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1 Introduction

Within the framework of the constituent quark model it is quite natural to
study the properties of the bound ¢q systems on the basis of the Bethe-Salpeter
(BS) equation. Despite the remarkable success in the quantitative description
of bound-state masses and formfactors, achieved with the use of instantaneous
(static) interaction kernel in this equation {1]-[4], a completely relativistic ap-
proach to the problem is still lacking. Namely, from the physical point of view
one can expect that the dynamic retardation corrections (i.e. the corrections
coming from the explicit dependence of the quark-quark interaction kernel
on the relative energy variables in a 4-dimensional (4D) BS treatment) to the
bound-state characteristics must be small for heavy quarkonia and may become
significant in the light-quark sector. Moreover, one expects a smooth static
limit when masses of constituent quarks tend to infinity. In practice, however,
the situation is more complicated owing to the infrared-singular behaviour of
the "confining” kernels which are present in the BS equation for the quark-
antiquark wave function. Since at the present stage the exact derivation of
such relativistic kernels directly from QCD is unknown, different prescriptions
are assumed for the ad hoc relativistic generalization [5]-[11] of the phenomeno-
logical static potentials. As to the one-gluon exchange part of the interquark
potential, which has proven to be significant in the quantitative description of
meson data, it can be uniquely generalized to 4 dimensions with the use of the
field-theoretical arguments. In contrast with the one-gluon exchange poten-
tial, the "relativization” of the confining potentials, in general, introduces a new
mass parameter in the theory [7, 9, 10, 11], which may be fixed, using additional
constraints either on the relativistic counterpart of this potential {7, 9, 10, 11]
or the bound-state equation [8]. Neither of these constraints can be preferréd
from the physical point of view, renderiﬁg ambiguous the identification of the
dynamic retardation effect in the observable characteristics.

The existence of an additional free parameter in the theory stems from the
necessity of the infrared regularization of the ”confining” kernel in 4 dimensions.

As a result, the smooth static limit, in general, is lost [9, 11] and the dynamic
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retardation corrections to the bound-state characteristics turn out to be large
in the heavy—quark sector [9, 11], rendering doubtful even the concept of the
confining interaction in 4 dimensions {9].

It should be pointed out that a naive relativistic generalization of a given
static confining potential does not, in general, lead to the BS kernel which
is also ”"confining” in the sense that the resulting BS equation possesses only
a discrete spectrum. This has been demonstrated e.g., in ref. [12] for the
case of harmonic oscillator potential. On the other hand, in ref. [11] it was
demonstrated that using the Logunov-Tavkhelidze quasipotential approach in
the above-mentioned case, it is possible to "revive” the discrete energy levels
below the two-particle threshold.

In the present paper, we study the quark-antiquark bound-state BS equa-
tion with the kernel, explicitly dependent on relative energy variables, in the
framework of the first~order quasipotential approach. We use the stationary
wave boundary conditions in the kernel, corresponding to the ”confining” part
of the ¢g interaction. It is demonstrated that thefirst—order quasipotential
equation with a kernel like that possesses a discrete spectrum and has a smooth
static limit when the constituent quark mass tends to infinity unlike the case
when the conventional prescriptions are used for the reguiarization of this ker-
nel [6]-[9]. The physical motivation for such an "unusual” hboundary condition

is discussed.

2 First — Order Quasipotential Equation for
the g¢ Systems

Below we use the basic relations of the Logunov-Tavkhelidze quasipotential
approach [13]. The first~order quasipotential in this approach is defined by the
equation

~ (1
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Here P, stands for the total four-momentum of the qg system (P, = (Mg, 0)

in the c.m.f., Mg being the bound-state mass); G, is the free two—fermion
Green function, K is the Bethe-Salpeter equation kernel and the procedure A

for any operator A is defined as follows:

- d d
A(P;p,q) = /ﬁf*(l’;p,q)Q—i0 (2)

and

Go = Gl 11 = (AfPALY — ALAL )00,

Gy = [Mp — hy(p) — hy(—p)]~

wy :t h,’ |
Afi) = ow, i hi = aipi + my; wi = /m? + p? (3)

where m; denotes the mass of the i-th constituent quark. Below for the sim-
plicity, we restrict ourselves to the equal-mass case m; = m, = m.

The equal-time wave function @(p) obeys the following equation:

(M5~ ha(p) = ha(-P)G(R) = =28 3 [ L0 Maip,aela) ()

At the next step we project (4) onto the positive-energy states ¢(p) —
ASHA(;)QE(p), 2(1) — A£+)Ag+)2(l)Ag+)Ag+). As it has been demonstrated in
ref. [2], the contribution from the negative-energy component of the wave
function to eq. (4) can be neglected, provided the solutions of this equation
exist. Further, we assume that the spin structure of the quasipotential is the
equal-weight mixture of the scalar and the fourth component of the vector:
0, = %(Il ® I + 72 ® +?) which is perhaps the simplest choice from the more
general ones [1]-[4] and provides the existence of the stable discrete energy
levels. (Note that the one-gluon exchange part of the potential in eq. (4)
is completely neglected since we are interested in the retardation corrections
comiing from the confining part of the potential).

The double-positive component @*+)(p) = A£+)Ag+)g3(p) of the wave func-

tion is expressed in terms of the Pauli spinor ¥*)(p) [2]
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Using the partiél-wave expansion

W)= 3 <pILSIMs > RS, p=Y; s=0,1 (6)
LSJIM; p

and neglecting, as in refs. [10, 11], the mixing between the L = J + 1 and
S = 0,1 states, from (4) we obtain

(o)

N =
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(7)

where the partial-wave expansion of the positive-energy projection of the

quasipotential reads as
APAPTIAGAD =422 S < pILSIM; > VP (p,q) < LSIM,l4 >
LSIM,
(8)
and, for the case of local quasipotential
U9 p0) = [ rPdriulor) Vs Madi(ar) L

71 being the spherical Bessel function.

3 Dynamic Input and Construction of the

First-Order Quasipotential

We parametrize the conﬁnin-g part of the static g7 potential in the following

simple way:

Vst(r).= kr+c¢ | (10)

In order to construct the quasipotential, one should find the 4D counterpart
of the static interquafk potential given by (10). The conventional prescription
for the pure linear potential consists in the substitution of V,,(q) = |g|™* by
V(g) = (—¢* —1i0)"?* = (—q3 + ¢* — 10)~2. . However, it is well known that
the kernel (—g® ~ 10)~2 in 4 dimensions needs the infrared regularization. A
commonly used regularization for any power-law potential (see, e.g. [6, 9]), is

achieved by writing

dPre” ' |r|” — ()" lim o . An - (11)
u—0 aﬂ"‘H qg - q2 _ #2 + 10 ’

For, e.g., n = 1 (linear potential case) the r.h.s. of eq. (11) contains a

divergent piece proportional to In g [9]. This divergent term can be removed
at the expense of the explicit dependence of the renormalized kernel on the
subtraction point [9]. Thus, an additional mass scale parameter necessarily
appears in the covariant kernel owing to the infrared-singular behaviour of the
"confining” interaction. It should be pointed out that the latter is a rather H
general property of "confining” kernels and holds, e.g. within the dimensional
regularization scheme [7]. In its turn, the presence of such an additional scale in
the BS kernel makes the transition to the static hmlt m — oo less transparent
and may lead to large retardation corrections even in this limit [9 10, 11],
which is completely unacceptable from the physical point of view.

To overcome the above mentioned difficulty, we note that it is shared by all
the regularizations, known to us, which leave the analytic structure of the kernel
untouched, i.e. in other words, the boundary condition in the kernel is given by

the conventional causal prescription ¢ — q*® + 10 for all internal lines. On the



other hand, in the kernel, which is assumed to confine the particles, one could
a priori expect a different choice of the boundary condition other than to the
conventional one corresponding to freely moving particles in the remote past
and future. Bearing this in mind, in the present paper we have investigated
the possibility of an "unconventional” choice of the boundary condition in the
covariant BS kernel. Namely, instead of (11) we use the following prescription

for the relativistic generalization of power-law potentials in the position space:

~ (1 +"’)
r* — Ko(z) = ——=—725-0(—2%)(—2?)l*~ n/2 12
| €)= A ?) (12)
where « is not, in general, an integer number and o # —1,-2,-.- (note

that the latter condition excludes from the consideration, e.g., the Coulom-
bic kernel). The normalization in (12) is chosen so that in the static limit
=, dz® Ko (2%, x) = |x|*.

The prescription (12) can be extended even to a wider class of static po-
tentials. To demonstrate this, let us first consider the case of the exponential
potential. Expanding this potential in powers of r and using (12) in every

order, it is easy to verify that

. 1 11 2 2‘
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where J, and ,F, denote, respectively, the Bessel and hypergeometric functions.
Eq. (13) enables one to apply the procedure of the relativistic generalization

to a wide class of potentials which can be written in the following form:

- / duC(pe™ | (14)

‘where C(z) must obey certain conditions in order to provide the convergence
of the inte’gfal over dy in the relativistic case.

For some widely used confining potentials (constant Rernel, linear and os-
cillator potentials, o = 0,1,2, respectively) the Fourier transform of Eq. (12)

reads as

'
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Consequently, the stationary-wave boundary condition appears in the Fo-
urier-transformed kernels instead of the conventional causal prescription. In
fact, for the case of the pure linear case (@ = 1) this prescription has been
known for a long time and has already been used for the relativistic general-
ization of the static linear potential (see, e.g. [14, 15]). Thus, eq. (12) can
be understood merely as an extension of this prescription to any power—law
potentials. It should be pointed out that, unlike the case with causal prescrip-
tion, the ”prinéipal value” kernels introduced in the present paper are infrared
finite and, hence, do not depend on an additional scale parameter. The lim-
iting procedure go — 0 in (16) is unambiguous and leads to the well-defined
distributions.

Next, we pa‘ss to the calculation of the first-order quasipotential (1), corre-
sponding to the interaction kernel (12). The projection of this qha.sipotential

onto the positive-energy states can be written in the following form:

. T (1
FOEHD o o) / Pro-ilo- q)x\/_§(+ ))r"‘x

X /1 dr(1— 12)("'1)/2(0(T)ei(MB“’”(”)"”(Q))" +0(—1)e"Me-uwlp)-w(@)rmy (17)
1

w(g) =
Mg —2m + O(;nl—) = —ep, as well as the imaginary part of this expression in

Neglecting relativistic corrections in the exponentials Mp — w(p) —
analogy with refs. [10, 11, 16], we arrive at the local first-order quasipotential

Y__ (1), (++++) (T, eB) g / dT
2
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Hence, the relativistic generalization of the static potential Vi, (r) = kr + ¢
. gives the first-order local quasipotential

sin egr

‘7(:(7‘7 CB) = k

+-cJo(esr) (19)

which accounts for the retardation effect and reduces to Vy(r) in the limit
eg — 0. _ ’
As it can be seen from eq. (19), the account for the dynamic retardation
effect in the case of pure linear potential effectively leads to the colour screen-
ing at intermediate distances. It should be pointed out that such a behaviour
qualitatively agrees with the results of calculations for the unquenched lattice
fermions in QCD [17]. At llarger distances, the deviation of the retarded poten-
‘tial from the static one becomes significant, and one can no further rely on the
ﬁrst—qrderv calculations. Note, however, that for the case of heavy quarkoriia
the latter difficulty causes no trouble since the wave function of the ¢q bound
sysfem in this case rapidly vanishes with the increase of r and, therefore, does
not "feel” the oscillating "tail” of the potential at large distances. To be more
precise, let us recall, that the mean radius of the bound system in the nonrela-
tivistic limit for the power-law potentials V(r) ~ r* scales as m~=1/(e+2) where

m is the mass of the constituent. Consequently, since the mass of the bound

state in the heavy quark limit scales as Mg = 2m + const + o(1), the expression -

ep < r > vanishes in this limit and fé(r, €n) (19) reduces to Vy(r) (10).

4 Results

Next we turn to the numerical solution of the obtained equation with the retar-

dation effect taken into account explicitly through the energy-dependence of
the first—order quasipotential. It is not obvious from the beginning whether the
potential (19) leads to the discrete energy levels due to its oscillating behaviour
as r — 0o. Let us, therefore, consider the equation (7) with the potential (19)

in detail.. Passing to the nonrelativistic limit and neglecting for a moment the

o — .

f]
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”constant” term in (19), proportional to c, in the configuration space, we obtain

the following differential equation:

f"(z) + (acos2z + b)f(z) =0 (20)

where f(r) = rR(r), R(r) = Ro(r) are the radial wave function of the bound
state in the configuration space (for simplicity we assume the angular momen-
tum, [ = 0), z = %((MB —2m)r —m[2),a = 'i@g’jn'szm), b= (Mf;:,zm),'and the

boundary conditions imposed on f(z) are f (—Z) =0 and f(+00) = 0.

Equation (20) has been extensively studied in the mathematical physics

(see, e.g. [18]). We shall remind some results of investigation. Namely, if f;(z)

is a particular solution of eq. (20) with the following initial conditions:

AO)=1, fi(0)=0 (1)

and
cosh2mp = fi(n),

the general solution of eq. (20) has the form:

Cre*##p,(z) + Coe™#%py(2); cosh2mp > 1

(C1cos2vz + Cysin 2v2)p1(z) + (C2 cos 2vz — Cy sin 2vz)py(2);
] |cosh2mu| < 1; p=iv

C1e*7p1(2) + Cae™?P7py(z); cosh2mrpu < —1; pu=p+ %,

f(z) =

(22)
¢1(2) and 2(2) being the periodic functions in z with the period .
Due to the fact that we consider eq. (20) in the semi-infinite interval —7 <
z < 400, it is possible to find normalizable solutions decreasing exponentially
as z — 400 (€1 = 0 and'| cosh 27u| > 1,eq. (22)). The eigenvalue condition
then reads as :
P2 (—-}) =0, |cosh2mu|>1 (23)

Thus, equation (20), despite the oscillating behaviour of the potential at

‘the spatial infinity, allows for the discrete spectrum provided | cosh 2wp} > 1,



corresponding to the condition Mp — 2m < 0 in the limit |Mp — 2m| << 2m.
Adding the constant term, proportional to ¢, it is natural to suppose that, for
a small [Mp — 2m]| the discrete energy levels exist for Mp — 2m — %c < 0.
Thus, the potential (19) in the nonrelativistic limit acts like the potential well.

Note that a similar potential (the rising potential screened at large distances,

r > 1 Fm was successfully used for the description of the meson spectrum in ’

the framework of the coupled Dyson-Schwinger and Bethe-Salpeter equations,
e.g., in [19]. Therefore, we expect that equation (7) with the potential (19)
gives reasonable descrif)tion of the low-lying nie_son states. . ,
At the next step we have attempted to solve eq. (7) numerically, expanding
the unknown radial wave function RE?J(p) in the complete orthonormalized

basis of the nonrelativistic oscillator wave functions [1, 2, 10, 11]

B (p) = 55", o s Rar(p/po) (24)
n=0 - .
where . .
| Tm+L+)\ L ., [ 1, | 3,
RnL(z)—( Tt 1) F(L+%)z exp -:2-2) 17 —n,L+§,z

‘ (25)
and po is an arbitrary scale parameter. Substituting (25) in equation (7) .ahd
truncating the sum at some fixed value Ny, we arr_ive at a system of lin-
ear algebraic equations for the coefficients cs;z)s ;. If the procedure converges
with increasing Noaz, the eigenvalues Mp are determined from this system of
equations. The yca.lc.ula.ti'ons show that the final results do not depend on the
scale parameter po, but the appropriate choice of this parameter leads to faster
convergence of the series (25). It should be stressed that if the solution of
equation (7) does not exist (e.g., due to the behaviour of the potential at the
.spatial infinity), this reveals in the divergence of the procedure with increasing
'N,,m,_ despite the fact that the potential matrix elements are calculated in the
exponentially damping wave function basis. ’

Since the potential (19) depends on the unknown binding energy, e =
Qm; Mg, of the qq system, equation (7) is solved with the use of the iteration
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method. Namely, we solve the equation with the static potential V(r) = kr+c
and determine the eigenvalues Ml(;t). At the next step, these static values are
substituted into the potential (19) in order to determine the corrected spectrum
which, in its turn, is used as an input in the next iteration. We have checked
that typically after 10-15 steps the iteration procedure converges for most low-
lying heavy quarkonia energy levels. ’

In table 1 the results of calculations of the dynamic retardation corrections
to the heavy quarkonia mass spectrum are presented. In these calculations,
the parameters k and c were taken to be k = 0.21 GeV? ¢ = —1.0 GeV. The
constituent quark masses were chosen to be m, = 1.78 GeV and my = 5.10 GeV
in order to fit the J/t,b and T masses. As we see from table 1, this set of
parameters gives reasonable description of the heavy meson mass spectrum
in the static approximation. As has been expected, the dynamic retardation
corrections turn out to be small (typically a few per cent) for all low-lying
quarkonia states given in this table. ’

To check the consistency of the numerical methods applied to solve the
problem under study, we have repeated our calculations for the "truncated”

quasipotential

. { k/epsinepr + cJo(epr), r < rg (26)

V!(r,eg) =
¢(ryea) k'r+¢, T > 1o

with epro < 7/2 and the choice for &’ and ¢’ guarantees that V!(r,ep) along with
its first derivative is continuous at r = rp. Equation (7) with the quasipotential

(26) obviously has the solutions since it grows at the spatial infinity instead of

the oscillating behaviour revealed by the quasipotential V.(r, eg) (19). However,

we have numerically checked that for the low-lying states the mass spectrum
obtained with the use of the full quasipotential (19) almost coincides with that
obtained from the truncated one (26), provided egrg is sufficiently close to
x /2. Consequently, the existence of stable solutions of eq. (7) with the full
quasipotential (19) has been verified independently.

Next, we have checked the coﬁsistency of the iterative method used to han-

dle the nonlinear dependence of the obtained quasipotential on the binding
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Mesons JFC | N5+, 1 2 3 4

cc
7.(2.980) | 0=* | 1S, | 3.095 | 3.204 |0.109 | 3.5-10"2

7(3.590) |0+ | 215, | 3.690 | 3.739 |0.049 | 1.3-1072
J/$(3.097) | 1= | 138, | 3.096 | 3.204 |0.108 | 3.5-1072
L(3.686) | 17- | 28, | 3.691 | 3.742 | 0.051 | 1.3-1072
he(3.526) | 1%~ | 1'P, | 3.445 | 3.460 |0.014 | 4.2.1073
Xo(3.414) | 0** | 13P, | 3.445 | 3.460 |0.014 | 4.2.1073
xa(3.511) | 1*+ ] 13P, | 3.445 | 3.460 | 0.014 | 4.2.10~2
X2(3.556) | 2++| 13P, | 3.445 | 3.461 |0.014 | 4.2.1073
b | '

m 0+ | 1S, | 9.463 | 9.619 | 0.156 | 1.7-1072
" 0+ | 215, | 9.899 | 9.966 | 0.067 | 6.8-10°
T(9.460) |1--| 135, | 9.463 | 6.619 | 0.156 | 1.7-10?
Y/(10.023) | 177 235, | 9.899 | 9.966 | 0.067 | 6.8-1073
™ - 1-- | 13D, | 9.938 | 9.993 |0.055 | 5.5:1073
T™(10.355) | 1-= | 335, |10.250 | 10.255 | 0.005 | 5.1-10~*
v 1—- | D, {10277 | 10201 | 0.014 | 1.4-1073
byt 1+ | 1'p | 9.720 | 9.835 | 0.115 | 1.2-1072

Xe0(9.860) | 0F*+ | 13P, | 9.720 | 9.835 |0.115 | 1.2.107?
Xer(9.892) | 1++ | 13P, | 9.720 | 9.835 | 0.115 | 1.2-1072
Xx2(9.913) | 2++ | 18R, | 9.720 | 9.835 | 0.115 | 1.2:1072
By 1+- | 2'p | 10.097 | 10.109 | 0.013 | 1.3-1073
X,(10.232) [ 0++ | 23R, | 10.097 | 10.109 | 0.013 | 1.3-10"2
X, (10.255) | 1*+ | 2°P | 10.097 | 10.109 | 0.013 | 1.3-107°
X.,(10.268) | 2++ | 2°P, |10.097 | 10.109 | 0.013 { 1.3-107°

Table 1. The dynamic retardation corrections to the heavy quarkonia mass

spectrum
1) The meson mass in the static approximation, M, (‘”) (GeV)
2) The meson mass with an inclusion of the retardatxon effect, Ml(;d) (Gev)
3) The size of the retardation correction, M(m) MI(;t) (GeV)
4) |ME=) — MY /MY
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energy of the meson. To this end, we have substituted the trial value for eg in
the quasipotential and determined the output value of the same quantity from
the equation. Varying the input energy by a small step, and solving the equa-
tion at every energy, one can determine a fixed point, where the input energy
coincides with the output one. We have verified that the iterative solutions for
the low-lying states, listed in Table 1, are obtained in the fixed point method
as well.

Finally, we have checked the sensitivity of the approach to the choice of a
concrete form of the confining potential. To this end, we have repeated all the
calculations using the oscillator kernel

2

Vi(r) = 5 +e (27)
with w? = 0.05 GeV?, ¢ = —0.64 GeV, m. = 1.75 GeV, my = 5.03 GeV. ‘The
results for the relative size of the retardation corrections (not listed in Table 1)
are almost identical to those for the case of linear confinement. Consequently,
within the prescription chosen for the relativistic generalization of the static
confining kernels (12) the reasonable result for the magnitude of the retardation

effect is obtained irrespective of the choice of a concrete confining kernel.

5 Discussion

In the present paper, we have investigated a possible way of relativistic gener-
alization of the static qq interaction. As a result, a covariant Bethe-Salpeter
kernel, depending on all the components of the quark relative 4-momenta, is
obtained. It is shown that the choice of the stationary-wave boundary condi-
tions in the "relativized” kernel instead of the conventional causal one, enables
one to overcome some difficulties which are inherent in the approaches used
previously for the treatment-of this prob'lem. Namely,

— The proposed prescription enables us to obtain the infrared—finite kernel
which does not contain the dependence on the infrared subtraction scale. As
a result, the static limit in the BS equation is unambiguous as well as the

identification of the dynamic retardation corrections.
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— The first-order quasipotential, obtained with the use of the Logunov-
Tavkhelidze method, contains the dependence on the binding energy. This is a
remnant of the dynamic retardation effect in the first order. We have demon-
strated that the discrete solutions of the first order quasipotential equation
exist at least for the lowest energy levels. Moreover, in the static limit, when
m — 00, the energy dependence in the quasipotential is effectively eliminated
resulting, as required, in the initial static potential.

— With the use of the numerical methods we have demonstrated that, unlike
the results obtained in refs. [9, 10, 11], the retardation corrections to the mass
spectruin of heavy bound ¢ systems are small and do not depend on the details
of the gg potential.

However, the most important question which arises here consists in the
interpretation of the obtained results. We would like to 'stress that all these
results were obtained at the expense of the choice of an unconventional bound-
ary condition in the ”confining” kernel of the BS equation. It seems to us that
neither of these results can be obtained in the Euclidean formulation of the BS
approach to the ¢§ bound-state problem. Further,in the ladder approxima-
tion the problem reduces to the choice of a boundary condition in the effective
"dressed” gluon propagator, which is believed to confine quarks. In literature,
we can find several examples when the confined particles are quantized with
the use of the principal-value prescription [14, 15, 21, 22]. (For the discussion
of the analytical properties of the Feynman amplitudes in the 2D QCD, see
ref. [22], where it is demonstrated that, although the confinement restricts the
analyticity domains of various Green functions corresponding to the coloured
particles, the analytic properties of the colourless current correlators remain
untouched). At the present stage, we can not claim that the presence of the
long-range (confining) force in the system leads to, or requires the modifica-
tion of the boundary condition in the propagator as compared to the usual
case of short-range forces and with the particles, moving freely outside the
interaction region. However, the results of the present investigation indicate
that the conventional 3D picture of rising potentials etc. is directly obtained

from the 4D BS approach in the static limit only provided the stationary wave

14

boundary condition is used in the kernel which describes the covariant confining

interaction in 4 dimensions.
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