


1 Introduction

Recently, a manifestly N = 2 supersymmetric formulation of the Nonlin-

- ear Schrodinger (NLS) hierarchy (see, e.g., [1] and references therein) has
" been constructed [2, 3]. The method is based on the super-Hamiltonian
e formalism, sufficiently cumbersome for some concrete calculations. Quite
" recently, the advantage of an alternative approach to the theory of su-

persymmetric integrable hierarchies has been demonstrated in [4], where

' the formalism of integrable mappings [5, 6] was applied to the problem of

~ constructing hierarchies of (1 -+ 2)-dimensional integrable systems in (2|2)

- - .superspace. In [4],a few two-dimensional superintegrable mappings were -

“ proposed. It would be interesting to find some new examples manifesting
- -.the benefit of using supersymmetric mappings.

" The goal of the present Letter is to present the results of Refs [1 2 3]
~ (including the derivation of some new results) as a direct corolla.ry to the
existence of a new integrable N = 2 supersymmetric mapping (we also'
call it a substitution) acting in (1|2) superspace. This mapping relates two
. pairs of chiral-antichiral fermionic superfields and, in the bosonic limit, it
is equivalent to the one-dimensional Toda mapping. Taking into account
that the Toda-mapping is responsible for the existence and properties of the
‘bosonic NLS hlera.rchy, we call our supersymmetrlc mapping Fermi- Toda
(f-Toda), reflecting the existence of the fermionic fields in its background.
However, this name may be considered to have a deeper foundation if ore

R ~ remembers that Fermi was one of the authors of 7], where equations of a

; nonlinear chain were applied for the first time to the solution of the physical
" problem of establishing the heat equilibrium in a short-range interacting
dynamic system. »

2 N=2 supérsymmetric f-Toda ~vmappiﬁng}

In this section, we introduce the f-Toda mapping and show its integrability.
We work in (1|2) superspace with one bosonic z and two fermionic 6,8
. coordinates and use standard representation for the N = 2 supersymmetric
fermionic covariant derivatives
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D*=(D)*=0, {D,D}= —% = -9. \ (2.1)

Let us introduce a pair of chiral and antichiral fermionic superfields

f(z,0 9) and f(z,0 9) respectlvely,
Df=D 7 - (2:2)
and the following relationli ’ ’ 4
1 €& e T - B
LIT-m=m@f0hy, @)
which is the definition of the mapping or the rule determining the corre-

spondence between two 1n1t1al functions, f and f , and two final ones, f
—

_-)
and f The action of the inverse transformation is denoted by f and f,
and the corresponding mapping takes the form

307 —??)=(ln(ﬁf-0?‘))'. e

- The notatlon f ( f ) means that the index of variable f is shifted by +1 '

(-1) (e-g., f,, = fas1)- Relations (2.3) and (2.4) fix only the scalmg
_dimension of-the product [ff] = emn~.

~We would like to remark that the mapping (2. 3) is not algebralcally

solvable with respect to-the superfields f and f,or f and f in contrast to
its bosonic 11m1t2~the Toda chain—where the bosonic components of the
superfields f and f can be expressed pure algebrancally in terms of their

counterparts belonging to the superfields f and f and vice versa.

~ Substitution: (2.3) possesses the inner automorphism o with the prop- S

erties

’ GTGV-I = jf_a' a?a_l = f) a‘f_o_l = 71

oDo ' =D,

[T

- ofot =

LThe sign ' means the derivative with respect to z.

2Let us remember that in the bosonic limit, all fermionic components must be set

equal to zero.

oDo~' =D, @5

which will be useful in what follows. The action of o on-the covariant
derivatives D and D can be induced by the following transformation of
the (1]|2) superspace coordinates

czo =z, oo '=0, olo™'=0. . (26)

To establish the connection of the mapping (2.3) with the theory of
integrable systems, one can consider the general representatlon for an
evolution-type system '

af

¥ P TDADT, B

5[ = F(f?faf liflana Df)’ (27)
with the addltlonal requirement of its invariance with.respect to the map-
ping. The system (2.7) is invariant with respect to the transformation (2.3)
if the functions ' and F are subjected to a set of constraints called the
symmetry equations of the mapping [5, 6]. In other words, the symmetry
equation may be treated as the condition ensuring the invariance of the
evolution-type system (2.7) with respect to the mapping (2.3).. It‘;appears

.that it strictly determines some class of partial solutions corresponding to

some hierarchy of integrable systems. In what. follows, we show ‘that the
symmetry equation of:the mapping (2.3) does extract the N =2 super—NLS
hierarchy of integrable equations (2, 3]

The symmetry equation for a given mapping can be obtained by tak-
ing its derivative with respect to an arbitrary parameter and denoting the
derivatives of the independent functions involved in a substitution by cor-
respondingly new symbols [5 6] In the case-under consideration, these
symbols are F' = f and F = f, which are the chiral and antichiral super-
fields, respectively, ~

- DF=DT=0, . (2.8)

as f and f (2.2). Using this method, one can obtain a symmietry equation

‘corresponding to the substitution (2.3) in the following form:

1,5 <2 S 1)11
.§(Ff+fF—‘Ff“fI')—(Dcf+‘D_f“) (2.9)

. It is obvious that (2.9) possesses the trivial partial solution FF = '\ F =
f . To understand this, it is sufficient to choose the bosonic coordinate z as



the parameter of differentiation. The next obvious but nontrivial solution
s ‘ R o BN ' ,
F=/ T=-7. e (2.10)

In Refs. [5, 6], a mapping was called integrable if its symmetry equation
possessed at least one nontrivial solution. Thus, in this sense, the f-Toda
substitution (2.3) is integrable.

To conclude this section, we state the followmg proposition.

The f-Toda mapping (2.3) is intcgrable and each solution of ils symme-
iry equation (2.9) is connected with an evolution-type system (2.7) invari-
ant with respzct to its transformation. :

3  The symmetry of the symmetry equation

In this section, we construct a recurrent procedure for finding an infinite
set.of partial solutions to the symnetry equation (2.9) and establish their
connection to the N = 2 super-NLS hierarchy.

- . Let us present the explicit form of the transformation that generates a

new solution to the symmetry equation from an arbltrarlly glven one. We .

make the following assertion.
If the pair F-and T is a solution of the symmetry equation (2. 9), the

pazr F and F deﬁned as3

F=renuDs %Ff )0~ (/T + FF),

Fe—F+D@0+ 0N UT+FD, (1)

is also a solutzon
One can prove (3.1) by straight, forward but rather tedious calculations.
The main steps to prove this statement are Uven in the appendix.
Representing (3.1) in the form :

with f and f.

(i)—li(j) — .(3.2')

3Here, the denvatlves d, D and D act like operatore l.e., they must be commuted .

e

" equivalent.

one can obtain the following expression for the recursion operator R of the -
integrable hierarchy corresponding to the substitution (2.3)3:

_ {0+ fDDo T+ 18707 F, —fDDo\f—1ofo-'f
R‘H( 7 DDo-'F + 167517, e@-?bb&u'lam1f>i;&”

( DDo !, 0 ,
0, DDt )’

Mi=0, O+T=1  (3.4)

where II (1)
_ (DDa7Y, 0 _
‘H=_( 0, EDa")’ i
M=1, OO=T, NI=

H(

is the matrix that projects the up and down elements of a column on the
chiral (antichiral) and antichiral (chiral) subspaces, respectively. Let us
stress that the expression for R is defined up to an arbitrary additive oper-

- ator which annihilates the column on the r.h.s. of relation (3.2). It is clear

that such an operator can be represented in the following general form:

C1l, where C is an arbitrary matrix-valued pseudo-differential operator. '
Simple mspectxon of R (3.3) shows that it possesses the followmg prop- -

erties: '

IR=RI=R, TIR=RI=0, (3.5)

and, therefore, its action preserves the chiral structure (2.8) of the evolution
equations (2:7). Because of this chiral structure, all expressions for the
recursion operator, which differ by the above-mentioned operator CTI, are

Acting p-times (p = 0, 1,2,.. .) by the recursion operator on the first
nontrivial solution (2.10) of the symmetry equation, we can generate the
new solutions F, and F,,

r, f , .
. =RP =1, : 3.
7 (FP ) (“f) ‘ ,( 6)_
and the correspkondingv evolution equations ’

EO(E) e

belonging to the integrable hierarchy. Taking into account the scaling
dimension of the recursion operator [R] = cm™!, it is easy to observe that



for the p—th solution, ‘the maximal order of th( bosomc derlvatxve hnea.rly:
appearing on the right-hand side of eqs. (J 7) is equal to p. Using the -
- terminology of inverse scattering theory, one can say’ that the p—th solutxon

corresponds to the p-th flow.
The first five solutions to the symmetry equation ha.ve the followmg
form:

=1, ,-F-o‘-_:“T; : F1V=-5fl‘, F1=TI;

Fa=J"+ DT D), .' E——T"Jrﬁ(ﬁuf)';f L
="+ 3 p(( ((/DND, Fs=T"+ D((fo) N (3:8)
Fo= 41 0[3( Df)'T - 3/7DF - (Df)2+f(f DfY + ff)"Df],
=—T"’ —‘ 308 7D 7)”f+3ff Df - (DF)? +f(fo) (ff)”Df]

These express10ns c01nc1de w1th the correspondmg ones for the N =
supersymmetric NLS hierarchy {2, 3], therefore, we can recognize that the f—
Toda mapping (2.3) is related to the N = 2 supersymmetric NLS hierarchy,
which justifies its name..

Thus, the following proposition summarizes this section.

- The f-Toda mapping (2. 3) acts like the symmetry transformation of the

N=2 super-NLS hzerarchy

4 The f-Toda 1nvar1ant Hamlltonlan struc-

tures

In this sectlon we construct the Hamiltonian structures which are invariant
with respect to the f-Toda mapping (2.3).
By definition, for the chiral-antichiral fermionic superfields f and ¥, the

f-Toda invariant Hamiltonian structure J is a symmetric? J7 = J pseudo- -~
differential 2x2 matrix operator which, in ‘addition to the Jacobi identity" -

ALet us recall the rules of the adjoint conjugation operation “I”: DT = -D,
7S )

rules.can be derived using these.

D = -D, (MN)T = (-1 )de”NTMT, where dar (dy) is the Grassman parity of -~
the operator M_(N), equal to 0 (1) for bosonic (fermionic) operators. In addition, for -
- matrices, it is necessary to take the operatlon of the matrix transposition. All other

and the chiral consistency conditions
JI=MJ=0, JU=1J=J, ‘ (4.1) -

should also satisfy the following additional constraint (8, 9):

- Ll =R, '
J(, D) =2J(f, [)eT, (42)
which provides its invariance with respect to the f-Toda mapping. Here?®,

?=¢ Q¢

S A - Zy
n( ﬁ(_l{D ,f}L 1JE,)){D,f} ®( T +2D0{D, -,

is the inverse matrix of Fréchet derivatives corresponding to the mappmg
(2.3), where the notation ‘®’ stands for the tensor product and the operator
L, ;

7)nas)

L=d- %ﬁ— -;-fa-‘D{pj}, D, L] =0 (4.4)

coincides with the Lax operator of the N = 2 supersymmetric NLS hierar-
chy [3]. One can easily invert relation (4.2) by applying the automorphism
o (2.5). As a result, we obtain

J(5, ) = 8001, TH", ‘ (4.5)
where

(i = AO'(PO'"lA = q?)g ® &1 = (—Aa([)lo"l) ® (—0'(]520'—114), (46)

0, 1 ‘

. 4.7
a=(% o) e
is the matrix of Fréchet derivatives for the automorphisin ¢ (2.5). The
matrices ¢;,2, 1,2, ¢, and ® possess the following useful properties:

$1¢1?¢2<f;2=1, G @b =@ ¢y = 0d =00 =11,

. \ F » {F | F
oR=Ro, R=RE, @(:)=(}—) ¢(-§)=(:),(4.s>
F | F

and

-3



where F and F are arbitrary solutions to the symmetry equation (2.9)%.
Acting by the projectors IT and I (3.4) on the condition (4.2), one can im-
“mediately check that the constraint (4.2) is consistent with the constraint
(@) '
Let us present an infinite set of partial solutions of the condition (4.2).
Without going into detail, we state that the solution J; of the con-

(dition (4.2), with the scaling dimension [cn®] corresponding to the first

Hamiltonian structure, has the following form:

Jl(f’-]:)‘ =P ® a¢"1r,. | - (4.9)

where ¢, is defined by (4.3). It is obvious that J) is the symmetric operator
satisfying the Jacobi identity. One can easily show that J; also satisfies
the chiral constraints (4.1). As for the condition (4.2), it can be checked
‘by.direct though laborious calculations. Ilowever, there is an casier way to
prove (4.9). Substituting J; (4.9) into (4.2) and making some obvious alge-
braic transformations, the condition (4.2) can be rewritten in the followmg
equivalent form:

Ca D= aenf oA (4.10) .

Let us introduce the matrix Jy defined by the following equation:

ndid=1 . (a1)

which admits the unique solution. Usmg relations (4.8) and thelr adjomt _

‘one can easily construct this solution?,

P Tt JOT,  =TJoif—2 .
Jl(f,f)—¢1 ®a ¢l —H( _fa—IT_,__?" fa—lf_ H, (4'12)
where ¢, is determined by eq. (4.6). Applying the automorphism o (2.5)
to egs. (4. 11) and having in mind the. one-to-one correspondence between
‘Jy and J;, one can conclude that the condition (4.10) for J, is satisfied if
and only if, the similar condition for .J§, :

B = denneta w1

5To check relation (4. 8) for the ﬁrst nontnvnal solution (2 10), it is necessary to_

remove the ambiguity in the operator §~ 191 Lha.t appedrs in the calculatxons by settmg} ;

o1 = (a~la)1— 1.

i
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is implemented. Because of the rather simple structure of Ji (4.12), it is
a simple exercise to check the correctness of eq. (4.13) and, therefore, eq.
(4.10) for J; is also correct. This-completes the proof of eq. (4.9).

Acting k-times by the recursion operator (3.3) on the first: Hamiltonian
structure (4.9) and taking into account that the scallng dlmensmn [R]
cm ‘, it is easy to understand that

Je=R*) L (414)

gives us the k-th Hamiltonian structure.
Using the general rule (4.14), we derive, for example, the follownng
representation for the second Hamlltoman structurek Ja:

fDDo™f,

1 DD - fDDo'F
e ( ~DD +F DDa',

_7DDa'T ) (19

which resembles the form of its bosonic counterpart and obviously satisfies
the chiral consistency conditions (4.1).

In terms of N = 1 superfields, the explicit expressions for the first
and second Hamiltonian structures of the super-NLS hierarchy were con-
structed in [10] however, to our knowledge, the recursion operator (3.3)is .
presented here for the first time.

- To conclude this section, we would like to stress that t'le consmtency _
conditions (4.1) is satisfied for all the Hamiltonian structures (4.14). This .
is evident from the explicit form of the recursion operator R (3.3) and the
properties of-the projectors (3.4). Thus, all of the hamiltonian structures
are degenerate matrices. This is the peéuliarity of a manifest N =
superinvariant description of the super-NLS hierarchy'in terms of N = 2

superfields, which has no analogue in the description in terms of N' =-1

superfields or. components. This means that the standard representa.tion
of R.in terms.of the first and second Hamiltonian structures R =-J,J!

fails, though the relatlon RJ, = J, is correct. It is instructive to find ‘its

correct generahzatlon in the case under consxderatlon Wlthout gomg mto
detail, let us present the answer, :

R=4J;, N (B (i)

where the matrix J} is defined by eq. (4.12). Using (adjoint) eqs. (4.8), it
is easy to verlfy the mutual relatlons (4.14) and (4.16) between R, Ji, Jy, .
and Jz »



5 The f-Toda invariant Hamiltionians

In this section,. we construct the "Hamiltonians which are invariant with
respect to the f-Toda mapping (2.3) and demonstrate that the evolution
equations (3.7) can be represented in Hamiltonian form.

Let us recall that in the N = 2 supersymmetric case, the Hamiltonian
H(f,f) can be expressed in terms of the Hamiltonian density H(f, f) as

H(f,T) = [dZn(rT), ()

where Z = (z,0 ,8) is the coordinate of N = 2 superspace and dZ = dzd0df
is an invariant N =2 supersymmetrlc measure.
The Hamiltonian H(f, f) is invariant with respect to the -Toda map-

ping (2.3)

T | A .
H(f ,f)=11(f, s | (5.2)
if the Hamiltonian densityH(f, f) satisfies the following condition:
. . i )
H(LP)-HS )=V + T, (5.3)

where ¥ (¥) is an arbitrary local chiral (antichiral) function of f and 7,
DY =D ¥ =0. \ (5.4)

Let us note that the r.h.s. of the condition (5.3) admits a more general
" structure in comparison with its bosonic counterpart ‘{8, 9], where only
the derivative @ (= —{D, D}) of an arbitrary local function is admitted.
It is. evident that through integration over the invariant supersymmetric
measure dZ, due to (5.4), it becomes equal to zero, prov1d1ng the invariance
condition (5.2) for the Hamiltonian.

Now, we will construct an infinite set ol partial solutions of the condi-
tion (5.3).

Acting by the operator 20! on the symmetry equation (2.9),

‘(Ff+fl«)=2D,F_+2QE (5.5)

o\ (FF + TF
(Ff+fF)- o7 D7

10

and comparing the result (5.5) with (5.3), onc can immediately find the
solution to the condition (5.3) for the I]drmllonmn density H,

H=0"'(IT + [T (5.6)

Substituting the infinite set of the solutions (3.6) of the symmetry equation
(2.9) into (5.6), oné can generate the infinite set of Hamiltonian densities
H, with scale d1mens1on P (see the paragraph below formula (3.7)):

M, =0~ (F,T+ [T). f (’5'.7)

Using the explicit expressions (3.8), we obtain, for example, the following
five first Hamlltoman densmes

Ho=0, Hi=JT, Hy= 37 - l(fT)')
'Ha':s(f"f—lfTﬁf-DT e (ff)")
Mo=f"T= 1T + 7'~ 17" +2ffff o
+J7(Df - DF = Df'- D]y + 27 - /T)DS Df - 8)

Up to unessentnal total derlvatlvcs and ove rall multlplners these Ham11—<

tonian densities coincide with the corresponding, quantities of the N =

2 super-NLS hierarchy [3], which confirms the above—mentloned inter-

relation of the f-Toda mapping (2.3) and the N = 2 super-NLS hierarchy.
Using the explicit expressions for the f~Toda-invariant first-and second

Hamiltonian structures, (4.9), (4.12), and (4.15), as well as for the invariant

Hamiltonians (5. 8), one can construct the llannltoman system of evolutnon

equations
0 (SN, (3150, _, (861
a1 ) - ( siag ) o= (G ) e 9
O TN (155N, Co oo
Jl (')t (f ) - ( (5/(57 'f]P+la, e : (5'10) :
which, by construction, are invariant with respect to the f-Toda mappmg

(2.3). Direct calculatlons show that they arc cquivalent to the evolution
equatlons (3. 7) (3 8), i.e. the followmg, relation

A N VI TAS o |
' ('F_p):Jl(J;J%>””“. o B

11



is satisfied. ‘
We would like to close this section with the remark that the first Hamil-
tonian density H,; satisfies the following equation of motion:

0
it = H. (5.12)

Hence, there exists the additional integral of motion,
H = / drH,y, ' (5.13)

where we have only space integration, which means that H, is the un-
constrained superfield and, therefore, it contains four independent com-
ponents, the Hamiltonians. To obtain relation (5.12), one can substitute
expressions (3.7) for F, and F',, as well as for H, (5.8) into (5.7). Atp =2,
~ this property was observed in [11] for the wide class of N = 2 supersym-
metric generalized NLS hierarchies constructed there. Taking this fact into
account, as well as that N = 2 super-NLS is a particular representative of
the class of N = 2 super-GNLS hicrarchies, it seems plausible to assume
that relation (5.12) is also satisfied for the cutire class of N = 2 super-
GNLS hierarchies at arbitrary values of the parameter p = 1,2,3, ..., as in
the N = 2 super-NLS case. .

6 Conclusion

In this paper, we have proposed the N = 2 supersymmetric f-Toda map-
ping (2.3) in (1}2) superspace that can be considered as the minimal N. = 2
superextension of the one-dimensional Toda chain. We demonstrated .that
the N =-2 super-NLS hierarchy is invariant with respect to the f-Toda
mapping, and produced its manifestly N = 2 supersymmetric recursion
operator and Hamiltonian structures, using only. their symmetry proper-
ties. New general representations (5.7) and (5.12) for its Hamiltonians
were observed.

“'We would like to note that the f-Toda substitution is not exotic. There
is a wide class of such kinds of substitutions for which the approach de-
veloped in the present letter may be literally applied. We hope to present
them together with the corresponding integrable hierarchies in future pub-

lications. It would also be interesting to construct a super-Hamiltonian .

12

structure of the f-Toda chain and its explicit solutions. It seems to be
very important to find its two-dimensional integrable counterparts that
could admit the superconformal structure and give new example of con-
sistent two-dimensional supersymmectric ficld theories. This work is under
progress at the present time. '
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Appendix

Here, we shortly descrlbe the main steps of the proof of the assertion
(3.1) of section 3. ‘

First, it is necessary to substitute / and 7 (3.1) into the symmetry
equation (2.9). Direct calculations give the following form for the dlfferent
terms of the symmetry equation: :

1 %« —

_pF 4L DU TF) - [7‘5+((57)DD+-;—

T
II

D (Df)
——f D) 1](fF+ Ff)
DF =—DF + LD(7 ) - (70 + (07) DD + 107
5T DT + F),
FFqt ?%“" FT - f'fﬁ |
=FT-FF - LTy + 0DT0 - F0Tpe-(7F + B
—PT+ T + (7Y + (Df)TD‘—'.f(DT)‘ﬁla4l(fF +FT).(A)

Second, it is necessary to use relations (2.3) and 7(2.9)' and their direct
consequences: the two identities which can be obtained from (2.3) by the

13



action.of derivatives D and D, _respeclively; the identity which can be
produced from (2.9) by the action of the operator [D, D); and the followmg
identity: .

(.;.ﬁ _ (1nE?)')(%a“(F? +7F) - 25
7
= GIT+ DGO (T + M+ 20y, (A2)

which one can derlve by rewriting r(‘latlons ( 3) and (5.5) in the followmg
.equivalent form:-

LFT — DTy - £IT + (n DY,
= DF 1 ., DF
o-1(FT + fF)~D—?—58 (T -+ 1F)+ 5, a9

respectlvely, and equa.tmg the product on their left-hand sides to the prod- ‘

uct on thelr rlght—ha.nd sldes

References

(1] J.C. Brunelli and A. Das, Int. J. Mod. Phys. A 10 (1995) 4563.
[2] 8. Krivonos and A. Sorin, Phys. Lett. 3 357 (1995) 94.
3] s. Krlvonos A. Sorin and F. Toppan, Phys Lett. A 206 (1995) 146
[4] AN. Leznov and A.S. Sorin, Phys. LelL. B 389 (1996) p.494.
 [5] D.B. Fairlie and A.N. Leznov, Phys.Let. A 199 (1995) 360.

[6] A.N. Leznov, Physica D 87 (1995) 48;

D.V. Fairlie and A.N. Leznov, The T/zcory of Integrable Systems from
the Point of View of Represenlatwn Theory of Discrete Group of In-
tegrable Mapping, Preprint IHEP-95-30, Protvino (1995)

[7] E. Fermi, J. Pasta and S. Ulam, Los Alamos Rpt LA-1940 (1955);

Collected Papers of Enrico I"cum (Univ. of Chlcago Press, Chicago
1965), Vol. 11, p.978.

14

[8] A.N. Leznov, A.B. Shabat a.nd R.1 \anulov Phys.Lett. A 174 (1993)
397;

A.N. Lieznov and A.V. Razunmv, J. Math. Phys. 35 (1994) 1738; J.
Math. Phys. 35 (1994) 4067.

[9] V.B. Derjagin and -A.N..Leznqv. Discrele symmetries and multi-
Poisson structures of 1 + 1 mtu;mblr Sl/s/cnlﬁ Preprint MPI 96-36,

Bonn (1996)

[10] J.C. Brunelll and A. Das, J. Math. Phys. 36 (1995) 268 Mod.: Phys.
Lett. A 10 (1995) 2019.

[11] L. Bonora, S. Krivonos and A. Sorin, Nucl. Phys. B 477 (1996) 835.

RCCCIVCd by Publishing Department
""" on December 31, 1996.

15



