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1 Introduction

The inclusion of a higher-derivative extrinsic curvature term into the usual string has
led to a so-called rigid-string model which seems to be more relevant for a description
of the quark forces in QCD than the former Nambu-Goto string. The rigid string
is asymptotically free [1,2] and generates spontaneously a string tension, a realistic
interquark potential. It also possesses a reasonable deconfinement temperature (see,
for example, Refs. [3,4]).

Unfortunately, the extrinsic curvature produces a serious consistency problem
(5-7]. It is well known that higher-derivative theories must be quantized with an
indefinite norm, to avoid energies unbounded from below. The reason lies in an
unphysical "ghost” pole in the propagator of such theories. In the rigid-string model,
this pole arises from the second derivatives with respect to the string coordinates in
the action.

In order to overcome this difficulty, a new string action was proposed in Ref. 18]-
It has the form

1 .
A= §M2/ d26\/§gu D;g;’\_l__._b_z_/? Djzy , (1.1)
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where g;; is the metric tensor of the string world sheet z*(¢!) (z = 0,1) in a d-
dimensional euclidean spacetime (A = 0,1,...,d — 1) and the symbol D; denotes
the covariant derivative, while D? = D;D’ being Laplace-Beltrami operator. The
physics of such strings is governed by two constants M? and u? with dimensionality
of a squared mass.

The propagator arising from the action (1.1) has no unphysical “ghost” pole,
thus avoiding the main unphysical feature of the standard rigid-string model. In the
large-u? limit, we obtain from (1.1), after expanding the denominator in 1/p? up to
the first order, an action

A= M’/ &6 /G + 2—2/ &,/5 (D)’ | (1.2)

with the stiffness parameter a = —p2/M?2. In contrast to the model of Refs.[1,2],
. thus the stiffness parameter is negative. Physically, the length scale 1/ is of the
order of the thickness of a color-electric flux tube between quarks. The core of this
flux is not completely confined to the string but reaches out into the vacuum up to
a distance 1/pu.

In the one-loop approximation the string model {1.1) generates a linearly rising
interquark potential with the universal Liischer correction at large distances [8]. By
studying the model in the limit of infinite spacetime dimension d, the results were
obtained which were valid to all orders in perturbative theory.

In this note we examine the temperature behavior of the new string model in
the same limit. In particular, we are interested in the partition function near the
deconfinement transition in the presence of two static quarks separated by a large
extrinsic distance Re... The world sheet has a finite extent in the imaginaryQtinle
direction and is periodic with a period Bexe = Tipt, Where Tex is the extrinsic
temperature. In momentum space the integrals diverge in ultraviolet, thus requiring
the regularization. To account for the dynamical content of the action (1.1), we cut
all momentum integrals off at a physical momenta |g] = u. The length scale 1/u
specifies where the model in4Eq.(1.1) becomes unphysical. Such cutoff dependence

makes our theory only an effective ones what is also obvious from the nonlocal

character of the action (1.1).

The rest of the paper is arranged as follows. In Sec.2, the effective action of
" the model is derived in the framework of 1/d-expansion. In Sec.3, the saddle point
equations is solved in the analytic approximation valid for small to moderate tem-
peratures. In Sec.4, the results are discussed.

2 Action and free energy at finite temperature

Following a standard procedure of the 1/d-expansion. we introduce an independent
metric field g;;(€) and the Lagrange multipliers A7 (£) which enforce g;;(£) to be equal
to the induced metric

9i; = (‘),-r‘\(')j.r,\. (2.1)

Then we rewrite the action (1.1) as

R Y i e 1 N
A = 51‘” /d f\/?i[!]’ ((5.‘,‘ + D,’J‘ T_——“D,z—/l';;DJJa)

+/\ij ((')i.l‘"(')j.l',, - i + !S,‘j)] . (2.
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where x(€) (a = 2,3,. — 1) are the transverse string coordinates in'the para-
metrization x*(€) = {O {1 r*(€)). After integrating out the quadratic & fluctu-
ations, the expression (2.2) takes the purely intriusic form

d—2 iij . ..
A = & . )T (——Qi—&— = r),«A'JDj) +

1 — D?Ju?
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+‘_"£j/ (126\//!—1 (gii _ "\ilgij + /\ii) . (2.3)

with fluctuating g;; - and A - fields. In the limit d — oo, a saddle point of the
action (2.3) is expected with £-independent metric g;; and Lagrange multipliers A¥.

For symmetry reasous, the extremal values have the diagonal forms g;; = pdi;.
AV = X;¢Y, and the effective action becomes
d—2 T T
At = —‘-‘2 Rextlextv/Po )1 [fT_O + .f_\f' + _\fa"] . (2.1
The first term f7=% in brackets is the "free energy” density of the infinite svstem at
T =10 ' -
== T~"+M—(’\“+l+’\‘+1>. (2.5)
2 Po P/
where 2 , )
=0 q q 3.2 YE3! o g
= 1 A - M. 2
Jo /(‘hr)'* " (l ey q) , (=0

and we have introduced the notation M2 = 2 M?/(d - 2). The second term Aftis
the finite-size correction for a hypothetical isotropic average gap A = (A + M)/

dUJm dql wm + ql by 2 2
(T”‘_Z—OU / ) -/ ] [l + ( 1u )//l. V/\(va + q‘) .

- (2.7)




The third term A f2", finally, is the correction due to the gap anisotropy § = (A —
Ao} 2M: 4

o > dg; Wt 4 q-z R )
Af = -T / il m 1 2 2
! % 13 i i+ A+ )

1+ (Wi + qb)/n?

The temporal components qo are summed over all thermal Matsubara frequences

- m[ wnt o Mw? +¢f) = X5 (w2, - qf)]}. (2.8)

Qo = wy, = 27T m, ‘m o= 0, £1, £2, ..., (2.9)

owing to the periodicity of the world-sheet of the string, with a period Bexe = Ti7l =
(/PoT)™! along the imaginary-time axis.

The ultraviolet divergences in (2.6) can be regularized for an isotropic infinite
system at T = 0 which has g = A; = A. In this system, AfT and A f*" are absent
and the total "free energy” density is defined by Eqgs. (2.5) and {2.6).

At this point it is usful to establish the contact with the standard rigid-string
model. For this, let us replace ); as follows

i

/\,‘ = ~;,—2' - 1, 2 = 1,2 ‘ (210)
and, similarly,
3 Ui
A= —— -1, 2.11
z (211)

where 7; are some new coefficients of the Lagrange matrix A7 and 7= {0+ m)/2.
Then Eqgs. (2.5) and (2.6) become

- - 1
R

2a

(7’—". + 2‘—) : (2.12)

Po P

with

, (2.13)

Q3

~ d*q 2 - .
T=0 _ q 2 (N 2 _
0o = /(277)2 In [1 Sy -q (/ﬂ + 1)] + M

where & = (d—2)a/2. Going to large p?, we expand these expressions in powers of
1/p? up to the first order and obtain exactly the "free energy” density of the infinite-
size rigid string, if we insert there the negative stiffness parameter & = —p?/M?
(compare Ref. {4]):

7= [ o+ ) + o -

Q|

+ (@ + ﬂ) . (2.14)

2a \po p

lal<n

Note that the same limit is not straightforward after performing the integral in
Eq.(2.13) via an analytic regularization. The reason lies in arising the term

where A is an ultraviolet cutoff, which would diverge for large x2. In contrast, if
we take the limit of large u? at fixed A no divergence appears, as it should be. In
general, the limit g* — oo and the integfa.l over q in Eq.(2.13) do not commute.
An immediate conclusion is that all momentum integrals must be limited to the
momentum range

lal < g o (215)

(The physical meaning of the length scale 1/ was discussed in the Introduction). “
With the restriction (2.15) we neglect the quadratic infinity g%, as in analytic regu-
larization, and obtain for the momentum integral in Eq.(2.13) the expression

d*q ¢ 2 7 _ 7 pr(1 + 7/p?)
(2w)2“‘[1+q2/m — 1 (ﬁf“ Ty e R

(2.16)
In the limit 4? — oo, the right-hand side of Eq.(2.16) tends to

7} 12
1 4 2.1
47 (ln 7 1) ’ (2.17)

which is precisely the answer with the same cutoff for the momentum integral in
Eq.(2.14). Of course, our theory together with such cutoff dependence is an effective
theory what is also obvious from the nonlocal character of the action (1.1).

To exhibit the limit of the rigid-string model we replace the average gap 7 as
follows

. 5 n
n—»C—-——-—lJﬂmﬂ. - (2.18)
With use of (2.18) and (2.16), Eq. (2.13) becomes
=0 _ Af2 __ 5/& _Z_( f‘_2 )
LR>=M ———(1 T + In 7 +1}. (2.19)A

From (2.19) we see that the ultraviolet divergences cannot be absorbed into a re-
definition of the coupling constant & Renormalizability requires the limit p? — oo.
Nevertheless, we can introduce an analog of the usual dimensionally transmuted
coupling constant: ‘

- 2 e | — 2 4 1 )
(=u p[ (d—2)(1_§/ﬂz)a+l]’ (2.20)



and rewrite Eq. (2.19) as follows

R N SR ¢/ (/&
= M? ~ > 1p2 —
whetuogs  uogm O

Then the action of the infinite systemn has the form

—0 d 2
‘AT— = 5 Rextﬂext\/ PoM fT 0 i (2.22)

where no = = fjat T = 0, and 7 is replaced by  according to (2.18).
For a moment, we shall drop the first (Nambu- Goto—hke) term M? in Eq.(2
Then an extremization of (2.22) in po, p1, and ( gives fT=°(() = f,o({) and ¢
The T = 0 - values po = p; = p satisfy

VLo ya
* (‘ uz) [4vr = 5/#’)] ' (2.23)

Making a further renormalization p — 1 at T = 0, we conclude that with { = ¢ #
0, the surface has acquired spontaneously a string tension

¢.

21).

1

ap

R =

M= 22> (2.24)

When the Nambu-Goto-like term M? is added to fT=9, the extremization of (2.22)
in po, p1 and ( gives

IT0@) = 28 + fo§) + £
The remaining gap equation
oS, & o fa o _
CAm (0 (U~ {/?) (1= (k)

can be solved by ¢ = (e”, where v is the "normality” of the string. In the ordinary
" rigid-string model, v e” measures the relative amount of M? with respect to the
spontaneously generated string tension M 2 = (/4n. Here the parameter v brings
the above equation to the form

P P (R Y/ el Gl 1Y/
M = 2¢¥ - 9
y= e ) (2.25)

From the full action (2.22), we obtain the total string tension
d-2) (e 1=
Mg, = ( ‘ Gt 1)—'[——»—_“]—-
2 Am (1= ({/u2)e’]

We are now ready to calculate the finite-temperature correction to f7=0 at an
isotropic average gap X. which is given by the expression (2.7). The ¢ - integration
can be performed by using the cutoff (2.15)>again and replacing X according to (2.11).
Then the integral over ¢; in Eq.(2.7) becomes after analytic regularization

T dq, w4 q% 2 i .
—_— l m : _ w ! LA _
_/ 2 ﬂ- ! [1 + (u"m, + (112 )/}l2 ( " + {ll ) + .“2

= Jwl + Y +( =27 T (V2 + ym2 + (7). (2.27)

having gone from the quantity 7 to ¢ according to (2.18). The quantity Cr is the
dimensionless parameter

(2.26)

¢
&r = G (2:28)

Making use of (2.27), we can write AfT as

A T) = (T > - / d“’"‘) [Vor+ V2] =

m=-—00

=27 T? ( Z / dm) [sz + E,{ + Vm'zl . (2.29)

Both the sum and the integral in (2.29) diverge . but the difference is finite. The
expression (2.29) has been introduced and calculated in Ref. [4]. The answer can
be 1epresented in the different formns depending on which the size of ¢p. For small
r (large T, AfT(C, T) is given by

2 T? C 1672 2= s
AfTETY = = 4 T4fE - ~[111—757—~+1] + 2 S(C). (230

3

where S1({7) denotes the sum over m

X ) = ii [\/7112+E1‘—1n— —m—-} s

(2.31)

2m

which converges rapidly for small Cr. Addiug fo(C ) from (2.21) to (2.30) gives the
free-energy density for an isotropic gap :

TET) = fo+ AT = —-T‘ et S -



(T b, e @
—Me -+ =T 3
dr T2 & (1 = (/u?)  Amp?

Here we have introduced the natural temperature scale of the system:

T ——\/i (2.33)

LY Kol

i

When (7 becomes large, it is better to use another representation for A f7:

AfT(E.T) = ~ T‘ S1(¢r), (2.34)

3 ]f‘-l

where .§1(C.7-) is the dimensionless sum
~ K (27\'171\/—(;)
m=1 2#77;\/(.; .

Equation (2.34) allows us to calculate the behavior of AfT((, T') for small T'. Since
Ki(z) decreases exponentlally fast in large z, this limit reads

AfTGT) 2 -5 T2, | (2.36)

For large r (small T), there exist yet another useful formula for AfT(g, T). With
the help of the integral representation for K,(z ) we can rewrite (2.34) as

: . d .
AT T) = ~§T2 +2T / 5‘-’”1 In[1 ~ -t (2.37)

Note that any of the representdtlons (2.30), (2.34), or (2.37) for AfT has the func-
tional form

AfT(CT) = Cg((r). (2.38)
This observation will be useful in the following study of the approximation of an
isotropic gap.

3 Isotropic gap approximation

Iu this section the variational equations for the stationary point of the action (2.4)
will be derived in an approximation in which we assume the solution to be isotropic
in the space and imaginary-time direction. Thus weset § = 0, {( = (, and consider
the action d_9

Aiso = — Rext ﬂext V Pop fiso y (31)

<

ik e

with
fro = [T+ ASTCT) = A+ SolQ) ~ 4 (1 , 5_) +
L ¢a (1 1
= Colr) + (1 = ¢/n?) (Po * pl) ' (3:2)

For simplicity, we drop the Nambu-Goto-like term 412 (v = 0). In extermizing this

simplified action we must keep in mind that according to (2.28) the dimensionless

variable (T depends on py via

(r = _Spo_
4m2Te,’

and Tex should be fixed. Therefore, the extremization of A;, yields, upoﬁ applying
the derivative \/pg 0/0,/po:

(3.3)

Y ST I SR VL S
Jo(¢) 4 (1 /12> + & (1 -¢/u?) *
Coler) + 2 ro' ) + grters (-4 ) =0, @4

upon applying /p;0/0,/pr:
o) = (1 - i) S

n a (TTcTﬂ
¢a__ (1 _ 1) _
¢oler) + (1 = ¢/u?) (Po P1> > (33)
and upon applying 9/9¢:
a9 ¢ 1 l _ 1/&
Q)+ g — et et (3.6)

/& 11
A g(CT) . CTg(CT) 2(1 _ C/‘ug)‘l £0 P
The prime denotes the derivative with respect to {r. Adding and subtracting
Egs. (3.4) and-(3.5) results in the equations

w0 ~ &1 L)+ & - 2l ot + Carden =0, G

- (1 = {/u?)
- __G§/a 1 _1
(Crg'(¢r) S0 = ¢/ ( pl) . (3.8)
9



The second equation determines the difference betwee¥1 the extremal pp and p;. Sub-
stracting (3.7) from (3.6) we find that the minimum lies at

¢ ¢ ¢ja  _ _ ¢a <i+L =0 (39
1%(1_}72)_5+(1—C/#2) 2(1 = ¢/#?) \po pl>

Inserting this into the gap equation (3.6) gives

(%(fo + A7) = ~é - 2:#2 + _1/?/#2), (3.10)

and the free-energy density is simply
Jiso = JolO) + CalCr) = Jo(Q) + AST(¢T) = fiso - (3.11)
Heiice, the set of the variational equations for the stationary point (po, p1, ) of (3.1)

is reduced to (3.8)-(3.10). Depending on which of the forms of £, (2.32) or (2.34)

we prefer to use, the gap equation (3.10) reads

1 T T ya  1/a Loy =0, (312
whE st o gm  a- g e
RS Ve Lo =0 @)

ar ¢ (=0 (U=t 2

Here we have introduced the sum

ad 1 1 .
Silér) = X [—\/1,‘;2———_?(—; - ;n‘] ; (3.14)

m=1

in analogy to Sy of (2.31), and the sum |
Sz(CT) = 2 Z K0(27rm\/c;), (3.15)
m=1

in analogy to (2.35).
" Fron';g (3.7) and the other two equations (3.8) and (3.9), we can find the extremal

po and py. First, we reexpress (7 ¢'((r) in Eq. (3.7) as follows:
/ Ler 1 Ly _ 1L __l/é_____ (3.16)
(rg'(¢r) = Tt T (1 - #2> 7T (1 =¢/u?)

Substituting this into (3.8) and solving the set of equations (3.8) and (3.9) with
respect to pp and py, we derive

1/a 1 1 ¢ z ___2/_&___-1- I (3.17)
( -/W) 2 577(1 B E) TET =g o

10

e 1 1 4,
T o o = e 3.18
(l — C/ul) P L‘-.[Iao ( )

These equations determine the ratio

” 1 ¢ 2 2/a 1 TJ/I T _
— ==l - = ‘74‘"..—“.;“, - Jiso 3.19
Po [Qﬂ. ( “2) & (1 - (/,112) Qf ¢ ( )

At low temperatures

1 . 1 ¢ 1 l/a

= f, Sy B IRSIRL ) [ AL B
C iso IT—)O 471' ( '“2) & + (1 — C//[Z)

and the two equations (3.17) and (3.18) have a comuion limit which is equal to (2.23).
Extracting from (2.23) the coupling constant

. -
5= %“——(1 - (/Hz) (3.20)

@ = pl/n?)

and iuserting (3.20) into (3.17) and (3.18) gives

l Cext 2(1 - C/“z)(l - Eext/pz) [ C 2"T T] R
Lo glem Sl |~ =)~ =Zg1 3.2
Ao e (I = ¢/p2)? ( 1 ¢ 2
4 - C/uz)(lr - iext/l‘)) dn T (3.22)
12 (I = ¢/u?) ¢ :

Here we have gone over to an extrinsic value (oyy of ¢ defined with the help of the
metric factor p which is the common limit of pp and py for T — 0:

Cext = pC. (3.23)
We also have iutroduced the reduced quantities

A Po ”,1

Po = —, py==—. (3.2)
p P
We can now calculate the effective string tension as a function of the temperature
Texs. As before in Eq. (2.26). this quantity is simply defined by dropping the extrinsic
area factor Ry foye in the action (3.1) which is now given by:

- d—2)
M2(Tor) = & 3 )ﬂ\/popnf;fu. . (3.25)

Inserting (3.21) and (3.22) into (3.25), we obtain

Mt%)t( 1ext) = Mﬁn(O) M:‘.:(’I‘ext)- (326)

11



Here MZ2,(0) is the spontaneously-generated string tension

((l_ 2) Eext 1 __6/:“2 (-3 .)7)
2 4w 1 = Com/u?’ -

Mo (0) = My, =

The reduced tension M2, which is normalized to unity at Tex, = 0 is given by

o 1/2
‘]2 (ext (1 — C/,ul) ISO/<
tot & % i - — i)’ .
Cexe (1 Q//‘Z) fm (l—(}}:z)fl/ﬁ(en/uz) + 2_,,(1 - (/,ul) - |so/§
(3.28)

The extremal ¢ is determined by the gap equation (3.12) or (3.13). With use of
(3.20), the latter equation can be rewritten as

(ext C-ext (1 - E//tl)(l bt Cext/c—ext) . ;‘ N _ 0 329
C"’“ ' /‘2 (- C//ﬁ)(l ._, Eext//‘z) +a 2(QT) ) (3.29)

We see that Egs.(3.28) and (3.29), after removing the dependence of the coupling
constant &, cannot be expressed completely in terms of extrinsically renormalized
quantities. This is a consequence of the nounlocality of the theory. A full numerical
treatment of these equations requires therefore a specification of the scale u where
the model breaks down. However, the temperature dependence of the string tension
and the deconfinement temperature are completely determined in this model. The
temperature dependence of the string tension can easily be calculated as analytic
approximate expressions valid for small to moderate temperatures. We observe that
for small 7. the argument z of the Bessel function Ko(z) becomes large and, since
Ko(z) decrease exponentially for large z, the gap equation (3.29) loses the last term.
Then the ohvious solution of (3.29) is ¢ ~ ¢ with only exponentially small correc-
tions. In the limit of small T', also K;(z) is exponentially small and, with the gap ¢
being close to ¢, we find from (3.11) right away the approximation

—In

L ‘
(¢, T )“E—_l_,;f/pz 3T. (3.30)

Therefore, if T' exceeds the value

a_ (3 | L=de
- ,/4772\@‘1 AT (3.31)

which because of (3.27) is the same as

VBT =\ =g Maal0), (3:32)

the string tension turns negative and the confinement is destroyed.

12

In or('ier to compare (3.32) with experiment, we have to go to an extrinsically
renorimalized quantity. For this we calculate

Td, = VAT = oo /BT = \fbo (d sy Mo (333)

where the quantity po le at T can be determined from (3.21) as follows

1

= ~ 2, '
7 Lo (3.34)

Putting (3.34) back into (3.33), we find the approximate deconfinement temperature
d 3

Toe = thot(O) =~ 0.69 Mi0e(0) - - (3.39)

This value is not far from what is found in Monte Carlo simulations of lattice gauge
models (see, for example, Refs.[3,4]).

The full temperature dependence of the string tension in the approximation of
neglectmg the Bessel function follows from the the expression (3. 28) where [T is
given by (3.30). Therefore, we obtain

MIPP(T,,) = [L_(L_i/_/‘l B W_Tz]llz [i_(_l;g/"_z) ~T2]~1/?
4m (1 — Cexe/1?) 3¢ 4 (1 ~ Coxe/p?) + "_‘_]

. (3.36)
Here T is related to the extrinsic temperature T, as follows
2 > 2 -1 .
Te2x°=P0T2=ﬁo,5T2=ﬁT2 [1+4i_(1___c_"_’“/_'u_)T2 3.37
3 0= /i) - (340

Solving (3.37) with respect to 72 and inserting it into (3.36), we find the simple
approximate analytic expression for the string tension

. A d—2) L
M (Towe) = [ Tl 2Ty “‘] : 3.38
o 3 M,(0) (3.38)
In this approximation, the temperature behavior of the string tension of our model
coincides precisely with that of the Nambu-Goto string and of the previous rigid- -
string model.

In this approximation, there exist yet another representations for the string ten-

sion MZPP(T.y) and an approximate deconfinement temperature Td,. Inserting
(3.27) into (3.38) and (3.33), we obtain
1/2
M22Pe
tot (Text) ( 3Ce h Tezxt) . - (3.39)
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" This shows the deconfinement temperature to lie at

T8, = V6e VR, (3.40)

ext
where h is the dimensionless factor
h= (1= Gt/ /(1 = C/1). (3.41)
The string tension (3.39) and the deconfinement temperature (3.40) are rather
complicated functions of the temperature scale Texy = /7 T, where T is defined

by (2.33). This scale depends on the string tension at zero temperature Mtot(O)
2M2.(0)/(d — 2) in the complicated way:

szt _ Cext/ﬂ2
;12 T 16m2e2
et iz I i,
= £ ot ) _ (1 4 ar 2] 16w 2t | (3.42)
= 3977 <1 + 4w e ) \‘ < + 2 ) 7p

It is therefore better to use another temperature scale

Tt = VCot/4m e Vi = Tone/ V. ' (3.43)
Then the expressions (3.39) and (3.40) take the following form: :.-

. 2T 27172
"r2app — ==, 3.44
Mtot (Text) - |:1 6 (Text,l|> ] ) ( )
where . B v
:xt/Texth = V6e ~ 1.38. (3.45)

In order to compare the two temperature scales (3. 43) and (2.33), we introduce

the dimensionless constant
2

2
R S : 3.46
br = (4me)2T2 — ¢ ' (3.46)
For large p? and small T, the value of p4 is very large. Inserting (3.46) into (3.41),
and expanding h in powers of 1/u%, gives with good accuracy
hl—(p=1)/pr =1~ Ybten, (3.47)

where we have gone over to an extrinsic value of /‘?r with the help of a metricfactor

p. In the 1arge—pT oyt limit, the factor (3.47) is close to unity, slightly increasing

(7 > 1) or decreasmg (p < 1) the value of the model’s string tension: (3.39), in
comparison with that of the rigid-string model with a positive curvature stiffness. In
the case p = 1, the two versions coincide exactly.

In Fig. 1 we show the strmg tension (3.39) as a function of the reduced tem-
perature Tuy/Tex: in the large ,uTe . limit for various values of p (dots), where they
are compared with the positive rxgxd-strmg curve (solid lme) In the isotropic gap
approximation the two curves coincide.
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Figure 1: String tension of Eq.(3.39) as a function of the reduced temperature Text/Text. Dots
correspond to our tension for 5 > I or p < I, respectively, with B o = 100. The solid line
shows the string tension in the rigid-string model with a positive (urvature stiffness [4]. The curves,
as given by an analytic approximation neglecting the gap anisotropy, coincide.

"4 Conclusion

[n this paper we have evaluated exactly the finite-temperature string tension for the
new string model with negative stiffuess in the limit of large spacetime dimension d.
For the region of small to moderate temperatures we have found with large accuracy
an analytic approximation to the solution up to the deconfinement temperature. The
derived results for the effective string tension and an approximate deconfinernent
temperature coincide precisely with the corresponding ones of a pure Nambu-Goto
and spontaneous string. They are also not far from those extracted frout the Moute-
Carlo simulations of the lattice gauge models. Presumably, the auswer to the question
about which of the models provides for a better surface representation of the str ing
between quarks in QCD should be found in the study of the high- temperature limit
of the corresponding string tensions.
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