t > 0, t 1 > 0) the condition t 1 < t written in 
an extended form is 

.. . !ti l J~2 + b2 + h(a + Jaz + b2)1/2 < It! (6.3) 

As (6.3) is satisfied everywhere in the D1 < 0 region, the condition (6.2) cannot be satisfied and 
the retarded solution t2 has no physical meaning. 
Turning to the region where D1 > 0, one easily obtains from (3.10),(4.1) and (4.7) that the 
following equations are satisfied: 

t4(t < 0) = -t3(t > 0), t3(t < 0) = -t4(t > 0), t5(t ·< 0) = -t6(t > 0), 

t5(t < 0) = -t~(t > 0) (5.5) 

Consider the solutions t3 and t4. Taking into account the negativity of t one may rewrite 
conditions t3 < t and t4 <tin the form t3(t < 0) < -It!, t4(t < 0) < -It!. Or, using (6.4) one 
gets: · 

t4(t > o) > It!, t3(t > o) > !ti (6.5) 

. But we have seen earlier that for t > 0 the retarded time t 4 is everywhere negative, while 
t 3 is positive only inside the region bounded by the sphere 0 0 and the surfaces Cj,1) and d/4) 
lying inside Co. In that region t3 is less than t, which disagrees with (6.5). This in turn means 
that for t < 0, t3 < 0, t4 < 0 the conditions t.3 < t, t4 < t cannot be satisfied and the retarded 
solutions t.3 and t4 have no physical meaning. 
Further, for t < 0, ts < 0, t6 < 0 the conditions ts < t and t6 < t can be rewritten in the form: 
!ts(t < O)! > !ti, !t6(t < 0)I > !ti. Using (6.4) one gets: t5 (t > 0) > !ti, t6 (t > 0) > !ti. But 
these inequalities are fulfilled only in the part of D1 > 0 region bounded by the·c<,.;> surface (see 
Eq.(5.1) and Fig. 10). As a result, fort < 0, t' < 0 the physical solutions t5 and t6 exist only 
inside the Mach cone d,,;1 (fig.15). On its internal boundary (where D1 > 0) the denominator.i 
Rs and Rs are equal to zero and electromagnetic potentials acquire infinite values. On the 
external boundary (where D1 < 0) the electromagnetic potentials are zero ( as no solutions 
exist there). Thus, for the case of decelerated motion and the observation time t = -2 the only 
physical solutions are t$ and ts which are contained inside the Mach cone ci) (fig. Hi). 

It remains now to relate the simplified solutions found in sect.5 to the complete solutions 
found in this section. For the case of.accelerated motion the t1 retarded solution of this section 
(see fig. 11) on the interval of Z axis -t < z < t - 1/4 coincides with the t1 solution shown 
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in fig.I; on the part of the Z axia lying between the surfaces oi1> and q1 = 0 (Fig. 12) the 
solutions t3,t5 ,t6 of fig. 11 coincide with the retarded solutions ti,t3 ,t2 offig.1; on the part of 
Z axis lying to the right of q1 = 0 surface the retarded solutions t 1 , t6 , t5 of fig. 11 coincide with 
t3, ti, t2 of fig. I. 
For the decelerated motion and t > 0 the retarded solutions t 1 and t2 shown in fig.14 on the Z 
interval -t < z < t - 1/4 coincide, respectively, with the t1 and t¼ solutions presented in fig. 6; 
the t4 and t3 solutions shown in fig. 14 on the part of Z axis lying to the right of CL(l) surface 
coincide, respectively, with the t 4 and t3 solutions (see fig. 6}. 
For the decelerated motion and t < 0 the retarded solutions t6 and t 5 (see fig.15} on the accessible 
part of the Z axis z > t~ coincide, respectively, with the simplified solutions t1 and t¼ shown in 
fig. 6. 

1 Determination of the shock waves positions 

So far, we presented the results of numerical calculations. However, a posteriori the boundaries 
corresponding to the shock waves may be obtained as follows (this method has been extensively 
used by Schott (5]}. We seek the surfaces on which the denominators fl; vanish. The equation 
El; = 0 may be rewritten in the form: 

t[ - (z + l/2}t, + t/2 = 0 

The form of solution depends on the sign of discriminant 

27 
D = 4(z + 1/2)3 

- -t2 

4 

For z < Zc = -1/2 + 3(t/4)213 (in this case D < 0) the solution is 

(7.1) 

to= - 4;/J {t - [t2 - ~~(z + 1/2)3]1/2}1/J - 4;/J {t + [t2 - ~~(z + 1/2)3]1/2}1/3 (7.2) 

Obviously, to < 0 fort > 0 and to > 0 fort < 0. For z > Zc (or D > 0) one has 

t1 = =i= 2 r,;J z + l/2coa P. 
y.:, 3' 

t2 = ±Jz + 1/2(~cos ~+sin~), 

t3 = ±Jz + 1/2( ~cosf-sin f) 
y3 3 3 

(7.3) 

Here cos<f, = 4Ylt11z + 1/21-312, 0 < <f, < 11:/2. The upper and lower signs in (7.3} correspond 
to t > 0 and t < 0, resp. Obviously, t1 < 0, t2 > t3 > 0 for t > 0 and t1 > O, t2 < t3 < 0 for 
t < 0. 
Combining (7.1) with (4.1) one gets the following equation for p2

: 

:; ·( ' 1/2) 3 t 2 2 P; = t; z + - 2t , + t - z (7.4) 

Thi.~ equation defineR the surfaces on which El; vanish. 
Accelerated motion. 

Consider the first problem ( uniform acceleration a.long the positive Z semi-axis beginning from 
the origin at the t = O moment). Then t > t, > 0. It follows from (7.2) and (7.3) that only t2 

12 

I 

{ 

and t3 have physical meaning. Substituting t2 and t3 into (7.4) we easily check that P2 and p3 

describe d~l and 0},1) surfaces. Thus, we obtain the physical picture shown in figs. 16-18 where 

the positions of Mach cones consisting of the <".lerenkov shock waves c<J and of the oi1> surfaces 
dosing Mach cones and representing shock waves arising from the charge overcoming of light 
velocity barrier are presented for different moments of the observation time t. The dimensions 
of the Mach cones strongly depend on the observation time t. They continuously tend to zero 
as t --+ 1/2. 

Decelerated motion. 
For the case of decelerated motion and the positive observation time (t > 0) the physical 
solutions are t0 and t1 ( as only they are negative). Substituting them into (7.4) we get P2 and 
p3 describing the parts of the 0},2) surface lying on the left' and right of the z = z0 plane,resp. 
For the same decelerated motion and t < 0 the physical meaning have t2 and t3 (as only they 
are negative). For the treated clll!e (t = -2) the function p2 (t3 ) < O, which is not accessible. 
Further, t2 > t for z < t2 = 4, which is also not permissible (as only t; < tis allowable). For 
z > t2 the substitution of t2 into (7.4) leads to the description of the c~> Mach cone shown 
in fig. 15. The results of calculations for different times are shown in fig. 19. We see that 
the sharp Mach cone presented in the right part of this figure (t = -2, v = 4c,.) continuously 
transforms into the blunt shock wave ( t = 2) shown in the left part of the same figure. 

8 Discussion 

Consider at first the accelerated motion of the charge beginning from the origin at the moment 
t = 0. All the Mach cones shown in figs. 16-18 exist only fort > 1/2,z > 1/4, This means 
the observer beiug placed in the space region z < 1/4 will not see either <':erenkov shock wave 
or that of associated with the overcoming of the light velocity barrier. Only the shock wave 
C0 (not shown in figs. 16-19) which is due to the beginning of the charge motion reaches him 
at the moment t = c,.t. Moreover, the detection of the aforementioned shock waves (0},1) and 
CM(l)} in the z > 0 region is possible if the distance p from the Z axis satisfies the equation 

P < Pc, 
4 1 

Pc = . r.;( z - -)3/2 
3v3 4 ' 

1 
z> 4 (8.1) 

Inside this region the observer sees at first the c'.:erenkov shock wave c<~>. Later he detects the 
bremsstrahlung shock wave Co (not shown in figs.16-19) and the shock wave ci1> originating from 
the overcoming the light velocity barrier. It is remarkable that the surface of the 0},11 shock wave 
with a high accuracy coincides with the surface of the sphere p2 + (z - 1/4)2 = c~(t - 1/2)2 de­
scribing the spherical wave emitted by the charge from the point z = 1/4 at the moment t = 1/2 
when the charge velocity is equal to c:,.. These spheres are ehown by the short-dash curves in 
figs.16-18. Outside the region defined by (8.1) the observer sees only the bremsstrahlung shock 
wave Co which reaches him at the moment c,.t = r. 
Further, for t < 1/2 only one retarded solution (t1 ) exists. It is confined to the surface Co of 
the radius r = c,.t. Therefore, the observer will not detect either the <".lerenkov shock wave or 
that of originating from the overcoming of light velocity barrier. The dimensions of the Mach 
cones shown in figs. 16-18 are zero fort= 1/2 and continuously rise with time fort > 1/2. The 
physical reason for this behaviour is that the 01,1> shock wave cloeing the Mach cone propagates 
with the light velocity c,., while the head part of the Mach cone (i.e., the 6erenkov shock wave 
cil) attached to the charged particle expands with the velocity v > c,.. 
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In the gasdynamics ihe existence of ai leasi two shock waves attached to the finite body moving 
with a supersonic velocity was proved on the very general grounds by Landau and Lifshitz 
((10], Chapter 13). In the present context we associate thern with ci1

' and d,iil, 
For the decelerated motion (see fig.19) the observer in the space region z < 0 detects the blunt 
shock wave C},2) first and the bremsstrahlung shock wave 0 0 later. It turns out that the head 
part of this blunt wave with a high accuracy coincides with the sphere p2 +(z- 1/4)2 = (t+ 1/2)2 

describing the spherical wave emitted frorn the point z = 1 / 4 ai the moment t = - 1 /2 when 
the charge velocity coincides with c,,. The observer being placed in the z > 1/2 region detects 
only c'.:erenkov shoc.k wave c<,;>. 

In order not to hamper the exposition, we did not mention, in this section, on the continuous 
radiation which reaches the observer between the arrival of two shock waves or after the arrival 
of the last shock wave. It is easily restored either from the simplified case considered in sect. 5 
or from figs. 11-15. 
However, some precaution is needed. For the motion law (2.4) the charge velocity may exceed 
c, the velocity of light in vacuum. Consider first the accelerated _motion. The external 4-force 
maintaining the accelerated motion (2.4) becomes infinite (due to the 7-factor (7 = (l-/P)-1

/
2

) 

in it). Therefore, this motion cannot be realized for v close to c. In any case, the effects arising 
from the proximity of charge velocity to c do not produce any discontinuities and will be observed 
after the arrival of the last of the shock waves considered earlier. 
The situation is slightly more complicated for the decelerated motion. To escape the troubles 
with v > c one may imagine that the charged particle is at rest at the point z = -z0 up to a 
moment t = -to, after which it instantly acquires the ·velocity c,. < v < c. After the moment 
t = -to the charge moves towards the origin according a law similar to (2.4). The radiation 
field arising from such a velocity jurnp was studied in [9]. It turns out that the arising physical 
picture insignificantly differs from that considered in previous sections. Let the observation 
point P lie in the negative Z semi-space. Then, after the arrival of the C},2) shock wave, the 
shock wave 0 1 associated with the beginning of the charge motion (at t = -t0 ) arrives at P. 
For the observation point P in the positive Z semi-space (more accurately, for z > 1/4) the 
shock wave 01 reaches P after the arrival of the c'.:erenkov shock wave ctl. In both cases the 
C1 shock wave closes either the blunt shock wave Ci2> or the Mach cone ct)· (likewise the shock 
wave C~1

) shown in figs.10-14 closes the Mach cone ci'). The singularity of the C1 shock wave 
is the same a.~ the singularity of C0 shock wave and, therefore, is weaker than the singularity 
ejther of CM or CL. 

So far we have considered the physical effects arising when the velocity of the point-like 
charged particle continuously. passes through the rnediurn light-velocity barrier. The electro­
magnetic fields of the uniformly moving charge are well-known both for v > c,. and v < c,. 
[5,7-9]. But what happens if the particle velocity ex~tly coincides with the light velocity in the 
medium c,, ? (This question was posed by Prof. Tyapkin). For this case the equation defining 
t' is 

Solving it relative to t' one gets 

c,.(t - t') = [p2 + (z - c,,t')2 ]112 

1 r2 - c;t2 
c,,t' = 2 z _ c,.t 
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Fig. 1. The space-time distribution of the retarded solutions for the particle in accelC'rated 

motion and the observation point lying on the Z axis. 
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Fig. 2, 3. The retarded positions of the radiating uniformly accelerated charge as functions 
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and z = 0.16 (Fig. 3). 
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Fig. 11. The space distribution of the retarded solutions and the shock waves positions for 

the accelerated motion at t = 2. Here Co denotes the shock wave assosiated with the beginning 

of the charge motion; CM(l) denotes the Cerenkov shock wave, Cfl) denotes the shock wave 

originating from the charge overcoming of the light velocity inside the medium. 
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from the charge overcoming of the light velocity barrier for the accelerated charge are shown 

for the moment t = 0.6 (Fig. 16) and fort= 0.75 (Fig. 17). Short dash curve C represents the 

spherical wave emitted from the point z = 1/4 at the moment t = 1/2 when the accelerated 

charged particle overcomes the light velocity barrier. 
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1-9 refer to the moments of time t = -2; -1.5; -1; -0.5; 0; 0.5; 1; 1.5 and 2, resp. Short-dash 

curves represent the spherical waves emitted from the point z = 1/4 at the moment t = -1/2 

when the decelerated charged particle overcomes the light velocity barrier. 
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The nonvanishing components of the electromagnetic potentials are equal to 

<I> = e0(c,.t - z) 
f.(<=nt-z)' 

A,= ecnµ0(.:nt - z) 
c(cnt-z) 

As A and <I> do not depend ou the cylindrical coordinates p and ¢, so iJ = H = Ep = E~ = 0 
and 

E __ o<l> _ ~ oA, 
• - OZ • C &t ' 

J<l> e6(cnt - z) e8(c,.t - z) 1 oA. eS(.:nt - z) - = -~---:--- + -~--, -- = 
OZ l(<=nt - z) l(.:nt - z)2 <! at c(.:nt - z) 

ee(c,.t - z) 
l(c,.t - z)2 

It turns out that E and H vanish everywhere except, possibly, the plane z = c,.t. In it, E, 
reduces to the difference of two infinities and the final answer remains to be undetermined. 
However, the integral of E taken over an arbitrary closed surface surrounding the charge should 
be equal to 47re. As E is entirely confined to the plane z = Cnt, it should be infinite on this 
plane ( to guarantee the finiteness of the above integral). As a result, the electromagnetic field 
of the particle moving with the velocity coinciding with the light velocity in the medium differs 
from zero only on the plane normal to the axis of motion and passing through the charge itself. 
The same ambiguity arises if one takes the explicit formulae describing the charge motion with 
v > c,. (see e.g., [9]) and will tend v -+ c,. in them. 
We observe that for v = c.,, the shock wave coincides with the z = c,.t plane, i.e., it has an 
infinite extension. The same effect takes place in gasdynamics when the velocity of the· body 
coincides with the velocity of sound ([10}, Chapter 12). 

9 Conclusion 
Thus, we confirm the qualitative predictions of refs.[2,3] concerning the existence of the shock 
waves associated with the charge overcoming the light velocity barrier (inside the medium). It 
would be interesting to observe these shock waves experimentally. 

We would like to thank Prof. Tyapkin A.A. for the fruitful discussions and for attra.ctio~ of 
our attention to ref. [3]. 
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