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1 Introduction 

Within the framework of the constituent quark model it is quite natural to 

study the properties of the bound qq systems on the basis of the Bethe-Sal peter 

(BS) equation. Despite the remarkable success in the quantitative description 

of bound-state masses and formfactors, achieved with the use of instantaneous 

(static) interaction kernel in this equation [1]-[4], a completely relativistic ap­

proach to the problem is still lacking. Namely, from the physical point of view 

one can expect that the dynamic retardation corrections (i.e. the corrections 

coming from the explicit dependence of the quark-quark interaction kernel 

on the relative energy variables in a 4-dimensional (4D) BS treatment) to the 

bound-state characteristics must be small for heavy quarkonia and may become 

significant in the light-quark sector. Moreover, one expects a smooth static 

limit when masses of constituent quarks tend to infinity. In practice, however, 

the situation is more complicated owing to theinfrared-singular behaviour of 

the "confining" kernels which are present in the BS equation for the quark­

antiquark wave function. Since at the present stage the exact derivation of 

such relativistic kernels directly from QCD is unknown, different prescriptions 

are assumed for the ad hoc relativistic generalization [5)-(11) of the phenomeno­

logical static potentials. As to the one-gluon exchange part of the interquark 

potential, which has proven to be significant in the quantitative description of 

meson data, it can be uniquely generalized to 4 dimensions with the use of the 

field-theoretical arguments. In contrast with the one-gluon exchange poten­

tial, the "relativization" ~f the confining potentials, in general, introduces a new 

mass parameter in the theory [7, 9, 10, 11], which may be fixed, using additional 

constraints either on the relativistic counterpart of this potential [7, 9, 10, ll] 
or the bound-state equation [8]. Neither of these constraints can be preferred 

from the physical point of view, rendering ambiguous the identification of the 

dynamic retardation effect in the observable characteristics. 

The existence of an additional free parameter in the theory stems from the 

necessity of the infrared regularization of the" confining" kernel in 4 dimensions. 

As a result, the smooth static limit, in general, is lost [9, ll] and the dynamic 



retardation corrections to the bound-state characteristics turn out to be large 

in the heavy-quark sector [9, ll], rendering doubtful even the concept of the 

confining interaction in 4 dimensions [9]. 

It should be pointed out that a naive relativistic generalization of a given 

static confining potential does not, in general, lead to the BS kernel which 

is also "confining" in the sense that the resulting BS equation possesses only 

a discrete spectrum. This has been demonstrated e.g., in ref. [12] for the 

case of harmonic oscillator potential. On the other hand, in ref. [11] it was 

demonstrated that using the Logunov-Tavkhelidze quasipotential approach in 

the above-mentioned case, it is possible to "revive" the discrete energy levels 

below the two-particle threshold. 

In the present paper, we study the quark-antiquark bound-state BS equa­

tion with the kernel, explicitly dependent on relative energy variables, in the 

framework of the first-order quasipotential approach. We use the stationary 

wave boundary conditions in the kernel, corresponding to the "confining" part 

of the qij interaction. It is demonstrated that the first-order quasipotential 

equation with a kernel like that possesses a discrete spectrum and has a smooth 

static limit when the constituent quark mass tends to infinity unlike the case 

when the conventional prescriptions are used for the regularization of this ker­

nel [6)-[9]. The physical motivation for such an "unusual" boundary condition 

is discussed. 
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the qij_ Systems 

Below we use the basic relations of the Logunov-Tavkhelidze quasipotential 

approach [13]. The first-order quasipotential in this approach is defined by the 

equation 

- (1) - -1 ~ - -1 
V (MB;p,q) =< Pl~ GoI<Go~ jq > (1) 

Here Pµ stands for the total four-momentum of the qij system (Pµ = (MB, 0) 
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m the e.m.f., MB being the bound-state mass); Go is the free two-fermion 

Green function, I< is the Bethe-Salpeter equation kernel and the procedure A 
for any operator A is defined as follows: 

- J dpo dqo 
A(P;p,q) = ~A(P;p,q)~ (2) 

and 

G- - G- "'0 "'0 II· II - (A(+)A(+) - A(-)A(-))"'0 "'0 · 
0 - ~ 11 12 , - 1 2 1 2 il 12, 

{k = [MB - h1(P) - h2(-p)t1 

w·±h· o ✓ A(±)= ' '· h·=a·p·+m,-· w;= m 2 +p2 
1 2wi , , , 1 1, 1 (3) 

where m; denotes the mass of the i-th constituent quark. Below for the sim­

plicity, we restrict ourselves to the equal-mass case m 1 = m 2 = m. 

The equal-time wave function ip(p) obeys the following equation: 

( l -( ) . o o 4 J d3q - (1) -[MB - h1(P) - h2 -p) <p p = -z,112 3 (
2

1r)
3 

V (MB; p, q)<p(q) (4) 

At the next step we project (4) onto the positive-energy states ip(p) -4 

Ai+) A~+)ip(p ), v(l) -4 Ai+) A~+)v(l) Ai+) Ai+). As it has been demonstrated in 

ref. [2], the contribution from the negative-energy component of the wave 

function to eq. ( 4) can be neglected, provided the solutions of this equation 

exist. Further, we assume that the spin structure of the quasipotential is the 

equal-weight mixture of the scalar and the fourth component of the vector: 

De = ½U1 ® 12 + ,f ® ,g) which is perhaps the simplest choice from the more 

general ones [1]-[4] and provides the existence of the stable discrete energy 

levels. (Note that the one-gluon exchange part of the potential in eq. (4) 

is completely neglected since we are interested in the retardation corrections 

cor:ning from the confining part of the potential). 

The double-positive component ip(++l(p) = Al+) A~+)ip(p) of the wave func­

tion is expressed in terms of the Pauli spinor _x(+l(p) [2] 
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-(++) _ (w + m) ½ ( 1 ) (w + m) ½ ( 1 ) -(+) 
'P (p) - 2w ...£.lE... ® 2w - 0w X (p) 

w+m w+m 

(5) 

Using the partial-wave expansion 

x(+l(p) = L < f>ILSJ MJ > A~+Ji(p); f> = £_; s = o, 1 
p LSJMJ 

(6) 

and neglecting, as in refs. [10, 11], the mixing between the L 

S = 0, l states, from ( 4) we obtain 

J ± 1 and 

-(+) 4100 2 (-(+) 1 ( m2 ) 
[MB - 2w(p)]RLsJ(P) = 3 o q dq VL (p, q)2 1 + w(p)w(q) + 

+( L _ J)4J(J + l)(fi(+)( )- y(+)( ))(w(p) - m)(w(q)- m)) ft,(+) ( ) 
(2J + 1)2 J-l p, q J+l p, q 4w(p)w(q) LSJ q 

(7) 
where the partial-wave expansion of the positive-energy projection of the 

quasipotential reads as 

A~+lA;+Jy(llA~+lA~+i = 41r 2 L < f>ILSJMJ > v),+\p,q) < LSJMJl4 > 
LSJMJ 

and, for the case of local quasipotential 

fi),+\p, q) = J r2dr}L(pr)½(r; MB)jL(qr) 

jL being the spherical Bessel function. 
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3 Dynamic Input and Construction of the 

First-Order Quasipotential 

We parametrize the confining part of the static qij potential, in the following 

simple way: 

V.i(r) = kr + c (10) 

In order to construct the quasipotential, one should find the 4D counterpart 
, 

of the static interquark potential given by (10). The convei:1tional prescription 

for the pure linear potential consists in the substitution of V.t( q) = lql-4 by 

V(q) = (-q2 
- i0t2 = (-q5 + q2 

- i0t2
• However, it is well knowri that 

the kernel (-q2 
- i0t2 in 4 dimensions ~eeds the infrared regularization. A 

commonly used regularization for any power-law potential (see, e.g. [6, 9]); is 

achieved by writing 

an+i ( 41r ) J d3re-iqrlrln -t (-r ti.To Bµn+l q5 - q2 - µ2 + i0 (11) 

For, e.g., n = l (linear potential case) the r.h.s. of eq. (11) contains a 

divergent piece proportional to Inµ [9]. This diverge~t term can be removed 

at the expense of the explicit dependence of the reno.rmalized kernel on the 

subtraction point [9]. Thus, an additional mass scale parameter necessarily 

appears in the covariant kernel owing to the infrared-singular behaviour of tµe 

"confining" interaction. It should be pointed out that the latter is a rather 

general property of "confining" kernels and holds-, e.g. within the dimensional 
, 

regularization scheme [7]. In its turn, the presence of such an additional scale in 

the BS kernel makes the transition to the static l~mit m -t oo less transparent 

and may lead to large retardation corrections even in this limit [9, 10, 11], 

which is completely unacceptable from the physical point of view. 

To overcome the above mentioned difficulty, we note that it is ;hared by all 

the regularizations, known to us, which leave the analytic structure of the kernel 

untouched, i.e. in other words, the boundary condition in the kernel is given by 

the conventional causal prescription q2 
-t q2 + i0 for all internal lines. On the 
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other hand, in the kernel, which is assumed to confine the particles, one could 

a priori expect a different choice of the boundary condition other than to the 

conventional one corresponding to freely moving particles in the remote past 

and future. Bearing this in mind, in the present paper we have investigated 

the possibility of an "unconventional" choice of the boundary condition. in the 

covariant BS kernel. Namely, instead of (11) we use the following prescription 

for the relativistic generalization of power-law potentials in the position space: 

f(l + 9:) 
r"' - I( (x) = 2 0(-x2)(-x2)(0-1)/2 

a ✓,rr(½ + }) (12) 

where a is not, in general, an integer number and a =I= -1, -2, • • • (note 

that the latter condition excludes from the consideration, e.g., the Coulom­

bic .kernel). The normalization in (12) is chosen so that in the static limit 

J~
00

dx°Ka(x0 ,x)= lxl"'-
The .prescription (12) can be extended even to a wider class of static po­

tentials. To demonstrate this, let us first consider the case of the exponential 

potential. Expanding this potential in powers of r and using (12) in every 

order, it is easy to v~rify that 

µr 0( 2) ( µ ( ~) 1 ( 2) 1/2 1 1 µ
2
x

2 
) e- -+ -x - 2J0 µv -x2 + ; -x - 1F2(l; 2, 2; --

4
-) (13) 

~here J 11 and pFq denote, respectively, the Bessel and hypergeometric functions. 

Eq. (13) enables one to apply the procedure of the relativistic generalization 

to a wide class of potentials which can be written in the following form: 

V(r) = J dµC(µ)e-µr (14) 

where C(µ) must obey certain conditions in order to provide the convergence 

of the integral over dµ in the relativistic case. 

For some widely used confining potentials ( constant kernel, linear and os­

cillator potentials, a = 0, 1, 2, respectively) the Fourier transform of Eq. (12) 

reads as 
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Ka(q) = 
. . 1 

-4 1r _ (.:.. a 1 ( 
2) . . 
12 C., -(1"1 + iO)'l"" ) (q) - (1"1- i0)')'¥) 

{ 

(21r)3o(3>(q) 

Ka(q)lqo=O = -471" ((lq'i + iOt4 + (lq'i - iOt
4

) 

-(271" )3'v'~o<3>( q) 

(15) 

(16) 

Consequently, the stationary-wave boundary condition appears in the Fo­

urier-transformed kernels instead of the conventional causal prescription. In 

fact, for the case of the pure linear case ( a = 1) this prescription has been 

known. for a long time and has already been used for the relativistic general­

ization of the static line~r potential (see, e.g. [14, 15]). Thus, eq. (12) can 

be understood merely as an extension of this prescription to any power-law 

potentials. It should be pointed out that, unlike the case with causal prescrip­

tion, the "principal value" kernels introduced in the present paper are infrared 

finite and, hence, do not depend on an additional scale parameter. The lim­

iting procedure q0 -+ 0 in (16) is unambiguous and leads to the well-defined 

distributions. . 
Next, we pass to the calculation of the first-order quasipotential (1), corre-

sponding to the interaction kernel (12). The projection of this quasipotential 

onto the positive-energy states can be written in the following form: 

V- (1),(++++>(M . ) - J d3 -i(p-q)x r (1 + f) "' 
_ B,p,q- Xe Jjrf(½+i)rX 

X 11 
dr(l _ r2)(a-1)/2( 0( T )ei(Mrw(p)-w(q))r-r + 0(-r )e-i(M8 -w(p)-w(q))r-r) (l 7) 

-1 

Neglecting relativistic corrections in the exponentials MB - w(p) - w(q) ::::= 

MB - 2m + O(¼) = -fB, as well as the imaginary part of this expression in 

analogy with refs. [10, 11, 16], we arrive at the local first-order quasipotential 

V- (1),(++++l( . ) _ r (1 + f) "'11 
d (l 2)(a-1J/2 _ 

_ r,fB - r,;; (1 "')r T - T COSfBrT -
y7l"f 2 + 2 -1 
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12 l
o/2 1 a\ r .. (1.,«rl) 

T r I 1 + -J Jcx/';.\1-~ = - \ 2 ,tB 
(18) 

Hence, the relativistic generalization of the static potential V,.1(r) = kr + c 

gives the first-order local quasipotential 

- sin lBT 
Vc(r, tB) = k-- + cJo(tBr) 

lB 
(19) 

which accounts for the retardation effect and reduces to V,.1(r) in the limit 

lB - 0. 
As it can be seen from eq. (19), the account for the dynamic retardation 

effect in the case of pure linear potential effectively leads to the colour screen­

ing at intermediate distances. It should be pointed out that such a behaviour 

qualitatively agrees with the results of calculations for the unquenched lattice 

fermions in QCD [17]. At larger distances, the deviation of the retarded poten­

tial from the static one becomes significant, and one can no further rely on the 

first-()rder calculations. Note, however, that for t_he case of heavy quarkonia 

the latter difficulty causes no trouble since the wave function of the qij bound 

system in this case rapidly vanishes with the increase of r and, therefore, does 

not "feel" the oscillating "tail" of the potential at large distances. To be more 

precise, let us recall, that the mean radius of the bound system in the nonrela­

tivistic limit for the power-law potentials V(r) ~ r 0 scales as m-1/( 0 +2), where 

m is the mass of the constituent. Consequently, since the mass of the bound 

state in the heavy quark limit scales as MB= 2m+const+o(l), the expression 

t8 < r > vanishes in this limit and ½(r, tB) (19) reduces to V.1(r) (10). 

4 Results 

Next we turn to the numerical solution of the obtained equation with the retarc 

dation effect taken into account explicitly through the energy-dependence of 

the first-order quasipotential. It is not obvious from the beginning whether the 

potential (19) leads to the discrete energy levels due to its oscillating behaviour 

as r - oo. Let us, therefore, consider the equation (7) with the potential (19) 

in detail. Passing to the nonrelativistic limit and neglecting for a moment the 

8 

ii_ 

t' . 
I , 

fl 

"constant" terrri in (19), proportional to c, in the configuration space, we obtain 

the following differential equation: 

J"(z) + (acos2z + b)f(z) = 0 (20) 

where J(r) = rR(r), R(r) = Ro(r) are'the radial wave function of the bound 

state in the configuration space (for simplicity we assume the angular momen-

L _ 0) _ I ((M 2 ) /2) _ k(MB-2m) b _ (MB-2m) d h tum, - , z - 2 B - m T - 7r , a - 3m 3 , - 4m 3 , an t e 

boundary conditions imposed on f(z) are f (-!) = 0 and f(+oo) = 0. 

Equation (20) has been extensively studied in the mathematical physics 

(see, e.g. [18]). We shall remind some results of investigation. Namely, if f 1 (z) 
is a particular solution of ~q. (20) with the following initial conditions: 

fi(0) = 1, J;(o) = 0 {21) 

and 

cosh21rµ = f1(1r), 

the general solution of eq. (20) has the form: 

l 
C1e21-'z<p1(z) + C2e-2µzcp2(z); cosh21rµ > 1 

f (z) = ( C1 cos 2vz + C2 sin 2vz )cp1 (z) + ( C2 cos 2vz - C1 sin 2vz )<p2(z ); 

I cosh 21rµI < l; µ=iv 

C1e2pz<p1(z) + C2e-2pz<p2(z); cosh21rµ < -1; µ = p + ½, 
(22) 

<p1 ( z) and cp2 ( z) being the periodic functions in z with the period 1r. 

Due to the fact that we consider eq. (20) in the semi-infinite interval -{ ::; 

z < +oo, it is possible to find normalizable solutions decreasing exponentially 

as z - +oo (C1 = 0 and I cosh21rµj > 1,-eq. (22)). The eigenvalue conditio_n 

then reads as 

_ <p2 (-i) = 0, I cosh 21rµI > 1 (23) 

Thus, equation (20), despite the oscillating behaviour of the poten~ial at 

the spatial infinity, allows for the discrete spectrum provided I cosh 21rµI > 1, 
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corresponding to the condition MB - 2m < 0 in the limit 1MB - 2ml << 2m. 

Adding the constant term, proportional to c, it is natural to suppose that, for 

a small 1MB - 2ml the discrete energy levels exist for MB - 2m - le < 0. 

Thus, the potential (19) in the nonrelativistic limit acts like the potential well. 

Note that a similar potential (the rising potential screened at large distances, 

r > 1 Fm was successfully used for the description of the meson spectrum in 

the framework of the coupled Dyson-Schwinger and Bethe-Salpeter equations, 

e.g., in [19]. Therefor~, we expect that equation (7) with the potential (19) 

gives reasonable description of the low-lying meson states. 

At the next step we have attempted to solve eq. (7) numerically, expanding 

the unkn~wn radial wave function R},-+}i(p) in the complete orthonormalized 

basis of the nonrelativistic oscillator wave functions (1, 2, 10, 11] 

00 

R-(+) ( ) -3/2 '\:" (+) ( / ) . 
LSJ P = Po L-J CnLSJRnL P Po (24) 

n=O 

where 

(
2r (n + L + ~)) ½ 1 . L (· 1 2) ( . 3 2) 

RnL(z) = f(n + l) f (L + ~) z exp - 2z 1F1 -n, L + 2, z 

(25) 

and p0 is an arbitrary scale parameter. Substituting (25) in equation (7) and 

truncating the sum at some fixed value Nmax, we arrive at a system of lin­

ear algebraic equations for the coefficients c~fsJ• If the procedure converges 

with increasing Nmax, the eigenvalues lvfB are determined from this system of 

equations. The calculati_ons show that the final results do not depend on the 

scale parameter p0 , but the appropriate choice of this parameter lea~s to faster 

convergence of the series (25). It should be stressed that if the solution of 

equation (7) does not exist (e.g., due to the behaviour of the potential at the 

;spatial infinity), this reveals in the divergence of the procedure with increasing 

Nmax despite the fact that the potential matrix elements are calculated in the 

exponentially dampini wave function basis. 

~ince the potential (19) depends on the unknown binding energy, EB = 
2m - MB, of the qij system, equation (7) is solved with the use of the iteration 

10 

lt 1 

•_(' 
I 

' ·,· 

method. Namely, we solve the equation with the static potential V.t(r) = kr+c 

and determine the eigenvalues MJtl. At the next step, these static values are 

substituted into the potential (19) in order to determine the corrected spectrum 

which, in its turn, is used as an input in the next iteration. We have checked 

that typically after 10,--15 steps the iteration procedure converges for most low­

lying heavy quarkonia energy levels. 

In table 1 the results of calculations of the dynamic retardation corrections 

to the heavy quarkonia mass spectrum are presented. In these calculations, 

the parameters k and c were taken to be k = 0.21 GeV2, c = -1.0 GeV. The 

constituent quark masses were chosen to be me = 1. 78 Ge V and mb = 5.10 Ge V 

in order to fit the J/'ljJ and i masses. As we see from table 1, this set of 

parameters gives reasona:ble description of the heavy meson mass spec;trum 

in the static approximation. As has been expected, the dynamic retardation 

corrections turn out to be small ( typically a few per cent) for all low-lying 

quarkonia states given in this table. 

To check the consistency of the numerical methods applied to solve the 

problem under study, we have repeated our calculations for the "truncated" 

quasi potential 

~;(,,<a) - { 
k/EB sin EBr + cJo( f.Br), 

k'r + c', 

r < ro 

r > ro 
(26) 

with f.Bro < --;r /2 and the choice fork' and c' guarantees that v:(r, lB) along with 

its first derivative is continuous at r = r0 • Equation (7) with the quasi potential 

(26) obviously has the solutions since it grows at the spatial infinity instead of 

the oscillating behaviour revealed by the quasipotential V,,(r, EB) (19). However, 

we have numerically checked that for the low-lying states the mass spectrum 

obtained with the use of the full quasi potential (19) almost coincides with that 

obtained from the truncated one (26), provided f.Bro is sufficiently close to 

--;r /2. Consequently, the existence of stable solutions of eq. (7) with the full 

quasipotential (19) has been verified independently. 

Next, we have checked the consistency of the iterative method used to han-· 

die the nonlinear dependence of the obtained quasipotcntial on the binding 
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Mesons jPC N2s+1 L1 1 2 3 4 

cc 
77c(2.980) o-+ 11s0 3.095 3.204 0.109 3_5.10-2 

77~(3.590) o-+ 21s0 3.690 3.739 0.049 1.3-10-2 

Jji/J(3.097) 1-- 13 S1 3.096 3.204 0.108 3_5.10-2 

ij,,'(3.686) 1-- 23 S1 3.691 3.742 0.051 1.3-10-2 

hc1 (3.526) 1+- 11A 3.445 3.460 0.014 4.2-10-3 

xc0(3.414) o++ 13 Po 3.445 3.460 0.014 4.2-10-3 

Xc1 (3.511) 1++ 13 A 3.445 3.460 0.014 4.2-10-3 

Xc2(3.556) 2++_ 13 A 3.445 3.461 0.014 4.2-10-3 

bb 

71b o-+ 11s0 9.463 9.619 0.156 1.7-10-2 

77, o-+ 21s0 9.899 9.966 0.067 6.8-10-3 

Y(9.460) 1-- 13 S1 9.463 9.619 0.156 1.7-10-2 

Y'(l0.023) 1-~ 93,., 
- .J1 9.899 9:966 0.067 6.8-10-3 

T" . 1-- 13 D1 9.938 9.993 0.055 5_5.10-3 

Y"'(l0.355) 1-- 33S1 10.250 10.255 0.005 5.1-10-4 

y1v 1-- 23 D1 10.277 10.291 0.014 l.4·10-3 

hb1 1+- 11A 9.720 9.835 0.115 1.2-10-2 

Xb0(9.860) o++ 13 Po 9.720 9.835 0.115 1.2-10-2 

Xbl (9.892) 1++ 13A 9.720 9.835 0.115 1.2-10-2 

Xb2(9.913) 2++ 13P2 9.720 9.835 0.115 1.2-10-2 

hbl 1+- 21A 10.097 10.109 0.013 1.3-10-3 

Xbo(l0.232) o++ 23 Po 10.097 10.109 0.013 1.3-10-3 

Xbi(lQ.255) 1++ 23Pi 10.097 10.109 0.013 1.3-10-3 

Xbil0.268) 2++ 23 A 10.097 10.109 0.013 1.3-10-3 

Table 1. The dynamic retardation corrections to the heavy quarkonia mass 

spectrum 

1) The meson mass in the static approximation, M;;'> (GeV) 

2) The meson mass with an inclusion of the retardation effect, Mj;et) (Gev) 

3) The size of the retardation correction, M};et) - M}:') (GeV) 

4) IM};etJ - M;_:'>lf M1st> 
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energy of the meson. To this end, we have substituted the trial value for lB in 

the quasipotential and determined the output value of the same quantity from 

the equation. Varying the input energy by a small step, and solving the equa­

tion at every energy, one can determine a fixed point, where the input energy 

coincides with the output one. We have verified that the iterative solutions for 

the low--lying states, listed in Table 1, are obtained in the fixed point method 

as well. 

Finally, we have checked the sensitivity of the approach to the choice of a 

concrete form of the confining potential. To this end, we have repeated all the 

calculations using the oscillator kernel 

w2 
V 0 (r) = -r2 + C st 2 . (27) 

with w2 = 0.05 GeV2, c = -0.64 GeV, me= 1.75 GeV, mb = 5.03 GeV. The 

results for the relative size of the retardation corrections ( not listed in Table 1) 

are almost identical to those for the case of linear confinement. Consequently, 

within the prescription chosen for the relativistic generalization of the static 

confining kernels (12) the reasonable result for the magnitude of the retardation 

effect is obtained irrespective of the choice of a concrete confining kernel. 

5 Discussion 

•J In the present paper, we have investigated a possible way of relativistic gener­

alization of the static qij interaction. As a result, a covariant Bethe-Salpeter 

kernel, depending on all the components of the quark relative 4-momenta, is 

obtained. It is shown that the choice of the stationary-wave boundary condi­

tions in the "relativized" kernel instead of the conventional causal one, enables 

one to overcome some difficulties which are inherent in the approaches used 

previously for the treatment--0f this problem. Namely, 

- The proposed prescription enables us to obtain the infrared-finite kernel 

which does not contain the dependence on the infrared subtraction scale. As 

a result, the static limit in the BS equation is unambiguous as well as the 

identification of the dynamic retardation corrections. 

13 



- The first-order quasipotential, obtained with the use of the Logunov­

Tavkhelidze method, contains the dependence on the binding energy. This is a 

remnant of the dynamic retardation effect in the first order. We have demon­

strated that the discrete solutions of the first order quasipotential equation 

exist at least for the lowest energy levels. Moreover, in the static limit, when 

m --+ oo, the energy dependence in the quasipotential is effectively eliminated 

resulting, as required, in the initial static potential. 

- With the use of the numerical methods we have demonstrated that, unlike 

the results obtained in refs. [9, 10, 11], the retardation corrections to the mass 

spectrum of heavy bound qq systems are small and do not depend on the details 

of the qq potential. 

However, the most important question which arises here consists in the 

interpretation of the obtained results. We would like to stress that all these 

results were obtained at the expense of the choice of an unconventional bound­

ary condition in the "confining" kernel of the BS equation. It seems to us that 

neither of these results can be obtained in the Euclidean formulation of the BS 

approach to the qq bound-state problem. Further, in the ladder approxima­

tion the problem reduces to the choice of a boundary condition in the effective 

"dressed" gluon propagator, which is believed to confine quarks. In literature, 

we can find several examples when the confined particles are quantized with 

the use of the principal-value prescription [14, 15, 21, 22]. (For the discussion 

of the analytical properties of the Feynman amplitudes in the 2D QCD, see 

ref. [22], where it is demonstrated that, although the confinement restricts the 

analyticity domaim of various Green functions corresponding to the coloured 

particles, the analytic properties of the colourless current correlators remain 

untouched). At the present stage, we can not claim that the presence of the 

long-range ( confining) force in the system leads to, or requires the modifica­

tion of the boundary condition in the propagator as compared to the usual 

case of short-range forces and with the particles, moving freely outside the 

interaction region. However, the results of the present investigation indicate 

that the conventional 3D picture of rising potentials etc. is directly obtained 

from the 4D BS approach in the static limit only provided the stationary wave 

14 

,' 
) 

boundary condition is used in the kernel which describes the covariant confining 

interaction in 4 dimensions. 
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