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1 Introduction 

The Nambu-Goto string which is characterized only by tension and cannot represent 
the color-electric flux tube between quarks. First, it is consistent only in unphysical 
space dimensions. Second, the interquark potential has an imaginary part at short 
distances, this being a manifestation of a tachyonic state in the mass spectrum of the 
string. Third, the flux tube has a finite thickness and a nonzero curvature stiffness. 
For these reasons, Polyakov [1] and Kleinert [2] have proposed a rigid-string model 
(also called smooth, or spontaneous string with stiffness). Investigations of this 
model have revealed a number of appealing properties [1-9]: a realistic interquark 
potential, asymptotic freedom at short distances, and a reasonable estimate of the 
deconfinement temperature. Unfortunately, these positive results have married by 
an unphysical "ghost" pol~ in the propagator. This pole is generated by the second 
derivatives with respect to the string coordinates in the rigid-string action. This 

drawback has been emphasized in Ref. [2], and no way for overcoming this difficulty 
has yet been found [10-14]. 

In the present paper, a possible solution to this problem is proposed. A new 
string action is set up which contains a simple rational function of the Laplace
Beltrami operator on the string world surface. The new action is non-local and 



contains an infinite series of derivatives to an arbitrary order. The form of the 
string action was suggested by studies of the energy spectrum of a magnetic flux 
tube in a type-II superconductor in the London limit [15-17]. The results was then 
simplified to consist the essential features of this spectrum. It contains only one 
parameter and exhibits a negative stiffness. The propagator arising from the new 
action has no unphysical poles in contrast with the model of Refs. [1,2]. The absence 
of such poles is intimately related with the negative sign of the stiffness. 

Note, however, that it is impossible to avoid the consistency problem of the 
rigid-string theory via a formal changing of the sign of a parameter corresponding 
to stiffness. The action for such rigid string with a negative stiffness was derived 
effectively from a field theory with spontaneous symmetry breaking as a first-order 
correction to the Nambu-Goto action in powers of the tube width [18-20]. Even 
though the propagator in this model does not contain an unphysical pole, neverthe
less, contrary to our proposal, it still suffers from the lack of lower-energy bound 
which is independent of the sign of stiffness. 

The new model provides a basis for consistent perturbative calculations to be 
done in this paper. In the one-loop approximation we obtain a linearly rising in
terquark potential with the universal Liischer correction at large distances. In con
trast with the usual rigid-string model and with the Nambu-Goto string the potential 
has no the square root singularity even for moderate values of a negative stiffness. 
Certainly, the advantages of the new string model should also be investigated beyond 
the scope of perturbation theory. 

The layout of the paper is as follows. In Section 2, the new string action is in-
- troduced and its basic properties are discussed. In Section 3, the action is expanded 

in powers of the transverse displacements, and a perturbation theory is developed. 
In the one-loop approximation, the interquark potential generated by this string is 
calculated. The Conclusion (Section 4) discusses the results and perspectives. Some 
mathematical details in calculating the potential are given in Appendix A. 

2 New string action 

The new string model is described by the following action 

M 2 A2 1 A =,__Q____Q_Jd2 " 1nggii D-xµ---D-xµ 
2 ', Vy • A5 - D2 J ' 

(2.1) 

where xµ(e) withµ = 0, 1, ... , d - I are the string coordinates in a d-dimensional 
spacetime parametrized by e, i = 0, 1. We sliall investigate the euclidean version of 
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the model. The induced metric on the string world surface is g;; = o;xµ o;xµ and 
gii is its inverse, while g = det (g;;). Covariant differentiation with respect to l; is 
denoted by D;, and D2 = D;D; is the Laplace-Beltrami operator 

D2 = _1 _!__ ( ;; o ) 
../9 ae; ../99 ae; · (2.2) 

The parameters Mo and A0 have the dimension of a mass. 
Neglecting D2 in the denominator in Eq. (2.1), we immediately obtain the 

Nambu-Goto string with tension MJ. Expanding (~ - D2)-1 in powers of D2 

and retaining only the first two terms, we arrive at the rigid-string model with a, 
negative stiffness - M5f A5. N~te that despite this property, no instability problem 
arises since the quadratic action is positive definite. 

The length scale 1/ A0 plays the role of a thickness of the color-electric flux tube 
between quarks. Another length scale, an intrinsic thickness, arises naturally in our 
model after performing a loop· expansion of the action (2.1) and restricts the range of 
the internal string excitations to be short, since the long-range modes are forbidden, 
and thus unobservable. The string has an intrinsic thickness due to virtual loops, 
just like a magnetic flux tube in a type-II superconductor. 

Obviously, the action (2.1) is nonlocal due to the operator D2 in the denominator. 
This is not a disqualifying property - we only remind the reader that the action of 
Maxwell-Dirac electrodynamics is nonlocal in the Coulomb gauge. We could easily 
introduce a set of auxiliary fields af(e) into the functional integral of the partition 
function creating local action: 

A1oc = j<Pt..Jg { af(O D;xµ(l) + 2 M~ Afi af(l) (A~ - D2
) a~(O}, (2.3) 

which is completely equivalent to (2.1). In fact, there are local models in the physics 
of biomembranes which give rise to action like (2.1) [15, 16]. However, for our 
purpose the initial nonlocal action (2.1) will be more convenient. 

3 One-loop interquark potential 

For perturbative calculations we employ a Gauss parametrization of the string world 
surface 

xµ(l) = (e0
, e, x2(t), ... , xd-l(e)) = (ei, u(O), i = 0,1. (3.1) 

The vector field ua( e) with a = 2, 3, ... , d - l describes ( d - 2) - transverse dis
placements of the string position vector x2 , x3 , ••• , xd-l. The components of the 
two-dimensional vector l; = ( e°, e1) will be also denoted by t and r, respectively. In 
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the parametrization (3.1), the induced metric g;; on the world surface of the string 

is 
i. -1 2 

g;; = o;; + (u;u;), g 1 = g [(1 + uk)o;; - (u;u;)], 

U; := 8u/8ti, (3.2) 

( 
2 1 22 1( 2 g = det g;;) = 1 + U; + 2u;uk - 2 u;u;) . 

In the following, we treat the derivatives of u(t) as small quantities. Expanding up 
to the fourth order in u, we obtain [21] 

... 12 122.l 2 V9 ~ 1 + 2 U; + S U; Uk .- 4 ( U;Uj) , 

1 1 2 1 22 1 2 - ~ 1 + -u. + -u-u - -(u·u·) ,J9- 2' 8'k 4 ' 1
' 

JJ2 ~ 82 - [(u;;uk) - (u;;uk)u] + (u;u;k)uJ

-(u;u;)(u;ku;) - (u;u;;)(u;uk)] ak, 

(3.3) 

where 82 stands for the two-dimensional Laplace operator 82 = 82 I 8t2 + 82 I 8r2
• 

· Summation over repeated indices is assumed everywhere. Making use of (3.2) and 

(3.3), we expand 

½v0gij n;e(A~ - n2t 1n;e ~· 
2

~5 hlk 

I_ (1 - ~ u2 u2 + ~ (u;u;)2
) A5 8 ' ' 4 ' 

Jg gij D;ua (A~ - D2)-1 D;ua ~ 

~ ((1 + ½ur)ui - (u;~;)uf] (A~ - 82
)-

1u; - u,:(A~ - az)-2(u;;u1)u,:1. 

(3.4) 

After substitution of the expansion (3.3) and (3.4) into (2.1), we obtain up to the 
fourth order in u: 

A = M5 j d2t { 1 + ½ A~ u; (A~ - 82
)-

1u; - ~ [uf - 2 (u;u;)2]+ 

~~ [u; Uj - 2 (u;Uj) u;j (~ - 82)-1Uj - ~~ U; (~ - 82)-2(UkkUj) Uij} . (3.5) 

The corresponding free energy contains the contributions from Feynman diagrams 
· depicted in Fig.1. 

In the quadratic approximation, the field u(e) obeys the wave equation 

(A~ - 82)-1 a2ua(t) = 0. (3:6) 
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Figure 1: The Feynman diagrams corresponding to the loop expansion (3.5). 

It is an essential point that this equation has the same plane-wave solutions as the 
usual D'Alembert equation: 

82 ua(O=O or.k2 ua(k)=0, (3. 7) 

a = 2, 3, ... , d - 1 . 

The correlation functions of the equations (3.7) and (3.8) are, however. quite differ~ 
ent. In momentum space, this function has the form 

. G(k) = A5 + k2 
k2 

in contrast to the usual string propagator 1/k2 • 

(3.8) 

A quantum field theory in euclidean space with tlw wave equation (3.6) contains 
two kinds of quanta, one with k2 = 0, and another one with k2 = oo. An important 
property of the latter quanta is that they do not exist as free states. They influence 
the system only as internal lines in Feynman diagrams. As will be shown lwlow, these 
quanta give a negative contribution to the total energy of the syslPm. Thc•ir abspnce 
in free states prevents the energy from the lack of its lowest bound, thus avoiding an 
unstability problem which arising usually in the higher-derivative theories associated 
with nonlocality (see, for example, Ref. [22] and references therein). 

The existance of the internal quanta in our model leads immediately lo the con
clusion that the description of string fluctuations with tlw action (a.5) is necessarily 
restricted to the long wavelengths. This implies that, in addition to the thickness 
I/Ao, the string has yet another length scale, an intrinsic thickness, due to vir
tual loops, just like a magnetic flux tube in a type-II superco11<luct.or. The internal 
string excitations are restricted within a small range around the flux t.uhf', since the 
long-range interacted string modes are forbidden, and thus unobsPrvable. This de
scription of the quantum string fluctuations are very closP to I-hat of tlw fluctuations 
in a type-II superconductor [23]. 

In the following it will be sufficient that the correlation function (:l.S), fortu
nately, has only a single pole at k2 = 0 and no unphysical poles in contrast t.o the 
previous rigid-string model with a positive curvature stiffness. At large f..·2 , the new 
correlation function does not vanish but goes to unity. This requires some care in 
the loop calculations. We define the interquark potential in the usual way 

exp [-T V(R)] = j Du exp (-Arn), T ➔ oo, 
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where ATR is the euclidean action (3.5) for finite ranges (0, T) and (0, R) of "time" 
x0 = ( 0 and coordinate x 1 = r, respectively. The functional integral should be done 
with "field" variables u(O periodic in ( 0

: u((0
, e) = u((0 + T, e ). 

Confining ourselves to the quadratic approximation in (3.5), which is sufficient 
to determine the interquark potential generated by the new string model in the 

one-loop approximation, we obtain 

1 [T R d-2 ] 
V(R) = }~~ T [dtfdrMJ + - 2-Tr!nG-

1 
, 

where c-1 is the operator generated by the quadratic part of the action (3.5) 

a2 c-1 - A5 - 82 • 

(3.9) 

This involves evaluating a single bubble diagram in Fig.I. In momentum space, the 
trace Tr reduces to the following operations 

Tr ... = ~ / dw L ... ' w = ko , 
2 2 7r n 

where the sum runs over the proper discrete values of the spatial component of k!. 
Now Eq: (3.9) acquires the form 

1 T R [ · d-2 ] 
V(R) = }~ T Jdtf dr MJ + - 2- JR . 

0 0 

(3:10) 

Here (1/2)JR is the density of the free energy of a single scalar field ua(() with the 

propagator ( A6 + k2
) / k2 in the euclidean space 

oo 2 k2 
R _ _1_ ~ J dw In w + n . 

J - 2 R ~ 2 1r w 2 + k';, + A5 
-oo 

(3.11) 

The admissable values of the wave vector ka for the field u(() are determined by 
the boundary conditions. We shall treat a string connecting infinitely heavy quarks. 
Then the field u(O must vanish at the string ends. Therefore 

n 7r 
kn = R, n = ±1, ±2, .... (3.12) 

For the regularization of the divergences and their absorption in the renormalized 
parameters of the theory, it is convenient to replace JR by the expression J00 + (JR -
J"°), where J 00 means the same density of the free energy but for an infinite space 

interval . 
oo J J1- k k2 A5 J = (

2
1r)2 ln k2 + A5 = - 4 1r2 (l + 41rL0 ). (3.13) 
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Here Lo is a logarithmically divergent integral 

f Jl-k 1 
Lo = (21r)2 k2 + A5 

and I{ is an ultraviolet cutoff. 
We now write for JR the representation 

1 ·[{2 

41rlnA2' 
0 

A2 
JR = J00 + (JR - J00

) ·= - __Q_ (1 + 41r Lo)+ 
41r 

l ( 
00 00 

) 

00 

dw 2 k2 
2 R n'f ~ -_l dn _l 2 7r In w2 : , ~ ; A5 , (3.14) 

where the prime in the sum means that the term with n = 0 is absent. The 
sum in (3.14) gives JR and the integral over n reproduces J00

• In the analytical 
regularization, thew-integration in (3.14) can be performed by the following formula 

J
oo dw 

2 
7r In (w2 + a2) = ,J;;j. (3.15) 

-00 

Upon integration, the difference JR - J00 reads 

D.J = JR - J00 = ~ ( E' - Jdn) (vtni '-- Jn2 + A5) 
2R n=-oo 

-00 

(3.16) 

where A5R is the dimensionless constant, A5R = A5R2 /1r2. 
In fact, equation (3.16) is a regularized energy of the zero-point oscillations of 

two kinds with frequencies vn =Rand vn = Jn2 + A5R. The contribution of 

-the frequencies Vn to the energy is negative. Nevertheless, this does not ruin the 

consistency of the model, because the quanta with V n do not exist as free -states 
(see analysis of the solutions to the wave equation (3.6) in the preceding Section). 

For the difference D.J = JR - J00
, equation (3.16) gives a finite result because 

the divergences in the sum and integral cancel with each other. After some calcu
lations, whose details are presented in Appendix A, we cast the formula (3.10) for 
the interquak potential into the form 

T R 

V(R) = }~ ~ fdtfdr [MJ + d; 
2 

(!
00 + D.J)] = 

0 0 

2 d - 2 [ 1r Ao Ao ~ _1 ( ] = M R - -- -- - - - - ~ n I<1 2 n Ao R) . 
2 12 R 2 7r n=l 

(3.17) 
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Figure 2: The reduced potential (3.19), as a dimensionless function of MR, is shown for a = 
-1, -5, -50. The dotted curves represent the potentials of the usual rigid string with a = 1 and 
the Nambu-Goto string, where a = 0, respectively. The curves with a negative stiffness are seen 
to lie upper than that with a positives ones. The square root singularity vanishes at the value 
a= -5o. 

Here M 2 is the renormalized string tension 

2 2 d-2A5 
M = M0 - ---(1 + 411"Lo), 

2 471" 
(3.18) 

whereas, the coupling constant A5 receives no correction in one-loop level. The 
linear term and its first 1/ R - correction in Eq. (3.17) are analogous completely 
to that in the Nambu-Goto model and in the usual rigid string. In contrast with 
these models, however, the contributions to the interquark potential (3.17) from the 
last terms are positive. Therefore the increasing of the absolute value of a negative 
stiffness pushes the point of a square root singularity, where the potential becomes 
zero, to more smaller values until its removing finally. The numerical computations 
show that the square root singularity in the interquark potential (3.17) vanishes at 
the value of a negative stiffness a = -50 (see Fig.2). 

In order to display graphically the behavior of V(R) we introduce the negative 
stiffness a = -A6/ J'v/2, where M2 = 2M2 /(d-2), and define the reduced potential 

v = 2 1 
- (d-2) M V(M,R), (3.19) 

which is a dimensionless function of MR. This potential is plotted in Fig.2 for 
various values of a. 

Equation (3.17) for the interquark potential is a convenient starting point for 
the investigation of the behaviour at large R, since the modified Bessel function 
K 1 (z) decays exponentially for large values of z. In this limit, the first correction to 
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a linearly rising part has the form - ( d - 2) 71" / (24 R) that is exactly the universal 
Liischer t~rm while the other terms vanish exponentially. 

4 Conclusion 

The new string model proposed here reproduces, to lowest orders in the coupling 
constant 1/ A5, the properties of the Nambu-Goto modeL The string possesses a 
linearly rising interquark potential with tlie standard Liischer correction at large 
distances. The model has a negative extrinsic curvature stiffness, and no unphysical 
pole in the propagator generated, despite the presence of a k4-term in an expression 
(3.5). 

Certainly, it is of great interest to study the new string model nonperturba
tively in order to find out the critical dimension of spacetime. These issues will be 
considered in forthcoming publications. 
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Appendix A 
One-loop calculation of the interquark potential 

Here we present some mathematical details of the one-loop calculation of the 
potential generated by the new string. For shortening the formulas, it is convenie.nt 
to introduce the function 

S(x) = 2~2 Ct= -_l dn) ~- (A.I) 

In terms of S(x) the difference l:lf is written as 

l:lf = S(0) - S'(A~n) + 
2 

~ 2 Aon. (A.2) 

The la5t term in (A.2) removes the term with n = 0 in the sum in (A.I). Now we 
represent the square root in (A.I) using the following identity 

1 1 00 

(n2 + x)• = f(s) jt•-le-(n2+x)tdt, 
0 

(A.3) 

where f(s) is the Euler gamma function, f(-1/2) = -2>/ir. Equation (A.I) 
acquires the form 

5' X = -3/2 -tr 2 
1T OO ( OO 00 ) 

( ) 2 R2 r(-1/2) l dtt e nI=oo -_l dn e-n t. (A.4) 

Integration over n is easily performed but the sum should be rewritten by employing 
the duality transformation [24] 

+= ~ oo { 1T2 } L e-n2t = - L exp --n2 . 
n=-= t n=-oo t 

(A.5) 

The result is 

1T3/2 oo 00 

S'(x) - -::-:----- °'"' Jd 2 ( n21T2) . - R2 f(-l/2) L::: u- exp -tx - -~ 
n-1 0 t 

(A.6) 

Using here the following integral representation for the modified Bessel function 

Kv(2/h) = ~ (jf Jxv-l exp (-,x - ~) dx 
0 

(A.7) 
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we finally obtain [24, 25] 

S(x) = _ ./x ~ K1(21r n ,.fo.) 
R2 L.. . 

n=I n 
(A.8) 

To calculate S(0) one should take into account that /{1(z) ➔ z-1 when z ➔ 0. 
Hence, 

1 C<l. 1 ((2) · 
S(O) = - 2 R2 L 2 = - ? R2 , 

1T n=I n ~ 1T 
(A.9) 

where ((s) is the Riemann zeta function, ((2) = 1r2/6. 
Now the difference (A.2) assumes the form 

1T Ao Ao ~ -1 , 
l:lf = - 2 R2 + 2 R + 1rR L..n A1(2nAoR), 

1 n=l · 
(A.10) 

from which the final formula (3.17) for the potential V(R) follows immediately. 
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