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On the Calculatlon of the Intcrquark Potcntlal Gencratcd
by a Strmg w1th Masswe Ends 5 ‘ :

}, Itise proposed to solve thc vananonal cquatlons dcfmmg the: statlonary po;nt:
-of the effcctlve actlon ofa strmg w1th massive cnds by means of iterative procedurc
"The obtamed so]utlon is used to. eva]uate thc strmg functlona] 1ntcgra] After. that
the correcnons to mterquark potcntlal gcneratcd by a strmg with masscs at ‘the ends
’arc calcu]ated The calculations show: that the higher corrections -prove to be’ smal] "
and zero- approxnmatlon falr]y well reproduccs thc mterquark potcntlal gcneratcd*
by the Nambu Goto strmg w:th masslve cnds O ; A “
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1. Interquark potential generated by the Nambu-Goto string with
point-like masses at ends was at first calculated in [1]. A standard’
method {3,4] based on variational estimation of the string functional
‘integral in D — oo limit was applied (D is the space-time dimension).
However, the variational equations obtained in 1] were not solved
exactly. Some approximation was used there. The aim of the present
note is to justify the applicability of such approx1mat10n

2. Let us remind briefly the derivation of the vanatmnal equatlons :
in the considered problem. The starting point is the well-known
formula

exp[~AV(R)] = / [Dufexp {~S[u]}, B—o0, (1)

relating interquark potential V(R) with the string functional inte-
gral. The Euclidean action of the string with masses at its ends is
given by the formula

"B R
Sﬁ[u]=M02/dt/dr\/det 6,]+6u8 u)
0 0 ;

ﬂ .

2 .
ma/\/1+ix2(t,r) =01, @

=S

where My? is the string tension, 8 = T~! is the inverse temperature,
- and string coordinates u(t, r) satisfy the periodicity condition

u(0,7) = u(g,r). G

In the present case 1/(D — 2) expansion is obtained by means of
the following procedure [3]. The composite fields oy; for 8;ud;u are
- introduced, and the constraint 6;; = d;ud;ju is taken into account
- through the lagrange multipliers &//,1,5 = 0,1. - To this -end, the

following presentation of a unit is 1nserted into the string functional
~ integral (1)
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After using the integral representation of é-function we obtain
exp[-BV(B)] = [[DullDallDo]exp {~S"lu, 01}, (8

where -
B
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+ Zma/dt\/l + u?(t,r,) (5)
=1 9 ,

i,j=0,1, 11=0, rg=R.

~ Functional integral over u can be done exactly as the action is -

quadratic in string coordinates. Functional integrals over o and ¢
are evaluated by variational method and in (D — 2) — oo limit they
are equal to the integrand value at the stationary point of the ac-
tion (5). The functional variables «;; and o;; are diagonal matrices
independent of ¢ and r, o = 6§04, 0;; = 6;50;.

The action (5) leads to the following equations of motion

DNy =0 i+ o' =0 ' (6)

and boundary conditions
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vV 140 0 ‘
 Integrating by parts the second term in (5) and taking into con-
sideration the boundary condltlons (7),(8) we arrive at the effectlve

actlon
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which is quadratic in string coordinates. This action does not include
exactly the string ends contributions. The latter are taken into ac-
count through the definition of the operator (—~A,). Therefore after
functional integration over u the term a
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appears in the effective action [1]. Here wi, are solutions of the fre-
quency equation

2mM02wa°\/1 + 0o ‘ (11)
miw? — MEO/1 =0y

following from (6)-(8). Taking into account (10) we obtam the effec-
tive string action

tan(wR) =
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B(D - 2) \/g‘%Ec(aﬂ, o0), (12)
Ec(a(.)_,ao) = %Zwk =
k
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is renormalised Casimir energy [1,2], depending on variational pa-
rameters o, ;00

The stationary point of this action is deﬁned from the varlatlonal
equations

/1+01 / 3E(a0,ao) o
1+00 MQR 8oy (14)‘ ,

where
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Solution of the nonlinear equations (14)-(17) should be substituted
in (12). This enables one to get the interquark potential in the string
model under consideration.

3. When solving the variational equations (14)-(17) in paper [1],
the following approximation has been used. The Casimir energy
Ec(a®,00), entering the right-hand sides of Eqs. (14)-(17) was cal-
culated at fixed values of variational parameters o and oy: o® =1
and oy = 0. In definite sense this corresponds to the nonrelativistic
approximation for quarks dynamics (1). In this approximation the
* derivatives of the Casimir energy over variational parameters o® and

oy are obviously equal to zero. Asa result, the solution of the system
(14)-(17) is

a® =1 -2}, a1=——1—— ay A

g1

- = -\ 18
\/1———2—):, "1 _2)\’ a1 H ~ ( )
where A = —(D — 2) E./(M2R) [3].
In general case the following expressions
0B (o, 00) _ 2M§VT+ 0y ]° dy (y —me™™
a0 mmo )y - 13 — e~ #(y — )Xy + 1)’
0E(a®a0) oM} (-
dog mmy/T+o0 ) (y =) — ey —m)*(y +n)’

: (19)
should be substituted in the right-hand sides of (14)-(17). Here
n=a T+ ooMZR/m.
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Fig.1. Interquark potential obtained by means of the iterative so-
lution of variational equations system (14)-(17). Curve’s numbers
are equal to the number of iterations. The curve 0 corresponds to
zero approximation (a® = 1,09 = 0). The following dimensionless
parameters are used: p ="MyR, p=m/M.



Now we are going to construct an iterative solution of the exact
equations (14)-(17). To this end we shall treat the terms 0FE./doy
and OF, /0y there as small corrections. To start. with, we take the
solution (18) as a zero approximation. Substituting it into the right-
hand sides of (14)—(17), we obtain some values of &°, !, a¢, 1. We
put them into the right-hand sides of (14)-(18) and so on. At each
step we shall calculate the effective string action (12) obtaining the
corresponding interquark potential and comparing it with the zero
approximation. ' ‘ -

The calculation results for different quark masses are presented
. in Fig.1. At large interquark distances the potential rises linearly

and corrections to zero approximation are small. For heavy quarks
(0 = m/My = 100) the iterative solution coincides with zero ap-
proximation at all range of available distances R > R,. For average
masses (4 ~ 1—10) and not far from R = R, the calculated plots os-
cillate near zero approximation with increasing number of iteration.
In the limit R — R, the corrections are not small and the proposed
iterative procedure may give no convergent result. For light quarks
i ~ 0.01 iterative solution insignificantly displaces as a whole to
~smaller distances in comparison with zero approximation. It is im-
portant to note that consideration of Casimir energy dependence on
a®, 09 does not lead to significant modification of the critical radius
R.. : ‘

Taking all this into account, we infer that approximation (18)
works sufficiently well for any quark mass and practically for all
distances between quarks.
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