

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

$96-420$

G.N.Afanasiev, S.M.Eliseev, Yu.P.Stepanovsky*

TRANSITION OF THE LIGHT VELOCITY
BARRIER IN THE VAVILOV - C̆ERENKOV EFFECT

Submitted to «Proceedings of the Royal Society of London, series A»
*The Institute of Physics and Technology, Kharkov, Ukraine

1 Introduction

Although the Vaviov-Cerenkov effect is a well established phenomenon widely used in physics and technology [1], many its aspects remain uninvestigated up to now. In particular, it is not clear how a transition takes place from the sublight velocity regime to the superlight one. Some time ago $[2,3]$ it was suggested that alongside with the usual Cerenkov and bremsstrahlung shock waves, the shock wave associated with a charged particle overcoming the light velocity barrier should exist. The consideration presented there was pure qualitative without any formulae and numerical results. It was grounded on the analogy with phenomena occurring in acoustics and hydrodynamics. It seems to us that this analogy is not complete. In fact, the electromagnetic waves are pure transversal, while acoustic and hydrodynamic waves contain longitudinal components. Further, the analogy iteelf cannot be considered as a final proof. This fact and experimental ambiguity to distinguish the Cerenkov radiation from the bremsstrahlung one [4] make us consider effects arising from the charge particle overcoming the light barrier in the framework of the completely solvable model. To be more precise, we consider the straight-line motion of the point charge with a constant acceleration and evaluate the arising electromagnetic field (EMF). In accordance with refs. [2,3] we confirm the existence of the shock wave arising at the moment when charged particle overcomes the light velocity (inside the medium) barrier. This wave has essentially the same singularity as the Cerenkov shock wave. It is much stronger than the singularity of the bremsstrahlung shock wave.
Previously, the accelerated motion of the point charge in a vacuum was considered by Schott [5]. Yet, his qualitative consideration was pure geometrical, not allowing the numerical investigations.
The plan of our exposition is as follows. In sect. 2, the initial statement of the physical problem is given. The necessary mathematical details are presented in sect. 3. In particular, we solve the fourth-degree algebraic equation for the retardation times. The difficulty is not in solving the equation itself, but in the determination of space-time regions where the solutions exist. The physical analysis of the solutions obtained is given in sect. 4. In sect. 5 , we consider a simplified case when the observation point lies on the axis of motion. The results of numerical calculations presented in sect. 6 and semi-analytic determination of the shock wave positions presented in sect. 7 seem to support the existence of the afore-mentioned shock waves suggested in [2,3]. A brief discussion and account of the results obtained are presented in sects. 8 and 9.

2 Statement of the physical problem

Let a charged particle move inside the medium with polarizabilities ϵ and μ along the given trajectory $\vec{\xi}(t)$. Then, its electromagnetic field (EMF) at the observation point (ρ, z) is given by the Lienard-Wiechert potentials

$$
\begin{equation*}
\Phi(\vec{r}, t)=\frac{e}{\epsilon} \sum \frac{1}{\left|R_{i}\right|}, \quad \vec{A}(\vec{r}, t)=\frac{e \mu}{c} \sum \frac{\vec{v}_{i}}{\left|R_{i}\right|}, \quad \operatorname{div} \vec{A}+\frac{\epsilon \mu}{c} \Phi=0 \tag{2.1}
\end{equation*}
$$

Here

$$
\vec{v}_{i}=\left.\left(\frac{d \vec{\xi}}{d t}\right)\right|_{t=t_{i}}, \quad R_{i}=\left|\vec{r}-\vec{\xi}\left(t_{i}\right)\right|-\vec{v}_{i}\left(\vec{r}-\vec{\xi}\left(t_{i}\right)\right) / c_{n}
$$

and c_{n} is the hight velocity inside the medium ($\left.c_{n}=c / \sqrt{\epsilon \mu}\right)$. Summation in (2.1) is performed over all physical roots of the equation

$$
\begin{equation*}
c_{n}\left(t-t^{\prime}\right)=\left|\vec{r}-\vec{\xi}\left(t^{\prime}\right)\right| \tag{2.2}
\end{equation*}
$$

To preserve the causality, the time of radiation t^{\prime} should be smaller than the observation time t^{\prime}. Obviously, t^{\prime} depends on the coordinates \vec{r}, t of the point P at which the EMF is observed. With the account of (2.2) one gets for R_{i}

$$
\begin{equation*}
R_{i}=c_{n}\left(t-t_{i}\right)-\vec{v}_{j}\left(\vec{r}-\vec{\xi}\left(t_{i}\right)\right) \tag{2.3}
\end{equation*}
$$

Consider the motion of the charged point-like particle moving inside the medium with a constant acceleration along the Z axis:

$$
\begin{equation*}
\xi=a t^{2} \tag{2.4}
\end{equation*}
$$

The retarded times t^{\prime} satisfy the following equation

$$
\begin{equation*}
c_{n}\left(t-t^{\prime}\right)=\left[\rho^{2}+\left(z-a t^{2}\right)^{2}\right]^{1 / 2} \tag{2.5}
\end{equation*}
$$

It is convenient to introduce the dimensionless variables

$$
\begin{equation*}
\tilde{t}=a t / c_{n}, \quad \tilde{z}=a z / c_{n}^{2}, \quad \tilde{\rho}=a \rho / c_{n}^{2} \tag{2.6}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\tilde{t}-\overrightarrow{t^{2}}=\left[\tilde{\rho}^{2}+\left(\tilde{z}-\tilde{t}^{2}\right)^{2}\right]^{1 / 2} \tag{2.7}
\end{equation*}
$$

In order not to overload exposition, we drop the tilda signs:

$$
\begin{equation*}
t-t^{\prime}=\left[\rho^{2}+\left(z-t^{2}\right)^{2}\right]^{1 / 2} \tag{2.8}
\end{equation*}
$$

For the treated case of one-dimensional motion the denominators R_{i} are given by:

$$
\begin{equation*}
R_{i}=\frac{c_{n}^{2}}{a} r_{i}, \quad r_{i}=\left(t-t_{i}\right)-2 t_{i}\left(z-t_{i}^{2}\right) \tag{2.9}
\end{equation*}
$$

We consider the following two problems :
I. A charged particle rests at the origin up to a moment $t=0$. After that it is uniformly accelerated in the positive direction of the Z axis. In this case only positive retarded times t^{\prime} have a physical meaning.
II. A charged particle decelerates uniformly moving from $z=\infty$ to the origin. After the moment $t=0$ it rests there. Only negative retarded times are physical in this case.
It is our aim to investigate space-time distribution of the EMF arising from such particle motions.

3 Mathematical preliminaries

Eq.(2.8) is reduced to the following equation of fourth degree

$$
\begin{equation*}
t^{4}+p t^{2}+q t^{\prime}+R=0 \tag{3.1}
\end{equation*}
$$

Here $p=-2(z+1 / 2), \quad q=2 t, \quad R=r^{2}-t^{2}$. To find the roots of (3.1), it is preliminary needed to solve the following equation of the third degree [6]:

$$
\begin{equation*}
\Theta^{3}-2 p \Theta^{2}+\left(p^{2}-4 R\right) \Theta+q^{2}=0 \tag{3.2}
\end{equation*}
$$

The substitution $\Theta=\Theta_{1}+\frac{2}{3} p$ reduces (3.2) to the canonical form

$$
\begin{equation*}
\Theta_{c}^{3}+p_{1} \Theta_{c}+q_{1}=0 \tag{3.3}
\end{equation*}
$$

Here $p_{1}=-\frac{1}{3} p^{2}-4 R, \quad q_{1}=\frac{2}{27} p^{3}-\frac{8}{3} p R+4 t^{2}$. The solutions of Eq.(3.2) are determined by its discriminant

$$
\begin{equation*}
D_{1}=-4 p_{1}^{3}-27 q_{1}^{2} \tag{3.4}
\end{equation*}
$$

In what follows we need the following three representatione of D_{1} :

$$
\begin{gather*}
-\frac{D_{1}}{256}=t^{6}-t^{4}\left(3 \rho^{2}+z^{2}+\frac{5}{2} z+\frac{1}{16}\right)+t^{2}\left[3 \rho^{4}+2 z\left(z^{2}+z+\frac{1}{16}\right)+2 \rho^{2} z^{2}+\frac{1}{2} \rho^{2} z+\frac{5}{4} \rho^{2}\right]- \\
-r^{2}\left(\rho^{2}-z-\frac{1}{4}\right)^{2} \\
\begin{array}{c}
D_{1} \\
256
\end{array}=\rho^{6}+\rho^{4}\left[z^{2}-2\left(z+\frac{1}{4}\right)-3 t^{2}\right]+\rho^{2}\left[\left(z+\frac{1}{4}\right)^{2}-2 z^{2}\left(z+\frac{1}{4}\right)+3 t^{4}-t^{2}\left(2 z^{2}+\frac{z}{2}+\frac{5}{4}\right)\right]- \\
-\left[t^{2}-\left(z+\frac{1}{4}\right)^{2}\right]\left(t^{2}-z\right)^{2} \tag{3.6}\\
\frac{D_{1}}{256}=\frac{1}{16} p^{4} R-\frac{1}{64} p^{3} q^{2}-\frac{1}{2} p^{2} R^{2}+\frac{9}{16} p q^{2} R-\frac{27}{256} q^{4}+R^{3} \tag{3.7}
\end{gather*}
$$

Then it followe that $D_{1}>0$ for $\rho \rightarrow \infty$ and z, t fixed; $D_{1}>0$ for $|z| \rightarrow \infty$ and ρ, t fixed; $D_{1}<0$ for $t \rightarrow \infty$ and ρ, z fixed. The solution of (3.2) has the form

$$
\begin{gather*}
\Theta_{1}=\frac{2 p}{3}+\frac{1}{3}\left[\left(\rho, x_{1}\right)+\left(\rho^{2}, x_{1}\right)\right] \\
\Theta_{2}=\frac{2 p}{3}-\frac{1}{6}\left[\left(\rho, x_{1}\right)+\left(\rho^{2}, x_{1}\right)\right]-\frac{i}{2 \sqrt{3}}\left[\left(\rho, x_{1}\right)-\left(\rho^{2}, x_{1}\right)\right] \\
\Theta_{3}=\frac{2 p}{3}-\frac{1}{6}\left[\left(\rho, x_{1}\right)+\left(\rho^{2}, x_{1}\right)\right]+\frac{i}{2 \sqrt{3}}\left[\left(\rho, x_{1}\right)-\left(\rho^{2}, x_{2}\right)\right] \tag{3.8}
\end{gather*}
$$

Here

$$
\left(\rho, x_{1}\right)=\left(-\frac{27}{2} q_{1}+\frac{3}{2} \sqrt{-3 D_{1}}\right)^{1 / 3}, \quad\left(\rho^{2}, x_{1}\right)=\left(-\frac{27}{2} q_{1}-\frac{3}{2} \sqrt{-3 D_{1}}\right)^{1 / 3}
$$

(the notation $\Theta_{i}, \quad\left(\rho, x_{1}\right)$ and $\left(\rho^{2}, x_{1}\right)$ is taken from the Van der Waerden treatise [6]). The following equalities should be satisfied

$$
\left(\rho, x_{1}\right)\left(\rho^{2}, x_{1}\right)=-3 p_{1}, \quad \Theta_{1} \Theta_{2} \Theta_{3}=-4 t^{2}
$$

As $\theta_{2} \cdot \theta_{3}>0$, it should be

$$
\begin{equation*}
\Theta_{1}=\frac{2}{3} p+\frac{1}{3}\left[\left(\rho, z_{1}\right)+\left(\rho^{2}, z_{1}\right)\right]<0 \tag{3.9}
\end{equation*}
$$

The roots of (3.1) are expressed through Θ_{i} :

$$
\begin{align*}
& t_{1}=\frac{1}{2}\left(\sqrt{-\theta_{1}}+\sqrt{-\Theta_{2}}+\sqrt{-\theta_{3}}\right), \quad t_{2}=\frac{1}{2}\left(\sqrt{-\theta_{1}}-\sqrt{-\theta_{2}}-\sqrt{-\Theta_{3}}\right), \\
& t_{3}=\frac{1}{2}\left(\sqrt{-\theta_{2}}-\sqrt{-\Theta_{1}}-\sqrt{-\Theta_{3}}\right), \quad t_{4}=\frac{1}{2}\left(\sqrt{-\Theta_{3}}-\sqrt{-\Theta_{1}}-\sqrt{-\Theta_{2}}\right) \tag{3.10}
\end{align*}
$$

The following condition should also be satisfied:

$$
\begin{equation*}
\sqrt{-\Theta_{1}} \sqrt{-\Theta_{2}} \sqrt{-\Theta_{3}}=-2 t \tag{3.11}
\end{equation*}
$$

If we choose $\sqrt{-\theta_{3}} \cdot \sqrt{-\Theta_{2}}>0$, then $\sqrt{-\Theta_{1}}$ should be negative for $t>0$ and positive for $t<0$ The retarded times t_{i} have different forms for $D_{1}>0$ and $D_{1}>0$. For $D_{1}<0$:

Here

$$
a=\frac{4}{3}\left(z+\frac{1}{2}\right)+\frac{1}{6}\left[\left(\rho, x_{1}\right)+\left(\rho^{2}, x_{1}\right)\right], \quad b=\frac{1}{2 \sqrt{3}}\left[\left(\rho, z_{1}\right)-\left(\rho^{2}, x_{1}\right)\right] .
$$

t_{3} and t_{4} in (3.12) contain imaginary parts and, therefore, are not admissible.
For $D_{1}>0$ (only $p_{1}<0$ is possible in this case) there are two different cases corresponding to $q_{1}>0$ and $q_{1}<0$.
For $q_{1}>0$ one has:

$$
\begin{gather*}
\theta_{1}=\frac{2}{3} p-\frac{2}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}, \quad \theta_{2}=\frac{2}{3} p+\frac{1}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}+\frac{1}{\sqrt{3}} \sqrt{-3 p_{1}} \sin \frac{\phi_{1}}{3} \\
\Theta_{3}=\frac{2}{3} p+\frac{1}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}-\frac{1}{\sqrt{3}} \sqrt{-3 p_{1}} \sin \frac{\phi_{1}}{3} \tag{3.13}
\end{gather*}
$$

Here $\cos \phi_{1}=\frac{27}{2}\left|q_{1}\right| / \sqrt{-27 p_{1}^{3}}, \quad \sin \phi_{1}=\frac{3}{2} \sqrt{3 D_{1}} / \sqrt{-27 p_{1}^{3}}, \quad 0 \leqslant Y_{1} \leqslant \pi / 2$.
It is easy to check that $\Theta_{2}>\Theta_{3}>\Theta_{1}$. Further, $\Theta_{2}>0$ and $\Theta_{3}>0$ for $p>0$. As t_{i} are obtained by extracting square roots of $-\Theta_{i}$, all t_{i} in (3:10) contain imaginary parts, which is not physically permissible. For $p<0$ one has $\Theta_{1}<0$, while both Θ_{2} and Θ_{3} are negative if

$$
\begin{equation*}
\frac{2}{3}|p|-\frac{1}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}-\frac{1}{\sqrt{3}} \sqrt{-3 p_{1}} \sin \frac{\phi_{1}}{3}>0 \tag{3.14}
\end{equation*}
$$

Thus, a physical solution for $D_{1}>0, \quad q_{1}>0$ is possible only if $p<0$, which corresponds to $z>-1 / 2$.
For $q_{1}<0$ one has:

$$
\begin{gather*}
\Theta_{1}=\frac{2}{3} p+\frac{2}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}, \quad \Theta_{2}=\frac{2}{3} p-\frac{1}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}+\frac{1}{\sqrt{3}} \sqrt{-3 p_{1}} \sin \frac{\phi_{1}}{3}, \\
\Theta_{3}=\frac{2}{3} p-\frac{1}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}-\frac{1}{\sqrt{3}} \sqrt{-3 p_{1}} \sin \frac{\phi_{1}}{3} \tag{3.15}
\end{gather*}
$$

In this case $\Theta_{1}>\theta_{2}>\Theta_{3}$. Further, $\Theta_{1}>0$ for $p>0$. This leads to the appearance of imaginary parts in all Θ_{i}, which is not allowable. It turns out that $\Theta_{2}<0, \Theta_{3}<0$ for $p<0$, while Θ_{1} is negative if

$$
\begin{equation*}
\frac{2}{3}|p|-\frac{2}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}>0 \tag{3.16}
\end{equation*}
$$

We conclude: the physical solution can appear for $D_{1}>0$ in those space-time regions for which conditions $z>-1 / 2,(3.14)$ and (3.16) are fulfilled.
To distinguish the space-time regions where $D_{1}>0$ from those where $D_{1}<0$, ons should find the roots of equation $D_{1}=0$. For this we present D_{1} in the form:

$$
\begin{equation*}
D_{1}=\left[\rho^{2}-\rho_{1}(t, z)\right]\left[\rho^{2}-\rho_{2}(t, z)\right]\left[\rho^{2}-\rho_{3}(t, z)\right] \tag{3.17}
\end{equation*}
$$

For (t, z) fixed the roots ρ_{i} define the space regions in which D_{1} as a function of ρ changes its sign. To find ρ_{i}, one should find the discriminant D_{2} of the equation $D_{1}=0$ with D_{1} taken in the form (3.6). It equals

$$
\begin{equation*}
D_{2}=-16 t^{2}\left[\frac{27}{16} t^{2}-(z+1 / 2)^{3}\right]^{3} \tag{3.18}
\end{equation*}
$$

Obviously, $D_{2}<0$ for $z<z_{c}$ and $D_{2}>0$ for $z>z_{c}$. Here $z_{c}=-\frac{1}{2}+3\left(\frac{t}{4}\right)^{2 / 9}$. For $z<z_{c}$ the equation $D_{1}=0$ has only one real root, while three real roots are possible for $z>z_{c}$. For $z<z_{c}$ one gets:

$$
\begin{gather*}
\frac{D_{1}}{256}=\left(\rho^{2}+\delta-\rho_{1}\right)|F|^{2}, \quad \rho_{1}=\frac{1}{3}\left[\left(\rho, z_{2}\right)+\left(\rho^{2}, x_{2}\right)\right], \quad\left(\rho, x_{2}\right)=\left(\frac{3}{2} \sqrt{-3 D_{2}}-\frac{27}{2} q_{2}\right)^{1 / 3}, \\
\left(\rho^{2}, x_{2}\right)=\left(-\frac{3}{2} \sqrt{-3 D_{2}}-\frac{27}{2} q_{2}\right)^{1 / 3}, \quad q_{2}=-\frac{27}{16} t^{4}-\frac{5}{2} t^{2}\left(z+\frac{1}{2}\right)^{3}+\frac{2}{27}\left(z+\frac{1}{2}\right)^{6}, \\
|F|^{2}=\left[\rho^{2}+\delta+\frac{1}{6}\left(\left(\rho, x_{2}\right)+\left(\rho^{2}, x_{2}\right)\right)\right]^{2}+\frac{1}{12}\left[\left(\rho, x_{2}\right)-\left(\rho^{2}, x_{2}\right)\right]^{2}, \quad \delta=\frac{1}{3}\left[z^{2}-2\left(z+\frac{1}{4}\right)-3 t^{2}\right] \tag{3.19}
\end{gather*}
$$

For $z>z_{e}$ one gets

$$
\begin{equation*}
\frac{D_{1}}{256}=\left(\rho^{2}+\delta-\rho_{2}\right)\left(\rho^{2}+\delta-\rho_{3}\right)\left(\rho^{2}+\delta-\rho_{4}\right) \tag{3.20}
\end{equation*}
$$

Here

$$
\begin{gathered}
\rho_{2}= \pm \frac{2}{3} \sqrt{-3 p_{2}} \cos \frac{\phi_{2}}{3}, \quad \rho_{3}=\mp \frac{1}{3} \sqrt{-3 p_{2}} \cos \frac{\phi_{2}}{3}+\sqrt{-p_{2}} \sin \frac{\phi_{2}}{3}, \\
\rho_{4}=\mp \frac{1}{3} \sqrt{-3 p_{2}} \cos \frac{\phi_{2}}{3}-\sqrt{-p_{2}} \sin \frac{\phi_{2}}{3}
\end{gathered}
$$

(the upper and lower signs correspond to $q_{2}<0$ and $q_{2}>0$, resp.) Further,

$$
p_{2}=-\frac{9}{2}\left(z+\frac{1}{2}\right) t^{2}-\frac{1}{3}\left(z+\frac{1}{2}\right)^{4}, \quad \cos \phi_{2}=\frac{27}{2} \frac{\left|q_{2}\right|}{\sqrt{-27 p_{2}^{3}}}, \quad \sin \phi_{2}=\frac{3}{2} \frac{\sqrt{3 D_{2}}}{\sqrt{-27 p_{2}^{3}}}
$$

4 Elaboration of the physical problem

Accelerated motion.

In this case the retarded times t_{i} and the observation time t should be positive. As $t_{2}<0$ in (3.12), it is physically inadmissible. Thus, for the region where $D_{1}<0$ only t_{1} root survives under the condition that $0<t_{1}<t$.
Now we turn to the case $D_{1}>0, q_{1}>0$. The $\sqrt{-\Theta_{i}}$ entering into (3.10) are

$$
\begin{gather*}
\sqrt{-\Theta_{1}}=-\left(\frac{2}{3}|p|+\frac{2}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}\right)^{1 / 2}, \quad \sqrt{-\Theta_{2}}=\left(\frac{2}{3}|p|-\frac{1}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}-\sqrt{-p_{1}} \sin \frac{\phi_{1}}{3}\right)^{1 / 2} \\
\sqrt{-\Theta_{3}}=\left(\frac{2}{3}|p|-\frac{1}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}+\sqrt{-p_{1}} \sin \frac{\phi_{1}}{3}\right)^{1 / 2} \tag{4.1}
\end{gather*}
$$

In what follows we enumerate the roots (3.10) corresponding to $D_{1}>0$ as $t_{3}, t_{4}, t_{5}, t_{6}$. Substituting (4.1) into (3.10) we see that

$$
\begin{equation*}
t_{6}>t_{5}>t_{9}>t_{4}, \quad t_{4}<0, \quad t_{5}>0, \quad t_{6}>0 \tag{4.2}
\end{equation*}
$$

while the sign of t_{3} may be different in different space-time regions. As $t_{4}<0$ it should be discarded. Then, equations

$$
\begin{equation*}
0<t_{3}<t, \quad t_{5}<t, \quad t_{6}<t \tag{4.3}
\end{equation*}
$$

combined with (3.14) define the space-time regions where the particular solution $t_{i}(i=3, \ldots, 6)$ existe.
The similar equations for $D_{1}>0, \quad q_{1}<0$ are:

$$
\begin{gather*}
\sqrt{-\Theta_{1}}=-\left(\frac{2}{3}|p|-\frac{2}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}\right)^{1 / 2}, \quad \sqrt{-\Theta_{2}}=\left(\frac{2}{3}|p|+\frac{1}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}-\sqrt{-p_{1}} \sin \frac{\phi_{1}}{3}\right)^{1 / 2}, \\
\sqrt{-\Theta_{3}}=\left(\frac{2}{3}|p|+\frac{1}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}+\sqrt{-p_{1}} \sin \frac{\phi_{1}}{3}\right)^{1 / 2} \tag{4.4}
\end{gather*}
$$

One gets from (3.10) that

$$
\begin{equation*}
t_{3}>t_{6}>t_{5}>t_{4}, \quad t_{3}>0, \quad t_{4}<0, \quad t_{6}>0 \tag{4.5}
\end{equation*}
$$

while the sign of t_{5} varies from one point to another. Again, the retarded solution t_{4} is not physically admissible. Thus, the conditions

$$
\begin{equation*}
t_{3}<t, \quad t_{6}<t, \quad 0<t_{5}<t \tag{4.6}
\end{equation*}
$$

combined with (3.16) define the space-time region where the particular solution exists. Deceleraied motion.
2) The second problem deals with the charged particle which deceleratea uniformly. The charge equation of motion is still given by (2.1), bui the retarded times t_{i} should be negative now. We consider the positive and negative observation times separately.
For $t>0, D_{1}<0$ the retarded time t_{2} is negative, while the sign of t_{1} changes from point to point. Thus, solution t_{2} exists everywhere, while t_{1} exists in those regions which meet the condition $t_{1}<0$.
It turns out that for $D_{1}>0, \quad q_{1}>0$ Eqs. (4.2) are still valid. As retarded times t_{5} and t_{6} are positive, they should be discarded. Further, the retarded solution t_{4} exists in the space regions where Eq.(3.14) is satisfied, while t_{3} exists in the regions where Eqs.(3.14) and $t_{3}<0$ are fulfilled.
For $D_{1}>0, \quad q_{1}<0$ Eqs.(4.5) are valid. The positivity of t_{3} and t_{6} implies that they should be discarded. The retarded solutions t_{4} and t_{5} exist in those space-time regions where Eqs. (3.16) (for t_{4}) and (3.16) and $t_{5}<0$ (for t_{5}) are fulfilled.
For $t<0$ the retarded time $t_{1}>0$ that is not physically acceptable. On the other hand, t_{2} contributes to those space-time-regions which meet conditions (3.9) and $t_{2}<t$.
For $t<0, \quad D_{1}>0, \quad q_{1}>0$ the $\sqrt{-\Theta_{i}}$ entering into (3.10) are given by

$$
\begin{gather*}
\sqrt{-\Theta_{1}}=\left(\frac{2}{3}|p|+\frac{2}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}\right)^{1 / 2}, \quad \sqrt{-\Theta_{2}}=\left(\frac{2}{3}|p|-\frac{1}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}-\sqrt{-p_{1}} \sin \frac{\phi_{1}}{3}\right)^{1 / 2} \\
\sqrt{-\Theta_{3}}=\left(\frac{2}{3}|p|-\frac{1}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}+\sqrt{-p_{1}} \sin \frac{\phi_{1}}{3}\right)^{1 / 2} \tag{4.7}
\end{gather*}
$$

Further, $t_{3}>t_{4}>t_{6}>t_{5}$. It turns out that $t_{3}>0, t_{5}<0, t_{6}<0$ while the sign of t_{4} changes from point to point. Thus, conditions for existence of these retarded solutions are

$$
\begin{equation*}
t_{5}<t, \quad t_{6}<t, \quad t_{4}<t \tag{4.8}
\end{equation*}
$$

These conditions should be supplemented by Eq.(3.14).
For $D_{1}>0, q_{1}<0$ one gets: $t_{3}>t_{6}>t_{5}>t_{4}$,

$$
\sqrt{-\Theta_{1}}=\left(\frac{2}{3}|p|-\frac{2}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}\right)^{1 / 2}, \quad \sqrt{-\Theta_{2}}=\left(\frac{2}{3}|p|+\frac{1}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}-\sqrt{-p_{1}} \sin \frac{\phi_{1}}{3}\right)^{1 / 2},
$$

$$
\begin{equation*}
\sqrt{-\Theta_{3}}=\left(\frac{2}{3}|p|+\frac{1}{3} \sqrt{-3 p_{1}} \cos \frac{\phi_{1}}{3}+\sqrt{-p_{1}} \sin \frac{\phi_{1}}{3}\right)^{1 / 2} \tag{4.9}
\end{equation*}
$$

Now $t_{3}>0, t_{4}<0, \quad t_{5}<0$ while the sign of t_{6} may vary. The conditions for the existence of these retarded solutions are (3.16) and

$$
\begin{equation*}
t_{4}<t, \quad t_{5}<t, \quad t_{6}<t \tag{4.10}
\end{equation*}
$$

5 Particular case

Before going to the numerical calculations it is instructive to consider a simple case corresponding to the observation point lying on the Z axis $(\rho=0)$. In this case

$$
\begin{equation*}
-\frac{D_{1}}{256}=\left[t^{2}-\left(z+\frac{1}{4}\right)^{2}\right]\left(t^{2}-z\right)^{2} \tag{5.1}
\end{equation*}
$$

The roots of Eq.(3.1) are given by

$$
\begin{gather*}
t_{1}=r_{1}-1 / 2, \quad t_{2}=r_{2}+1 / 2, \quad t_{3}=-\tau_{2}+1 / 2, \quad t_{4}=-r_{1}-1 / 2 \tag{5.2}\\
r_{1}=\sqrt{z+t+1 / 4}, \quad \tau_{2}=\sqrt{z-t+1 / 4}
\end{gather*}
$$

In what follows we need also the values of denominators $R_{\text {i }}$ entering into the definition of electromagnetic potentials Φ, \vec{A} :

$$
\begin{array}{ll}
r_{1}=2 \tau_{1}\left(t+1 / 2-r_{1}\right), & r_{2}=2 \tau_{2}\left(-t+1 / 2+\tau_{2}\right) \\
r_{3}=2 \tau_{2}\left(t-1 / 2+\tau_{2}\right), & r_{4}=-2 r_{1}\left(t+1 / 2+\tau_{2}\right) \tag{5.3}
\end{array}
$$

Accelerated motion.
For the first problem (uniform acceleration of the charged particle from the state of rest) the physical retarded times are (fig.1):
i) t_{1}.

This solution exists in the space-time region $-t<z<t^{2}$. It consists of three subregions. Subregion $t>1 / 8, \quad-t<z<t-1 / 4$ corresponds to $D_{1}<0$, while subregions $t<1 / 8,-t<$ $z<t^{2}$ and $t>1 / 8, \quad t-1 / 4<z<t^{2}$ correspond to $D_{1}>0$.
ii) t_{2}.

This solution exists in the $t>1 / 2, \quad t-1 / 4<z<t^{2}$ region and corresponds to $D_{1}>0$.
iii) t_{3}.

This solution exists in the regions $t<1 / 2, t^{2}<z<t$ and $t>1 / 2, t-1 / 4<z<t$ and corresponds to $D_{1}>0$.

Let the observer be placed at a particular point of the Z axis. We clarify now what he will see at different moments of time. It is convenient to relate the current time t not to the retarded time t_{r}, but to the particle position z_{r} at that moment of time ($z_{r}=t_{r}^{2}$).

Consider the particular point P lying on the negative Z semi-axis (fig.2). Up to the moment $t=-z$ the observer sees the field of the charge resting at the origin. At the moment $t=-z$ the shock wave arising from the beginning of the particle motion arrives at P. At later times the radiation arrives from the retarded particle positions z_{1} lying to the right of P.

Let the observation point P lie on the positive Z semi-axis in the interval $0<z<1 / 4$ (fig.3). Up to a moment $t=z$ the observer in P sees the electrostatic field of the charge resting at the origin. At the monent $t=z$ the bremsstrahlung shock wave from the origin reaches P . In
the time interval $z<t<\sqrt{t}$ the retarded solution is t_{3} which describes the radiation from the particle retarded positions lying in the interval $0<z_{+}<z$. At the moment $t=\sqrt{z}$ the charged particle reaches the observation point P. At that point R_{1} aud R_{3} defined by Eq.(5.3) vanish and the electromagnetic potentials are infinite. For time $t>\sqrt{z}$ the observer detects the radiation from the retarded positions of the particle lying at the right of P and corresponding to t_{1}

Let the observation point lie in the interval $1 / 4<z<1$ (fig.4). Up to a moment $t=z$ the observer sees the field of the charge at rest. At the moment $t=z$ the bremsstrahlung shock wave originating from the beginning of the charge motion reaches P. In the time interval $z<t<\sqrt{z}$ the observer sees the radiation from the particle retarded positions $\left(z_{3}\right)$ in the interval $0<z_{r}<(1-\sqrt{z})^{2}$. At the moment $t=\sqrt{z}$ the charged particle (or Cerenkov shock wave) reaches the observation point. Again, electromagnetic potentials are infinite at this point. After that ($\sqrt{z}<t<z+1 / 4$) the observer in P detects the radiation from three retarded positions of the particle. Two of them (z_{2} and z_{3}) he to the left of the observation point P and on the opposite sides of the point $z_{l}=1 / 4$ at which the particle velocity is equal to the light velocity in the medium. As time goes, these retarded radiation points approach z_{t}. At the moment $t=z+1 / 4$ they fuse at the point $z_{l}=1 / 4$ where particle velocity equals to c_{n}. It turns out (see (5.3)) that at this point R_{2} and R_{3} vanish while the electromagnetic potentials take the infinite values. The disappearance of the t_{2} and t_{3} solutions and the infinite values of electromagnetic potentials suggests that the observation point is reached by the shock wave originating from the point $z_{l}=1 / 4$ where the particle velocity was equal to c_{n}. The third of the mentioned solutions $\left(t_{1}\right)$ describes the radiation from the particle positions lying to the right of the observation point. For $t>z+1 / 4$ only this solution contributes to the observation point.

Let the observation point P hie in the region $z>1$ (fig.5). Up to a moment $t=\sqrt{z}$ the observer sees the electrostatic field of the charge in rest. At the moment $t=\sqrt{z}$ the charged particle (with the Mach cone accompanying it) arrives at P. The electromagnetic potentials are infinite at this moment. In the time interval $\sqrt{z}<t<z$ the observer detects the electrostatic field of the charge in rest and the radiation from two points lying to the left $\left(z_{2}\right)$ and the right $\left(z_{1}\right)$ of P . At the moment $t=z$ the bremsstrahlung shock wave from the origin reaches P . In the time interval $z<t<z+1 / 4$ there are three retarded solutions $\left(t_{1} ; t_{2}, t_{3}\right)$ which contribute to P . At the moment $t=z+1 / 4$ the retarded solutions t_{2} and t_{3} annihiliate each other at the point $z_{l}=1 / 4$ where the particle velocity is equal to c_{n}. This, as well as infinite values of the electromagnetic potentials, imply the existence of the shock wave originating from $z_{l}=1 / 4$. For $t>z+1 / 4$ only the radiation from t_{2} solution reaches P .

Decelerated motion.
In the second case (uniform deceleration of the charge up to a moment $t=0$ after which it rests at the origin) the allowable retarded solutions are (fig.6):
i) t_{4}.

This solution exists in the regions $t\left\langle-1 / 2, \quad z>t^{2}\right.$ and $t>-1 / 2, \quad z>-t-1 / 4$. In the first of them $D_{1}>0$; the second region contains two subregions $-1 / 2<t<0, \quad z>-t-1 / 4$ and $t>0, \quad z>t-1 / 4$ corresponding to $D_{1}>0$ and one subregion $t>0,-t-1 / 4<z<t-1 / 4$ corresponding to $D_{1}<0$.
ii) t_{3}.

This solution exists in regions $t<0, \quad z>t^{2}$ and $t>0, \quad z>t$ and corresponds to $D_{1}>0$. iii) t_{1}.

This solution is defined in the region $-1 / 2<t<0,-t-1 / 4<z<t^{2}$ where $D_{1}>0$ and in the region $t>0,-t-1 / 4<z<-t$ where $D_{1}<0$.

Let the observer be placed on the negative Z semi-axis (fig.7). Up to a moment $t=-z-1 / 4$
he does not obtain any information concerning the particle motion. At the moment $t=-z-1 / 4$ the shock wave originating from the particle overcoming the light velocity barrier (at $z_{l}=$ $1 / 4, t_{l}=-1 / 2$)) reaches the observation point P (the electromagnetic potentials are infinite at this point). In the time interval $-z-1 / 4<t<-z$ the observer detects the radiation from two retarded charge positions lying to the left $\left(z_{1}\right)$ and right $\left(z_{4}\right)$ of z. At the moment $t=-z$ the observer detects the shock wave arising from the termination of the particle motion. For $t>-z$ the observer sees the electrostatic field of the charge which rests at the origin and the radiation from the remote retarded positions z_{4} of the charge.

Let the observation point lie within the interval $0<z<1 / 4$ (fig.8). At the moment $t=-z-1 / 4$ the shock wave originating from the particle overcoming the light velocity barrier (at $z=z_{l}$) reaches the observer. Again, the electromagnetic potentials are infinite at this moment. In the time interval $-z-1 / 4<t<-\sqrt{z}$ the radiations from two retarded positions of the charge (z_{4} and z_{1}) arrive to P . They lie on different sides of z_{l}, to the right of the observation point z. As time goes, one of the radiating points $\left(z_{1}\right)$ approaches the origin, while the other (z_{4}) moves away from z. At the moment $t=-\sqrt{z}$ the electromagnetic potentials become infinite as the charged particle arrives at P . At this moment the t_{1} solution disappears, but, instead, t_{3} arises. In the time interval $-\sqrt{z}<t<z$ the observer sees the radiation from $i_{\text {wo }}$ points lying on different sides of him. At the moment $t=z$ one of the retarded positions of the charge (z_{3}) comes to the origin and the corresponding bremsstrahlung shock wave reaches the observer. For times $t>z$ the observer sees the electrostatic field of the charge at rest and the radiation field from the remote retarded positions z_{4} of the charge.
Let the observer be placed at the point P with $z>1 / 4$ (fig.9). There is no field in P up to a moment $t=\sqrt{z}$. At this moment the charge arrives at P . After that the observer sees the radiation field from two retarded positions lying on different sides of P. As time goes, one of the retarded positions $\left(z_{3}\right)$ approaches the origin, while the other $\left(z_{4}\right)$ goes away. At the moment $=z$ the observer sees that charge reaches the origin and detects the shock wave associated with the termination of the particle motion. After that moment the observer detects the electrostatic field of the charge which rests at the origin and the radiation field from one remote retarded position of the charge.
Concluding this section we note the existence of two types of the shock waves. The brems strahlung shock waves associated with the beginning or termination of the charge motion correspond to finite jumps of electromagnetic potentials. Therefore, the field strengths have the δ-type singularities. On the other hand, the Cerenkov shock wave and the shock wave associated with the charged particle overcoming of light velocity barrier correspond to infinite jumps of electromagnetic potentials (due to the vanishing of denominators R_{i}). Thus, they carry a much stronger singularity.

1 Numerical results

We consider the typical case corresponding to $|t|=2$. The space regions where $D_{1}>0$ and $D_{1}<0$ are shown in fig. 10. There are no physical solutions outside the surface $C_{L}^{(2)}$. Accelerated motion.
For the first of the treated problems (uniform acceleration of the charge which initially rests at the origin) all the retarded times t_{i} and observation time t should be positive (the negative t corresponds to the electrostatic field of the charge at rest). As t_{4} is negative (see sect. 4) it should be discarded. The calculations show that the retarded solution t_{1} is positive only inside the sphere C_{0} of the radius $r=c_{n} t$ (fig.11). In that region $0<t_{1}<t$. The spherical surface
C_{0} corresponds to the bremsstrablung shock wave originating from the beginning of the charge motion. The pointa lying inside C_{0} describe the radiation from the retarded positions of the charge lying on the positive Z semi-axis. Inside the conic surface $C_{M}^{(2)}$ lying on the right of $z=4$ (see fig. 10) the following conditions are satisfied

$$
\begin{equation*}
t_{3}<0, \quad t_{4}<0, \quad t_{5}>t, \quad t_{6}>t, \tag{6.1}
\end{equation*}
$$

which is not acceptable from the physical point of view (as t_{5} and t_{6} should not exceed the observation time t). The physical region of space where $D_{1}>0$ is bounded by the conic surface $C_{M}^{(1)}$ and by the surface $C_{L}^{(1)}$. The Mach cone $C_{M}^{(1)}$ describes the Cerenkov shock wave, while the surface $C_{L}^{(1)}$ closing the Mach cone describes the shock wave originating from the charged particle overcoming the light velocily. With a high accuracy the $C_{L}^{(1)}$ surface is described by the equation $\rho^{2}+(z-1 / 4)^{2}=(t-1 / 2)^{2}$ of the spherical wave emitted from the point $z=1 / 4, \quad t=1 / 2$ at which the charge velocity coincides with the light velocity in the medium c_{n}. The region $D_{1}>0$ lying to the left of $z=4$ consists of two subregions (fig.11). In the first of them lying to the right of C_{0} there are two physical solutions t_{5} and t_{6}. The retarded solution t_{3} is negative there and, thus, has no physical meaning. In the second subregion lying to the left of C_{0} there are three physical solutions t_{3}, t_{5} and t_{6}. The calculations show that the retarded solution t_{3} continuously goes into t_{1} when one intersects the $D_{1}=0$ surface. The second subregion in turn consists of two subregions corresponding to $q_{1}<0$ and $q_{1}>0$ (fig.12). On the boundary $q_{1}=0$ the following equations are salisfied:

$$
t_{3}\left(q_{1}<0\right)=t_{6}\left(q_{1}>0\right), \quad t_{5}\left(q_{1}<0\right)=t_{3}\left(q_{1}>0\right), \quad t_{6}\left(q_{1}<0\right)=t_{5}\left(q_{1}>0\right)
$$

The resulting configuration of the shock waves is shown in fig.13. On the internal sides of the surfaces $C_{L}^{(1)}$ and $C_{M}^{(1)}$ (where $D_{1}>0$) electromagnetic potentials acquire infinite values (as R_{5} and R_{6} vanish there). On the external side of $C_{M}^{(1)}$ lying outside of C_{0} the electromagnetic potentials are zero (as there are no solutions there). On the external sides of $C_{L}^{(1)}$ and of the part of the $C_{M}^{(1)}$ surface lying inside C_{0} the electromagnetic potentials have finite values. With a high accuracy the surface $C_{L}^{(1)}$ is described by the equation $\rho^{2}+(z-1 / 4)^{2}=(t-1 / 2)^{2}$ of the spherical wave C (shown by short-dash curve in fig. 13) emitted from the point $z=1 / 4, \quad \rho=0, \quad t=1 / 2$ in which the charge velocity coincides with the light velocity c_{n} in the medium.

Decelerated motion.
Now we turn to the second problem (uniform deceleration of the charged particle along the positive z semi-axis up to a moment $t=0$ after which it rests at the origin). In this case only negative retarded times t_{i} have a physical meaning.
For $t>0$, in the region where $D_{1}<0$ the retarded time t_{2} is everywhere less than zero, while t_{1} is negative only outside the circle C_{0} (fig.14). In the region where $D_{1}>0$ the retarded solutions t_{5} and t_{6} are greater than zero and, thus, are not physically admissible. As $t_{3}>0, t_{4}<0$ in the region $D_{1}>0$ bounded by the sphere C_{0} and the surface $C_{L}^{(1)}$, so only t_{4} has physical meaning there. It turns out that t_{4} continuously passes into t_{2} on the surface $C_{L}^{(1)}$ and on the part of the surface $C_{M}^{(1)}$ lying inside C_{0}. In the region $D_{1}>0$ lying outside C_{0} both t_{3} and t_{4} are negative. The calculations show that t_{3} and t_{4} pass continuously into t_{1} and t_{2}, resp., on the surfaces $C_{M}^{(1)}$ and $C_{M}^{(2)}$ lying outside C_{0}. Thus, surfaces $C_{M}^{(1)}$ and $C_{M}^{(2)}$ are pure fictitious for the treated $t>0, t^{\prime}<0$ case. Further, the retarded solutions t_{1} and t_{3} tend to the amme finite values, while the denominators R_{1} and R_{2} tend to zero when one approaches the internal side of $C_{L}^{(2)}$ surface (where $D_{1}<0$). The electromagnetic potentials vanish outside of $C_{L}^{(2)}$ (as no solutions exist there) and acquire infinite values on the internal part of $C_{L}(2)$ (due to vanishing
the denominators R_{1} and R_{2} there). Therefore, the surface $C_{L}(2)$ represents the shock wave The head part of this blunt shock wave with a high accuracy is approxinated by the sphere $\rho^{2}+(z-1 / 4)^{2}=(t+1 / 2)^{2}$ (shown by the short-dash curve in fig.14) describing the spherical wave emitted from the point $z=1 / 4$ at the moment $t=-1 / 2$ when the charge velocity coincides with c_{n}. As a result, for $t>0, t^{\prime}<0$ one has the shock wave $C_{L}^{(2)}$ and the bremsstrahlung shock wave C_{0} arising from the termination of the particle motion. The retarded solution t_{2} exists everywhere inside $C_{L}^{(2)}$, while t_{1} exists between C_{0} and $C_{L}^{(2)}$ (fig. 14).

Now let the observation time t be less than, zero for the decelerated motion. Then all t_{1} should be less than t. In the region $D_{1}<0$ the retarded solution $t_{1}>0$, which is not physically acceptable. The retarded solution t_{2} should satisfy the condition $t_{2}<t$. As quantities a and b entering into the definition of t_{2} (see Eq.(3.10)) do not depend on the sign of t, the equation $t_{2}<t$ is equivalent to

$$
\begin{equation*}
-\frac{|t|}{\sqrt{a^{2}+b^{2}}}+\frac{1}{\sqrt{2}}\left(a+\sqrt{a^{2}+b^{2}}\right)^{1 / 2}>|t| \tag{6.2}
\end{equation*}
$$

On the other band, for the accelerated motion $\left(t>0, \quad t_{1}>0\right)$ the condition $t_{1}<t$ written in an extended form is

$$
\begin{equation*}
-\frac{|t|}{\sqrt{a^{2}+b^{2}}}+\frac{1}{\sqrt{2}}\left(a+\sqrt{a^{2}+b^{2}}\right)^{1 / 2}<|t| \tag{6.3}
\end{equation*}
$$

As (6.3) is satisfied everywhere in the $D_{1}<0$ region, the condition (6.2) cannot be satisfied and the retarded solution t_{2} has no physical meaning.
Turning to the region where $D_{1}>0$, one easily obtains from (3.10),(4.1) and (4.7) that the following equations are satisfied:

$$
\begin{gather*}
t_{4}(t<0)=-t_{3}(t>0), \quad t_{5}(t<0)=-t_{4}(t>0), \quad t_{5}(t<0)=-t_{6}(t>0), \\
 \tag{5.5}\\
t_{6}(t<0)=-t_{3}(t>0) .
\end{gather*}
$$

Consider the solutions t_{3} and t_{4}. Taking into account the negativity of t one may rewrite conditions $t_{3}<t$ and $t_{4}<t$ in the form $t_{3}(t<0)<-|t|, \quad t_{4}(t<0)<-|t|$. Or, using (6.4) one gets:

$$
\begin{equation*}
t_{4}(t>0)>|t|, \quad t_{3}(t>0)>|t| \tag{6.5}
\end{equation*}
$$

But we have seen earlier that for $t>0$ the retarded time t_{4} is everywhere negative, while t_{3} is positive only inside the region bounded by the sphere C_{0} and the surfaces $C_{L}^{(1)}$ and $C_{\mathcal{M}}^{(1)}$ lying inside C_{0}. In that region t_{3} is less than t, which disagrees with (6.5). This in turn means that for $t<0, t_{3}<0, t_{4}<0$ the conditions $t_{3}<t, t_{4}<t$ cannot be satisfied and the retarded solutions t_{3} and t_{4} have no physical meaning.
Further, for $t<0, t_{5}<0, t_{6}<0$ the conditions $t_{5}<t$ and $t_{6}<t$ can be rewritten in the form: $\left|t_{5}(t<0)\right|>|t|, \quad\left|t_{6}(t<0)\right|>|t|$. Using (6.4) one gets: $t_{5}(t>0)>|t|, \quad t_{6}(t>0)>|t|$. But these inequalities are fulfiled only in the part of $D_{1}>0$ region bounded by the $C_{\mathcal{M}}^{(2)}$ surface (see Eq.(5.1) and Fig. 10). As a result, for $t<0, t^{\prime}<0$ the physical solutions t_{5} and t_{6} exist ouly inside the Mach cone $C_{M}^{(2)}\left(\right.$ fig.15). On its internal boundary (where $D_{1}>0$) the denonunators R_{5} and R_{5} are equal to sero and electromagnetic potentials acquire infinite values. On the external boundary (where $D_{1}<0$) the electromagnetic potentials are zero (as no solutions exist there). Thus, for the case of decelerated motion and the observation time $t=-2$ the only physical solutions are t_{5} and t_{6} which are contained inside the Mach cone C_{M}^{27} (fig.15).

It remains now to relate the simplified solutions found in sect. 5 to the complete solutions found in this section. For the case of.accelerated motion the t_{1} retarded solution of this section (see fig. 11) on the interval of Z axis $-t<z<t-1 / 4$ coincides with the t_{1} solution shown
in fig.1; on the part of the Z axis lying between the surfaces $C_{L}^{(1)}$ and $q_{1}=0$ (Fig. 12) the solutions t_{3}, t_{5}, t_{6} of fig. 11 coincide with the retarded solutions t_{1}, t_{3}, t_{2} of fig. 1 ; on the part of Z axis lying to the right of $q_{1}=0$ surface the retarded solutions t_{3}, t_{6}, t_{5} of fig. 11 coincide with t_{3}, t_{1}, t_{2} of fig. 1 .
For the decelerated motion and $t>0$ the retarded solutions t_{1} and t_{2} shown in fig. 14 on the Z interval $-t<z<t-1 / 4$ coincide, respectively, with the t_{1} and t_{4} solutions presented in fig. 6 ; the t_{4} and t_{3} solutions shown in fig. 14 on the part of Z axis lying to the right of $C_{L}(1)$ surface coincide, respectively, with the t_{4} and t_{3} solutions (eee fig. 6).
For the decelerated motion and $t<0$ the retarded solutions t_{6} and t_{5} (see fig.15) on the accessible part of the Z axis $z>t^{2}$ coincide, respectively, with the simplified solutions t_{3} and t_{4} shown in fig. 6.

7 Determination of the shock waves positions

So far, we presented the results of numerical calculations. However, a posteriori the boundaries corresponding to the shock waves may be obtained as follows (this method has been extensively used by Schott [5]). We seek the surfaces on which the denominators R_{i} vanish. The equation $R_{i}=0$ may be rewritten in the form:

$$
\begin{equation*}
t_{i}^{3}-(z+1 / 2) t_{i}+t / 2=0 \tag{7.1}
\end{equation*}
$$

The form of solution depends on the sign of discriminant

$$
D=4(z+1 / 2)^{3}-\frac{27}{4} t^{2}
$$

For $z<z_{c}=-1 / 2+3(t / 4)^{2 / 3}$ (in this case $D<0$) the solution is

$$
\begin{equation*}
t_{0}=-\frac{1}{4^{2 / 3}}\left\{t-\left[t^{2}-\frac{16}{27}(z+1 / 2)^{3}\right]^{1 / 2}\right\}^{1 / 3}-\frac{1}{4^{1 / 3}}\left\{t+\left[t^{2}-\frac{16}{27}(z+1 / 2)^{3}\right]^{1 / 2}\right\}^{1 / 3} \tag{7.2}
\end{equation*}
$$

Obviously, $t_{0}<0$ for $t>0$ and $t_{0}>0$ for $t<0$. For $z>z_{c}$ (or $D>0$) one has

$$
\begin{gather*}
t_{1}=\mp \frac{2}{\sqrt{3}} \sqrt{z+1 / 2} \cos \frac{\phi}{3}, \quad t_{2}= \pm \sqrt{z+1 / 2}\left(\frac{1}{\sqrt{3}} \cos \frac{\phi}{3}+\sin \frac{\phi}{3}\right), \\
t_{3}= \pm \sqrt{z+1 / 2}\left(\frac{1}{\sqrt{3}} \cos \frac{\phi}{3}-\sin \frac{\phi}{3}\right) \tag{7.3}
\end{gather*}
$$

Here $\cos \phi=\frac{\sqrt{27}}{4}|t||z+1 / 2|^{-3 / 2}, \quad 0<\phi<\pi / 2$. The upper and lower signs in (7.3) correspond to $t>0$ and $t<0$, resp. Obviously, $t_{1}<0, t_{2}>t_{3}>0$ for $t>0$ and $t_{1}>0, t_{2}<t_{3}<0$ for $t<0$.
Combining (7.1) with (4.1) one gets the following equation for ρ^{2} :

$$
\begin{equation*}
\rho_{i}^{2}=t_{i}^{2}(z+1 / 2)-\frac{3}{2} t t_{i}+t^{2}-z^{2} \tag{7.4}
\end{equation*}
$$

This equation defiues the surfaces on which R_{i} vanish.
Accelerated motion.
Consider the first problem (uniform acceleration along the positive Z semi-axis beginning from the origin at the $t=0$ moment). Then $t>t_{i}>0$. It follows from (7.2) and (7.3) that only t_{2}
and t_{3} have physical meaning. Substituting t_{2} and t_{3} into (7.4) we easily check that ρ_{2} and ρ_{3} describe $C_{M}^{(1)}$ and $C_{L}^{(1)}$ surfaces. Thus, we obtain the physical picture shown in figs. $18-18$ where the positions of Mach cones consisting of the Cerenkov shock waves $C_{M}^{(1)}$ and of the $C_{L}^{(1)}$ surfaces closing Mach cones and representing shock waves arising from the charge overcoming of light velocity barrier are presented for different moments of the observation time t. The dimensions of the Mach cones strongly depend on the observation time t. They continuously tend to zero as $t \rightarrow 1 / 2$.

Decelerated motion.
For the case of decelerated motion and the positive observation time ($t>0$) the physical solutions are t_{0} and t_{1} (as only they are negative). Substituting them into (7.4) we get ρ_{2} and ρ_{3} describing the parts of the $C_{L}^{(2)}$ surface lying on the left and right of the $z=z_{c}$ plane,resp. For the same decelerated motion and $t<0$ the physical meaning have t_{2} and t_{3} (as only they are negative). For the treated case ($t=-2$) the function $p^{2}\left(t_{3}\right)<0$, which is not accessible. Further, $t_{2}>t$ for $z<t^{2}=4$, which is also not permissible (as only $t_{i}<t$ is allowable). For $z>t^{2}$ the substitution of t_{2} into (7.4) leads to the description of the $C_{M}^{(2)}$ Mach cone shown in fig. 15. The results of calculations for different times are shown in fig. 19. We see that the sharp Mach cone presented in the right part of this figure ($t=-2, v=4 c_{n}$) continuously transforms into the blunt shock wave $(t=2)$ shown in the left part of the same figure.

8 Discussion

Consider at first the accelerated motion of the charge beginning from the origin at the moment $t=0$. All the Mach cones shown in figs. 16-18 exist only for $t>1 / 2, z>1 / 4$, This means the observer being placed in the space region $z<1 / 4$ will not see either Cerenkov shock wave or that of associated with the overcoming of the light velocity barrier. Only the shock wave C_{0} (not shown in figs. 16-19) which is due to the beginning of the charge motion reaches him at the moment $t=c_{n} t$. Moreover, the detection of the aforementioned shock waves $\left(C_{L}^{(1)}\right.$ and $\left.C_{M}(1)\right)$ in the $z>0$ region is possible if the distance ρ from the Z axis satisfies the equation

$$
\begin{equation*}
\rho<\rho_{c}, \quad \rho_{c}=\frac{4}{3 \sqrt{3}}\left(z-\frac{1}{4}\right)^{3 / 3}, \quad z>\frac{1}{4} \tag{8.1}
\end{equation*}
$$

Inside this region the observer sees at first the Cerenkov shock wave $C_{M}^{(1)}$. Later he detects the bremsstrahlung shock wave C_{0} (not shown in figs.16-19) and the shock wave $C_{L}^{(1)}$ originating from the overcoming the light velocity barrier. It is remarkable that the surface of the $C_{t}^{(1)}$ shock wave with a high accuracy coincides with the surface of the sphere $\rho^{2}+(z-1 / 4)^{2}=c_{n}^{2}(t-1 / 2)^{2}$ describing the spherical wave emitted by the charge from the point $z=1 / 4$ at the mornent $t=1 / 2$ when the charge velocity is equal to c_{n}. These spheres are shown by the short-dash curves in figs. 16-18. Outside the region defined by (8.1) the observer bees only the bremsstrahlung shock wave C_{0} which reaches him at the moment $c_{n} t=r$.
Further, for $t<1 / 2$ only one retarded solution $\left(t_{1}\right)$ exists. It is confined to the surface C_{0} of the radius $r=c_{n}$. Therefore, the observer will not detect either the Cerenkov shock wave or that of originating from the overcoming of light velocity barrier. The dimensions of the Mach cones shown in figs. 16 -18 are zero for $t=1 / 2$ and continuonsly rise with time for $t>1 / 2$. The physical reason for this behaviour is that the $C_{L}^{(1)}$ shock wave closing the Mach cone propagates with the light velocity c_{n}, while the head part of the Mach cone (i.e., the Cerenkov shock wave $C_{d s}^{(1)}$) attached to the charged particle expands with the velocity $v>c_{n}$.

In the gasdynamics the existence of at least two shock waves attached to the finite body moving with a supersonic velocity was proved on the very general grounds by Landau and Lifahitz ($[10]$, Chapter 13). In the present context we associate them with $C_{L}^{(1)}$ and $C_{M}^{(1)}$.
For the decelerated motion (see fig. 19) the observer in the space region $z<0$ detects the blunt shock wave $C_{t}^{(2)}$ first and the bremsstrahlung shock wave C_{0} later. It turns out that the head part of this blunt wave with a high accuracy coincides with the sphere $\rho^{2}+(z-1 / 4)^{2}=(t+1 / 2)^{2}$ describing the spherical wave emitted from the point $z=1 / 4$ at the moment $t=-1 / 2$ when the charge velocity coincides with c_{n}. The observer being placed in the $z>1 / 2$ region detects only Cerenkov shock wave $C_{M}^{(2)}$.

In order not to hamper the exposition, we did not mention, in this eection, on the continuous radiation which reaches the observer between the arrival of two shock waves or after the arrival of the last shock wave. It is easily restored either from the simplified case considered in sect. 5 or from figs. 11-15.
However, some precaution is needed. For the motion law (2.4) the charge velocity may exceed c, the velocity of light in vacuum. Consider first the accelerated motion. The external 4 -force maintaining the accelerated motion (2.4) becomes infinite (due to the γ-factor ($\gamma=\left(1-\beta^{2}\right)^{-1 / 2}$) in it). Therefore, this motion cannot be realized for v close to c. In any case, the effects arising from the proximity of charge velocity to c do not produce any discontinuities and will be observed after the arrival of the last of the shock waves considered earlier.
The situation is slightly more complicated for the decelerated inotion. To escape the troubles with $v>c$ one may imagine that the charged particle is at rest at the point $z=-z_{0}$ up to a moment $t=-t_{0}$, after which it instantly acquires the velocity $c_{n}<v<c$. After the moment $t=-t_{0}$ the charge moves towards the origin according a law similar to (2.4). The radiation field arising from such a velocity jump was studied in [9]. It turns out that the arising physical picture insignificantly differs from that considered in previous sections. Let the observation point P lie in the negative Z semi-space. Then, after the arrival of the $C_{L}^{(2)}$ shock wave, the shock wave C_{1} associated with the beginning of the charge motion (at $t=-t_{0}$) arrives at P. For the observation point P in the positive Z semi-space (more accurately, for $z>1 / 4$) the shock wave C_{1} reaches P after the arrival of the Cerenkov shock wave $C_{M}^{(2)}$. In both cases the C_{1} shock wave closes either the blunt shock wave $C_{L}^{(7)}$ or the Mach cone $C_{M}^{(2)}$ (likewise the shock wave $C_{L}^{(1)}$ shown in figs. $10-14$ closes the Mach cone $C_{M}^{(1)}$). The singularity of the C_{1} shock wave is the same as the singularity of C_{0} shock wave and, therefore, is weaker than the singularity either of C_{M} or C_{L}.

So far we have considered the physical effects arising when the velocity of the point-like charged particle continuously passes through the medium light-velocity barrier. The electromagnetic fields of the uniformly moving charge are well-known both for $v>c_{n}$ and $v<c_{n}$ [5,7-9]. But what happens if the particle velocity exactly coincides with the light velocity in the medium c_{n} ? (This question was posed by Prof. Tyaphin). For this case the equation defining t^{\prime} is

$$
c_{n}\left(t-t^{\prime}\right)=\left[\rho^{2}+\left(z-c_{n} t^{\prime}\right)^{2}\right]^{1 / 2}
$$

Solving it relative to t^{\prime} one gets

$$
c_{n} t^{\prime}=\frac{1}{2} \frac{r^{2}-c_{n}^{2} t^{2}}{z-c_{n} t}
$$

Fig. 1. The space-time distribution of the retarded solutions for the particle in accelerated motion and the observation point lying on the Z axis.

Fig. 2, 3. The retarded positions of the radiating uniformly accelerated charge as functions of time for the observation point lying on the motion axis at $z=-2$ (Fig. 2) and $z=0.16$ (Fig. 3).

Fig. 4,5. Same as Fig. 2, but for $z=0.64$ (Fig. 4) and for $z=1.44$ (Fig. 5).

Fig. 6. Same as Fig. 1, but for the decelerated motion.

Fig. 7, 8, 9. The retarded positions of the radiating uniformly decelerated charge as functions of time for the observation points on the motion axis at $z=-0.5$ (Fig. 7), $z=1 / 8$ (Fig. 8), and $z=1$ (Fig.9).

Fig. 10. The space distribution of $D_{1}>0$ and $D_{1}<0$ regions and the shock waves positions for $|t|=2$.

Fig. 11. The space distribution of the retarded solutions and the shock waves positions for the accelerated motion at $t=2$. Here C_{0} denotes the shock wave assosiated with the beginning of the charge motion, $C_{M}(1)$ denotes the C Cerenkov shock wave, $C_{L}^{(1)}$ denotes the shock wave originating from the charge overcoming of the light velocity inside the medium.

Fig. 12. The magnified representation of Fig. 11.

Fig. 13. The distribution of the shock waves for the uniformly accelerated clarge for $t=2$.

Fig. 14. The distribution of the shock waves for the uniformly decelerated charge for $t=2$.

Fig. 15. Same as Fig. 14, but for $t=-2$.

Fig.16,17: The positions of the Čerenkov shock wave $C_{M}^{(1)}$ and the shock wave $C_{L}^{(1)}$ arising from the charge overcoming of the light velocity barrier for the accelerated charge are shown for the moment $t=0.6$ (Fig. 16) and for $t=0.75$ (Fig. 17). Short dash curve C represents the spherical wave emitted from the point $z=1 / 4$ at the moment $t=1 / 2$ when the accelerated charged particle overcomes the light velocity barrier.

Fig. 18. Same as Fig. 16, but for $t=1,1.5$ and $t=2$.

Fig.19: The continuous transformation of the Cerenkov shock wave shown in the right of figure into the blunt shock wave shown in its left part for the decelerated motion. The numbers $1-9$ refer to the moments of time $\boldsymbol{t}=-2 ;-1.5 ;-1 ;-0.5 ; 0 ; 0.5 ; 1 ; 1.5$ and 2 , resp. Short-dash curves represent the spherical waves emitted from the point $z=1 / 4$ at the moment $t=-1 / 2$ when the decelerated charged particle overcomes the light velocity barrier.

The nonvanishing components of the electromagnetic potentials are equal to

$$
\Phi=\frac{e \Theta\left(c_{n} t-z\right)}{\epsilon\left(c_{n} t-z\right)}, \quad A_{z}=\frac{e c_{n} \mu \Theta\left(c_{n} t-z\right)}{c\left(c_{n} t-z\right)}
$$

As \vec{A} and Φ do not depend on the cylindrical coordinates ρ and ϕ, so $\vec{B}=\vec{H}=E_{\rho}=E_{\phi}=0$ and

$$
\begin{gathered}
E_{s}=-\frac{\partial \Phi}{\partial z}-\frac{1}{c} \frac{\partial A_{s}}{\partial t}, \\
\frac{\partial \Phi}{\partial z}=-\frac{e \delta\left(c_{n} t-z\right)}{\epsilon\left(c_{n} t-z\right)}+\frac{e \Theta\left(c_{n} t-z\right)}{\epsilon\left(c_{n} t-z\right)^{2}}, \quad \frac{1}{c} \frac{\partial A_{s}}{\partial t}=\frac{e \delta\left(c_{n} t-z\right)}{\epsilon\left(c_{n} t-z\right)}-\frac{e \Theta\left(c_{n} t-z\right)}{\epsilon\left(c_{n} t-z\right)^{2}}
\end{gathered}
$$

It turus out that \vec{E} and \vec{H} vanish everywhere except, possibly, the plane $z=c_{n} t$. In it, E_{z} reduces to the difference of two infinities and the final answer remains to be undetermined. However, the integral of \vec{E} taken over an arbitrary closed surface surrounding the charge should be equal to $4 \pi e$. As \vec{E} is entirely confined to the plane $z=c_{n} t$, it should be infinite on this plane (to guarantee the finiteness of the above integral). As a result; the electromagnetic field of the particle moving with the velocity coinciding with the light velocity in the medium differs from zero only on the plane normal to the axis of motion and passing through the charge itself. The same ambiguity anises if one takes the explicit formulae describing the charge motion with $v>c_{n}$ (see e.g., [9]) and will tend $v \rightarrow c_{n}$ in them.
We observe that for $v=c_{n}$ the shock wave coincides with the $z=c_{n} t$ plane, i.e., it has an infinite extension. The same effect takes place in gasdynamics when the velocity of the body coincides with the velocity of sound ([10], Chapter 12).

9 Conclusion

Thus, we confirm the qualitative predictions of refs. [2,3] concerning the existence of the shock waves associated with the charge overcoming the light velocity barricr (inside the medium). It would be interesting to observe these shock waves experimentally.

We would like to thank Prof. Tyapkin A.A. for the fruitful discussions and for attraction of our attention to ref. [3].

References

1. I.M. Frank, Vavilov-Cerenkov Radiation. Theoretical Aspects. (Moscow, Nauka, 1988).
2. A.A.Tyapkin, JINR Rapid Communications, No 3, 26-31, (1983).
3. V.P.Zrelov, J.Ruzicka and A.A. Tyapkin, Pre-Cerenkov Radiation as Manifestation of the "Light Barrier", to be published in the Collection of Articles dedicated to P.A. Cerenkov (Nauka, Moscow, 1997), in Russian.
4. V.P.Zrelov and J.Ruzicka, Chech. Journal of Physics B, 39368 (1989);
L.Krupa, J.Ruzicka and V.P.Zrelov, JINR Preprint P2-95-281, Dubna (1995).
5. G.A. Schott, Electromagnetic Radiation (Cambridge, University Press, 1912).
6. B.L. Van der Waerden, Algebra, vol.1. (Springer-Verlag, Berlin, Heidelberg,

New York, 1971)
7. O. Heaviside, Electromagnetic Theory, v. 3 (London, The Electrician, 1912).
8. A.Sommerfeld, Gotting. Nachricht., 1905, 201.
9. G.N.Afanasiev, Kh.Beshtoev and Yu.P. Stepanovsky, Helv. Pliys. Acta, 69, 111 (1996).
10. L.D.Landau and E.M.Lifshitz, Fluid Mechanics (Massachusetts, Addison-Wesley, Reading, 1962).

