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1 Introduction

The Nambu-Goto string which is characterized only by tension and cannot represent
the color-electric flux tube between quarks. First, it is consistent only in unphysical
space dimensions. Second, the interquark potential has-an imaginary part at short
distances, this being a manifestation of a tachyonic state in the mass spectrum of the
string. Third, the flux tube has a finite thickness and a nonzero curvature stiffness.
For these reasons, Polyakov [1] and Kleinert [2] have proposed a rigid-string model
(also called smooth, or spontaneous string with stiffness). Investigations of this
model have revealed a number of appealing properties [1-9]: a realistic interquark
potential, asymptotic freedom at short distances, and a reasonable estimate of the
deconfinement temperature. Unfortunately, these positive results have married by
an unphysical “ ghost” pole in the propagator. This pole is generated by the second
derivatives with respect to the string coordinates in the rigid-string action. This
drawback has been emphasized in Ref. [2], and no way for overcoming this dn‘ﬁculty,
has yet been found [10-14].

In the present paper, a possible solution to this problem is proposed. A new
string action is set up which contains a simple rational function of the Laplace-
Beltrami operator on the string world surface. The new action is non-local and
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contains an infinite series of derivatives to an arbitrary order. The form of the
string action was suggested by studies of the energy spectrum of a magnetic flux
tube in a type-II superconductor in the London limit [15-17]. The results was then
- 'simplified to consist the essential features of this spectrum. It contains only one
parameter and exhibits a negative stiffness. The propagator arising from the new
action has no unphysical poles in contrast with the model of Refs. [1,2]. The absence
of such poles is intimately related with the negative sign of the stiffness.

Note, however, that it is impossible to avoid the consistency problem of the
rigid-string theory via a formal changing of the sign of a parameter corresponding
to stiffness. The action for such rigid string with a negative stiffness was derived
effectively from a field theory with spontaneous symmetry breaking as a first-order
correction to the Nambu-Goto action in powers of the tube width [18-20]. Even
though the propagator in this model does not contain an unphysical pole, neverthe-
less, contrary to our proposal, it still suffers from the lack of lower-energy bound
which is independent of the sign of stiffness.

The new model provides a basis for consistent perturbative calculations to be
done in this paper. -In the one-loop approximation we obtain a linearly rising in-
terquark potential with the universal Liischer correction at large distances. In con-
trast with the usual rigid-string model and with the Nambu-Goto string the potential
has no the square root singularity even for moderate values of a negative stiffness.
Certainly, the advantages of the new string model should also be investigated beyond
the scope of perturbation theory.

The layout of the paper is as follows. In Section 2, the new string action is in-
" troduced and its basic properties are discussed. In Section 3, the action is expanded
in powers of the transverse displacements, and a perturbation theory is developed.
In the one-loop approximation, the interquark potential generated by this string is
calculated. The Conclusion (Section 4) discusses the results and perspectives. Some
mathematical details in calculating the potential are given in Appendix A.

2 New string action
The new string model is described by the following action
M2 MENR [ar o iivow ] '“ |

where z#(€) with ¢ = 0,1,...,d — 1 are the string coordinates in a d-dimensional
spacetime parametrized by ¢, i = 0,1. We shall investigate the euclidean version of

the model. The induced metric on the string world surface is g;; = 8;z* d;z, and
g% is its inverse, while ¢ = det (g,,) Covariant differentiation with respect to & is
denoted by D;, and D? = D;D' is the Laplace-Beltrami operator

2L 0 =i 9
D* = /3 9 (\/§g 651') o (2:2)
The parameters My and Ag have the dimension of a mass.

Neglecting D? in the denominator in Eq. (2.1), we immediately obtain the
Nambu-Goto string with tension MZ. Expanding (A2 — D?)~! in powers of D?
and retaining only the first two terms, we arrive at the rigid-string model with a
negative stiffness — MZ/AZ. Note that despite this property, no instability problem
arises since the quadratic action is positive definite.

The length scale 1/Aq plays the role of a thickness of the color-electric flux tube
between quarks. Another length scale, an intrinsic thickness, arises naturally in our
model after performing a loop expansion of the action (2.1) and restricts the range of -
the internal string excitations to be short, since the long—ra.nge modes are forbidden,
and thus unobservable. The string has an intrinsic thickness due to virtual loops,
just like a magnetic flux tube in a type-II superconductor.

Obviously, the action (2.1) is nonlocal due to the operator D? in the denominator.
This is not a disqualifying property ~ we only remind the reader that the action of
Maxwell-Dirac electrodynamics is nonlocal in the Coulomb gauge. We could easily
introduce a set of auxiliary fields of(£) into the functional integral of the partition
function creating local action:

Auc = [P6/{oO D) + prmmat@ - DYoi@), @9)

which is completely equivalent to (2.1). In fact, there are local models in the physics
of biomembranes which give rise to action like (2.1) [15, 16]. However, for our
purpose the initial nonlocal action (2.1) will be more convenient.

3 One-loop interquark potential

For perturbatlve calculations we employ a Gauss para.metrlzatlon of the string world
surface

ﬁw—wezw- z1(0) = (€, u(9),
.,d — 1 describes (d — 2) - transverse dis-

The vector field u®(¢) witha = 2,3,.
placements of the string position vector zz 2%, ..., %Y. The components of the

two-dimensional vector £ = (€2, £!) will be also denoted by t and r, respectively. In

i=01. (3.1)



the parametrization (3.1), the induced metric g;; on the world surface of the string

is §
g = & + (wy), g7 = g7'[(1 + ui)&; — (wuy)],

u; = 0u/d¢, (3.2)
] 1 5 9 1 IRV
g = det(g;) =1+ u? + 5“’“" - ~2—(u,uJ) .
In the following, we treat the derivatives of u(¢) as small qu@ntities. Expanding up
to the fourth order in u, we obtain [21]

i

-1 1 1
\/_6 ~1 + -2—11.2 + gu?uz - Z(“i“j)z,

. . ,
L ~ 1+ -1—uf + lu?ui - = (uu;)?, (3.3)
i gt g T g
D* = 9 — [(uzm) — (waw)u? + (wwir)u? -
— (uawy) (uapw;) — (wiugg) (uur)] O,
where 9? stands for the two-dimensional Laplace operator 5 = &2Jot* + 9*/or?.
- Summation over repeated indices is assumed everywhere. Making use of (3.2) and

(3.3), we expand
L /a6 D0} — DD = e i
g VI~ it Vo 22
1 [CRCEN A 2) :
z—A—g(l—guiui+Z(u,uJ) s
\/ggij D;u® (A(z) — Dz)“l Dju“ ~ (34)
o 0+ Subyul — (o) ul] (8 = 8)7u3 — (0] — 0F)miw)

After substitution of the expansion (3.3) and (3.4) into (2.1), we obtain up to the

fourth order in u:

L Lo 1 . . .
A= M /d2§ {1 + %Agu; (A2 — 8% 'y — glu? — 2(uu;)’]+

2 _ A2 _ . B .
%[u? uj — 2(wu)wl (A - 0% 7'y — S (Ag_— %) (ukkuJ)uu} . (3.5)

The corresponding free energy contains the contributions from Feynman diagrams

" depicted in Fig.1. , .
In the quadratic approximation, the field u(£) obeys the wave equation

(A2 — M ohus() = 0. (3.6)
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Figure 1: The Feynman diagrams corresponding to the loop expansion (3.5).

It is an essential point that this equation has the same plane-wave solutions as the
usual D’Alembert equation:

Pu(€) =0 or K u(k) =0, (3.7)

a=23..,d-1.

The correlation functions of the equations (3.7) and (3.8) are. however. quite differ-
ent. In momentum space, this function has the form

A+ K2

LGy = 2P

(3.8)
in contrast to the usual string propagator 1/k2.

A quantum field theory in euclidean space with the wave equation (3.6) contains
two kinds of quanta, one with &> = 0, and another one with 2 = co. An important
property of the latter quanta is that they do not exist as free states. They influence
the system only as internal lines in Feynman diagrams. As will be shown below, tliese
quanta give a negative contribution to the total energy of the systeni. Their absence
in free states prevents the energy from the lack of its lowest bound. thus avoldiug an
unstability problem which arising usually in the higher-derivative theories associated
with nonlocality (see, for example, Ref. [22] and references therein).

The existance of the internal quanta in our model leads immediately to the con-
clusion that the description of string fluctuations with the action (3.5) is necessarily
restricted to the long wavelengths. This implies that, in addition to the thickness
1/Ao, the string has yet another length scale, an intrinsic thickness, due to vir-
tual loops, just like a magnetic flux tube in a type-1I superconductor. The internal
string excitations are restricted within a small range around the flux tube, since the
long-range interacted string modes are forbidden, and thus unobservable. This de-
scription of the quantum string fluctuations are very close to that of the fluctuations
in a type-II superconductor [23].

In the following it will be sufficient that the correlation function (3.8). fortu-
nately, has only a single pole at k2 = 0 and no unphysical poles in contrast to the
previous rigid-string model with a positive curvature stiffness. At large A2, the new
correlation function does not vanish but goes to unity. This requires sonic care in
the loop calculations. We define the interquark potential in the usual way

exp[-TV(R)] = /Du exp(—A™), T o oo,



where ATE is the euclidean action (3.5) for finite ranges (0, T') and (0, R) of "time”
z° = £° and coordinate z' = r, respectively. The functional integral should be done
with “field” variables u(¢) periodic in £ u(£°, £') = u(&® + T, €').

Confining ourselves to the quadratic approximation in (3.5), which is sufficient
to determine the interquark potential generated by the new string model in the
one-loop approximation, we obtain

1 [f 7 d—2
_ - 2 - -1
V(R) = Jim = L/dtofdrMo L A (3.9)
where G~1 is the operator generated by the quadratic part of the action (3.5)
. 4
-1 Y
¢ A~ 3?

This involves evaluating a single bubble diagram in Fig.1. In momentum space, the
trace Tr reduces to the following operations

T (dw
Tr... == [&5 . — 9,
f 2 27rz,,: oY

where the sum runs over the proper discrete values of the spatial component of k}.
Now Eq.’ (3.9) acquires the form ‘
V(R) = lim

T—00

T R )

1 C . d—2 .

- /dt/dr [M3_+ 5 f“] . (3.10)
o 0

Here (1/2)f™ is the density of the free energy of a single scalar field u®(§) with the

propagator (A2 + k?)/k? in the euclidean space

1 T dw w? + k2
R - _—_ - —_—
/ _2R¥_£2wlnw2+k5+A3' (3-11)

" The admissable values of the wave vector k, for the field u(§) are determined by
the boundary conditions. We shall treat a string connecting infinitely heavy quarks.
Then the field u(€) must vanish at the string ends. Therefore

k,,:'%, n= 41, £2,... . (3.12)

For the regularization of the divergences and their absorption in the renormalized
parameters of the theory, it is convenient to replace f® by the expression f+( FR—
f=), where f* means the same density of the free energy but for an infinite space
interval v .

d*k k? A2

o _ [OF 5 _ o . 3.
f o7 I o (L + 4 Lo) (3.13)

Here Lo is a logarithmically divergent integral

L - Pk 1 1 K
° - (27r)2k2+A3—47rn7\§’

and K is an ultraviolet cutoff.
We now write for f® the representation

= (- )= B+
m

1 ®, 0 oodw w? + k:
2R (Zm “_O/f") Sz arEem O
where the prime in the sum means that the term with n = 0 is absént. The

sum in (3.14) gives f® and.the integral over n reproduces f*.. In the analytical
regularization, the w-integration in (3.14) can be performed by the following formula

/;w; In(w? + a?) = Va?. (3.1.5)

Upon integration, the difference fR — £ reads
( - /dn) (Va2 = o %), (316

where A2, is the dimensionless constant, Afp = AJ R?/n*.
In fact, equation (3.16) is a regularized energy of the zero-point oscillations of

two kinds with frequencies (cb)n = v/n? and (th),, = 1/n? + Algz. The contribution oil

__R__oo_ﬂ-
Af == = 5

. (2 . )
-the frequencies w),. to the energy is negative. Nevertheless, this does not ruin the

consistency of the model, because the quanta with g),. do not exist as free states
(see analysis of the solutions to the wave equation (3.6) in the preceding Section). |

For the difference Af = f® — f*°, equation (3.16) gives a finite result because
the divergences in the sum and integral cancel with each other. After some calcu-
lations, whose details are presented in Appendix A, we cast the formula (3.10) for
the interquak potential into the form

T R
vim = i 7 [fir [+ 4520 v )] <

d=2{ w A Ao & '
= 2 —_— — ___g__()_ -1
MR — = [123 : ﬂ_?::ln I(,(2nAOR)]._ (3.17)
7



¢=f5-0
T ‘ ~— ..£=—§
v &L =~
1 . X
"T AUS ;.. 1.5 £ 2.5 T3

-2t

et - .

. Figure 2: The reduced potential {3.19), as a dimensionless function of MR, is shown for & =
—1, —5, —50. The dotted curves represent the potentials of the usual rigid string with @ = 1 and
the Nambu-Goto string, where @ = 0, respectively. The curves with a negative stiffness are seen
to lie upper than that with a positives ones. The square root singularity vanishes at the value
& = —50.

Here M? is the renormalized string tension

2
M? = M? - ‘12—2;\—(1 + 47 Lp), (3.18)
whereas, the coupling constant A2 receives no correction in one-loop level. The
linear term and its first 1/R - correction in Eq. (3.17) are analogous completely
to that in the Nambu-Goto model and in the usual rigid string. In contrast with
these models, however, the contributions to the interquark potential (3.17) from the
last terms are positive. Therefore the increasing of the absolute value of a negative
stiffness pushes the point of a square root singularity, where the potential becomes
zero, to more smaller values until its removing finally. The numerical computations
show that the square root singularity in the interquark potential (3.17) vanishes at
the value of a negative stiffness @ = —50 (see Fig.2).
In order to display graphically the behavior of V(R) we introduce the negative
stiffness & = —A2/M?, where M? = 2M?/(d—2), and define the reduced potential

2 1

RN

V(M,R), (3.19)
which is a dimensionless function of MR. This potential is plotted in Fig.2 for
various values of .

Equation (3.17) for the interquark potential is a convenient starting point for
the investigation of the behaviour at large R, since the modified Bessel function
K (z) decays exponentially for large values of z. In this limit, the first correction to

a linearly rising part has the form — (d — 2) 7 /(24 R) that is exactly. the universal
Lischer term ‘while the other terms vanish exponentially.

4 | Conclusion

The new string model proposed here reproduces, to lowest orders in the coupling
constant 1/AZ, the properties of the Nambu-Goto model. The string possesses a
linearly rising interquark potential with tlie standard Liischer correction at large
distances. The model has a negative extrinsic curvature stiffness, and no unphysical
pole in the propagator generated, despite the presence of a k*-term in an expression
(3.5).

Certainly, it is of great interest to study the new string model nonperturba-
tively in order to find out the critical dimension of spacetime. These issues will be
considered in forthcoming publications.
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Appendix A
One-loop calculation of the interquark potential

Here we present some mathematical details of the one-loop calculation of the
potential generated by the new string. For shortening the formulas, it is convenient
to introduce the function

S(z) = ( = /dn) Vn? +z. (A.1)
In terms of S(z) the difference Af is written as
Af = 5(0) = S(A3R) + 375 Aon. (A.2)

The last term in (A.2) removes the term with n = 0 in the sum in (A.1). Now we
represent the square root in (A.1) using the following identity

1 1 T —1_~(n?4z)t
—_— = —— [t dt, A.3)
2 +2)p  T(s)] ¢ (
where I'(s) is the Euler gamma function, [(—1/2) = —2+/7. Equation (A.1)

acquires the form

S(z) = R2F TRT(C1/2) /dtt'm -”( > - /dn) it (A.4)

Integration over n is easily performed but the sum should be rewritten by employing
the duality transformation {24]

3 - [n;wexp{—-—n } (A.5)

The result is

S(z) = R2[' 1/2 Z/dtt”exp( tr — " ) (A.6)

n-—-l 0

Using here the following integral representation for the modified Bessel function
K.(21/B7) = L %7::" exp( T — g) dz (A.7)
v 2 ﬂ J
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we finally obtain [24, 25]

VT & K (270 /T) ‘
S(z) = - — Zl—n—— (A.8)
n=1 : : ~
To calculate S(0) one should take into account that. K';(z) — z7' when z — 0.
Hence,
IR - )X
5(0) = 27 R? HZ::I n? 2nR?’ (A9)

where ((s) is the Riemann zeta function, ((2) = #?/6.
Now the difference (A.2) assumes the form

: A Aa &2 -
T4 S0, fo 211'11\'1(211 Ao R), (A.10)
— ‘

Af = —
f 12R? " 2R . =nR

from which the final formula (3.17) for the potential V' (R) follows immediately.
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