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It is ·proposed to solve t,he variational equations, defining the, stationary pojnt 
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1. Interquark potential generated by the Nambu-Goto string with 
point-like masses at ends was at first calculated in [l]. A standard 
method (3,4] based on variational estimation of the string functional 
integral in D -+ oo limit was applied (Dis the space-time dimension). 
However, the variational equations obtained in (1] were not solved 
exactly. Some approximation was used there. The aim of the present 
note is to justify the applicability of such approximation. 

2. Let us remind briefly the derivation of the variational equations 
in the considered problem. The starting point is the well-known 
formula 

exp [-,BV(R)] = j[Du]exp {-SP[u]}, (3-+ oo, . (1) 

relating interquark potential V(R) with the string functional inte
gral. The Euclidean action of the st~ing with masses at its ends is 
given by the formula 

- /J R 

sP[u] = Mo2 J dtjdrJdet(oi~ + ajuaju) 
0 0 

2 /J 

+ L ma j ✓1 + u2(t, r) 
a=l O . 

i,j=0,1, (2) 

where M0
2 is the string tension, ,B = r-1 is the inverse temperature, 

and string coordinates u(t, r) satisfy the periodicity condition 

u(O, r) = u(,B, r ). (3) 

In the present case· 1/(D - 2) expansion is obtained by means of 
the following procedure (3]. The composite fields aii for aiua/u are 
introduced, and the constraint Oij = aiuaiu is taken into account · 
through the lagrange multipliers cii,i,j = 0, 1. · To this end, the 
following presentation of a unit is inserted into the string functional 
integral ( 1) 



After. using the integral representation of 8-function we obtain 

exp [-,BV(R)] = j[Du][Da][Da] exp { -S13 [u, a, a]}, ( 4) 

where · 

2 /3 R . 

S13 [ u, a, ai] = ~o j at jar [ 2 ✓ <let( oii + aii) + aii ( 8iu8iu - aii)] 
0 · 0 

/3 

+ t ma j atJl + u2(t, ra) 
a=l O 

(5) 

i, j = 0, 1, r1 = 0, r2 = R. 
\ 

Functional integral over u can be done exactly as the action is 
quadratic in string coordinates. Functional integrals over a and a 
are evaluated by variational method and in (D - 2) -+ oo limit they 
are equal to the integrand value at the stationary point of _the ac
tion (5). The functional variables °"ii and O"ij are diagonal matrices 
independent of t and r, aii = oii ai, aii = Dija i · 

The action (5) leads to the following equations of motion 

6 0 = ·a0 ii + a 1u" = 0 (6) 

and boundary. conditions 

m1 •· Lr 2 1, 
--;:::==ll = -1v.to a u 
Jl +ao • 

r = 0, (7) 

m2 .. ~,,. 2 1 , 
---:::==ll = 1V.LO (Y U 
Jl+ao 

r=R. (8) 

Integrating by parts the second term in (5) and taking into con
sideration the boundary conditions (7),(8) we arrive at the effective 
action 
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+ M 2
,BR [ J(l + ao)(l + ai) - ~(a0ao + a1ai)], (9) 

which is quadratic in string coordinates. This action does not include 
exactly the string ends contributions. The latter are taken into ac
count through the definition of the operator (-6

0
). Therefore after 

functional integration over u the term 

D-2 1 00 

--Trln(-60 ) = - Lwk, 
2 2 k=l 

(10) 

appears in the effective action [1]. Here wk are solutions of the fre
quency equation 

( R) 2mMJwa0 ✓1 + ao 
tan w = ---;;--;;:-----:--:;;,-~r-===, 

m 2w2 - MJa0Jl - do (11) 

following from (6)-(8). Taking into account (10) we obtain the effec
tive string action 

· S13 =,Mg,BR { J(l + ao)(l + a1)-~(a0ao + a 1a1)} 

/a1 + ,B(D - 2)y-;;oEc(a0
, ao), (12) 

where 

E (a0 a ) = ! '°' wk = C ._, 0 2~ 
k 

00 

_!_ Jay In {1 - e~2RY ( my - MJaO✓f+a)} 
21r my+ A,,fJa0Jl +a0 0 

(13) 

is renormalised Casimir energy [1,2], depending on variational pa
rameters a 0; a0 

The stationary point of this action is defined from the variational 
equations 

ao = {f+ai + D- 2 /a18Ec(ao,ao) v~ MJR V-;;o Bao ' (14) 
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a 1 = {I+ao, (15) v~ 
D- 2 r;;; 0 D.- 2 {c;f 8Ec(a0

, ao) 
ao = - M5Ra0 V ~Ec(a 'ao) + 2 M5R y-;;o oa0 ' (16) 

ar = D ~ 2 Ec(a
0

, ao) (l 7) 
M 0 R JaOaI 

Solution of the nonlinear equations (14)-(17) should be substituted 
in (12). This enables one to get the interquark potential in the string 
model under consideration: 

3. When solving the variational equations (14)-(17) in paper [1], 
the following approximation has been used. The Casimir energy 
Ee( a 0, ao), entering the right-hand sides of Eqs. (14)-(17) was cal
culated at fixed values of variational parameters a 0 and a 0 : a 0 = 1 
and a0 = 0. In definite sense this corresponds to the nonrelativistic 
approximation for quarks dynamics (1). In this approximation the 
derivatives of the Casimir energy over variational parameters_ a 0 and 
ao are obviously equal to zero. As a result, the solution of the system 
(14)-(17) is 

0 V-- I 1 a =l - 2-X, a = r---=--e-, 
✓1 - 2-X 

,x 
ao = l - 2-X' a1 = --X, (18) 

where .X = -(D - 2) Ec/(M5R) [3]. 
In general case the following expressions 

,-,.-- 00 

8Ec(a0, ao) 2M5Jl + ao id (y - TJ)e-2Y 
f)aO = 1rm Y (y _ TJ)3 _ e-2Y(y _ TJ)2(y + TJ)' 

0 

00 

.8Ec(a
0
,ao) = a

0
M5 Jdy . (y-TJ)e-

2
Y ' 

8ao 1rmJl + ao (y - TJ)3 - e-2Y(y - TJ)2(y + TJ) 
0 

(19) 
should be substituted in the right-hand sides of (14)-(17). Here 

TJ = a 0Jl + aoM5R/m. 
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Fig.I. Interquark potential obtained by means of the iterative so
lution of variational equations system (14)-(17). Curve's numbers 
are equal to the number of iterations. The curve O corresponds to 
zero approximation (a0 = 1, a0 = 0). The following dimensionless 
parameters are used: p = MoR, µ = m/Mo. 
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Now we are going to construct an iterative solution of the exact 
equations (14)-(17). To this end we shall treat the terms &Ee/&ero 
and &Ee/ &ao there as small corrections. To start. with, we take the 
solution (18) as a zero approximation. Substituting it into the right
hand sides of (14)-(17), we obtain some values of a 0 , a1, er0 , er1. We 
put them into the right-hand sides of (14)-(18) and so on. At each 
step we shall calculate the effective string action (12) obtaining the 
corresponding interquark potential and comparing it with the zero 
approximation. . 

The calculation results for different quark masses are presented 
in Fig.l. At large interquark distances the potential rises linearly 
and corrections to zero approximation are small. For heavy quarks 
(µ - m/ Mo = 100) the iterative solution coincides with zero ap
proximation at all range of available distances R > Re. For average 
masses(µ~ 1-10) and not far from R = Re the calculated plots os
cillate near zero approximation with increasing number of iteration. 
In the limit R --* Re the corrections are not small and the proposed 
iterative procedure may give no convergent result. For light quarks 
µ ~ 0.0l iterative solution insignificantly displaces as a whole to 

· smaller distances in comparison with zero approximation. It is im
portant to note that consideration of Casimir energy dependence on 
a 0, era does not lead to significant modification of the critical radius 
Re. 

Taking all this into account, we infer that approximation (18) 
works sufficiently well for any quark mass and practically for all 
disfances between quarks. 
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