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1 Introduction

- In this paper, we have calculated the matrix between the spherical and parabolic bases
of a dyon-dyon system {1] belonging to the same energy level. This matrix is a gen-
eralization of the Park-Tarter matrix known from the theory of hydrogen atom [2, 3]
to the case when the Coulomb center carries not only the electric but also magnetic
- charge. Like the Park-Tarter matrix, our matrix is expressed through the Clebsch—
" Gordan coefficients Cgy.45, however, in our case a # b, in contrast to the case of a
hydrogen atom. We have also traced the connection of the dyon—dyon problem with
that of a 4-dimensional isotropic oscillator. As is known (4], these problems are related
to each other by the Kustaanheimo-Stiefel transformation {5] supplemented with the
4th (angular) coordinate. We have shown that the coefficients €745 coincide with the
ones [6] of the expansion of the double polar basis over the Euler basis of a 4-dimensional
‘isotropic oscillator.

2 Dyon-Dyon System

A dyon-dyon system in the space IR? is described by the equation
8 e\ - My [, €
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where

and s = eg/he = 0,%£1/2,41,.... Each value of s describes its particular dyon-dyon
system. At s = 0, eq.(1) is reduced to the Schrodinger equation for a hydrogen atom.
When s # 0, equation (1) preserves O(4)-symmetry and therefore variables in it are
separated into spherical, parabolic, and prolate spheroidal coordinates [1].

* The system (1) possesses a singularity on the axis z3. It is also poss1ble to consider
systems with smgulantles either on the semiaxis z3 > 0 or on z3 < 0, i.e. they are
described by the vector potentials

#)
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and are connected with the system (1) by the gauge transformations

) _ f G g e (i))
AP = ar S, @) = @ e (5

. with the gauge function f(*) +2g arctan z,/z,.
The variables in eq. (1) are separated in spherical and parabolic coordma.tes.
In the spherical coordinates

zy =rsinfcosyp, zg =rsinfsing, = z3 =rcosd &)
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the wave function of the dyon-dyon system is of the form [7]
s PPN e
P (00) = R (1) 260 (0) 7=

where the functions Zk (8) and R km(r) normalized by the condition

/ sin0Z() (0)Z)(8)d6 = By, / o [RE), () dr =1
0 ) 0

are given by the formulae

Z(0) = N1~ cos0) (14 cos 6) P(""_s”'"'“l)(cose)
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Here P(*#)(z) are Jacobi polynomials; ry = A*/Mge? is the Bohr radius. The normal-
-ization constants N(’) and C(s) equal

NGO = (2k + [m — s] + [m + s} + DRIk + [m — s| + |m + s|)!]"/*
T gimeslHm b ID(k 4 fm - s| 4 LTk + im 4+ 5| + 1)

c

nkm nzrg/z (2k + |m — 5] + Jm + 5] + 1)}

.
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Quantum numbers run over the values n = 1,3/2,2,...,k = 0,1, ...k;naz, where

]m—s|+|m+s|;1'

kma:: =n-=-
" 2
The energy spectrum of the systém is of the form
s ’ .[‘4064 :
= 2w - e
In the parabolic coordinates _
R 1
2y = [€ncosp, =z =y/lnsing, z3=5(E—n) 4)

upon the substitution
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the variables m (1) are separated, which results in the system of equations

\od () [Mee,  (ms) _
\ df (€d§>+[2h2§_ I3 +6| =0
df. Mge* (m

\ af; o —

() Pt
where M .

’ e?
B+ By = =5 (5)

At s = 0, these equa&ions coincide with the equations for a hydrogen atom in the

parabolic coordinates [8), and consequently,

e V2 i
n,n,m(éy 7 ‘P) 2rg/2fm.m+s(£)fnz.m—s(77)\/ZF
where |
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Here n; and n, are non-negative integers
RN

[+1 h

_ m4s|+1 ho ﬂb _ |m=—s + P
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from which and (3), (5) it follows that the parabolic quantum numbers n,,n,,m and s
" are connected with the principal quantum number n as follows:

|m — s| +|m + s

n=mn; +n2+ 2

+1 (6)
i

3 Park—Tarter Generalized Matrix

We write the searched expansion in the form

BanEn,8) = 35 T 8820 ,0,9) (@
E=0
Our purpose is to calculate the coefficients T(mz,‘m, 1. (‘ th(‘ Park-Tarter generalized

matrix. The usual Park-Tarter matrix is the matrlx T,, at s = 0.
We substltute '

1nokm

E=r(l+cosb), n= r(i‘— cos 8),

into the left-hand side of expa.nsioﬁ (7), let r tend'to infinity, take the forinula

I'(c) «

F(—Tl; C, .t) ~ (—1)"m.’£ y

(z — o)
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/f
and the orthogonality condition for the function Z
formula

= (-1)*B{) % /

ningkm nln;km /

78

nyn2km

where : /

g |2kt Im—s|+|m+s|+ DRIk +m —s| + I + st
nyngkm — 22n+|m—a|+|m+s|]_‘(k + |m — sl + l)r(k + |m +/!S| + 1)

[(n-—k—iub;ﬂﬂl—1)!(n+k+m%#+—”)!r2

(n){(n2)IT(ny + [m + s| + D)I(ne + |m —fs] + 1)

and the second factor is equal to the integral /

1

I"(I:)ngkm = /(1 -z

)n:+|m—=l(1 + I)"‘+|m+’lP,;(Im_/sl/’rlm+"l)(z)dz
-1 4

/Yy
Then taking advantage of the Rodrigues formula [9)
P(u: ,0)( ) . ( ) (1

gy (L= 2"+ 2) g T ot z>“+"(1+z>"+"]

and the integral representation for the Clebsch—Gordz}n coeflicients [10]

G g [ (2c+ 1)(T + DT ~20)(c +7)! ]"2
sl = PkB=1 | (7 2a)(J — 2b)'(a—a)'(a+a)'(b BY(s + B)l(c —)!

—ct8
- :121+1+ /(1 I)a—u(l‘l'z)b ﬂ o [(1

(J=a+ b;l-c), we obtain

T:)knzma _‘(_1)“2+kC:71;b,0
where - ‘
nyt+ng+ |m+s| b ny+ng+[m—s| |m — s| + |m + s|
= m—— = ——, = 4
2 B 2 2
n,—n2+|m+sl\ ng—ny +|m—s| [m — s+ [m + s}
o= 2 » B= 2 T 2

At 5 = 0 formula (8) turns into the Park-Tarter formula, as would be expected.

)J—Zu(l +$)J—2b] dz

. into account. All thlS leads to the

®
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4 Dyon-Dyon System and 4D Oscillator

Let us demonstrate that if in eq. (1) -we make the changes

0 - - vy
s — _’a ) 1/’(1') — ’l,/)(I,’)/) = 1/’(1)\/4—”_ , ‘ (9)

(v € [0,4x)), it will transform into the Schroedinger equation for a 4D isotropic oscilla-
tor. .
Equation (1) in the spherical coordinates is of the form

20t 1 2 ay 1 3|
r2 or ( Br) ta [5111966’ (Smeae) t e sin® 6 9p?
2is cos 6 Oy s 2Mo - Y
r2sin® 8 % r2sin? 91/) to ( + —;) ¥=0 - (0
From (9) and (10) we have
18 (,0) J oM [, €
[ﬂar( 61') r_z]‘d)-'_?—(e-}_T)d)—O (11)

where

5 1 0 1 I lig lig

2 [ P = __9 i -~
I [sinﬂaﬂ ( nfas 6ﬂ) t S8 (aa2 B gady 872)]
Here we change the notation: § = 6 and @ = ¢. If we now pass from the coordinates -
r,a, 3,7 to the coordinates

u0+iu1;ucosge‘ia_;l, u2+zu3_usm§ea_;l s - (12)

with u? = r, take into account that

and introduce the notation

E = 4¢?, e =
then equation (11) will turn into the Schrédinger equation for a 4D isotropic oscillator

435 o) o=

k
whose energy spectrum is given by the formula
En = hw(N +2) ‘ - (13)
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Introducing the double polar coordinates

ug +iuy = pr1e Y, ug +iug = pre’? (14)-

from formulae (2), (4), (12), and (14) we get the relations
€ =2p}, n =2p;,
which lead to the formulae

® =1+, v =1 P2

5 . .
Yo (u, o, B,7) = 4"\/'—_"6ﬂ,-12!+16k,J—L1_2__1__J_M —M, 'j'“ +3031 6 M, 3,0y Pk (75 6, 0, ¥)

2 .
¢N;N2m;mz(Pl, P2,¥1, ‘/02) = 4"\/;‘“6711,N1 6n7,N26m'_1___1"‘ ;’"‘ 6.,'_1_2.'" ;’" ¢n1n2ms(€) 7,9, 7)

gehera.lizing the earlier results [6, 11].
Now we are able to write the expansion [6]

N/2
YN Nymyma (015 02,01, 02) = J}J/: W,{X{Vﬁl}nﬁlfmiwa,M,(u a, ﬂ,'y) (15).
where
WM = gregnm | (16) .
ao=N+|m;|"|7"”12|, bozN-lm;HImzl’ —J
wom Ntbml=lmal g —'lm;i+|mz| N, o= Il

The lower limit of summation in (15) and quantity ® are given by the expressions

1 .
Tnin = 3 (|My = M|+ My + M‘zD

I + [ma| s + o]
2 2 R
We conclude with the following two comments:
(a) Using formulae (2) and (12) and considering that r = u2 0 = B, = a, one can
easily show that

¢=N2+J—-

cxy = 2(uouz + urua)
g = 2(UOU3 - UIUQ)
.2 .2 2 .2
T3 = uj+ui—uj—uj

(uo + iul)(ug + tuy)
(ug — iup )(ug — iug)
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The first three lines are the transformation R* — IR® suggested by Kustaanheimo and
Stiefel for the regularization of equations of celestial mechanics [5]. Later, this trans-
formation found other applications, as well [12, 13]. This transformation supplemented
with the coordinate 7 was used for the “synthesis” of the dyon-dyon system from the
4D isotropic oscillator [4]. ,
(b) It is known [6] that diagonal (m; = m;) elements of the matrix WA M with
N even coincide with the Park—Tarter matrix. From formula (16) it follows that the
remaining elements of the matrix WAYNA:,‘,Q’;; have also a physical meaning: these are
elements of the generalized Park-Tarter matrix for the dyon-dyon system.

5 Degeneracy of the Energy Levels -

Let us discuss the problem of multiplicity of degeneration of the energy levels (3) and
(13). From formula (6) it follows that at fixed n, m and s the energy levels are degencrate
with the multiplicity :

_n_lm—s|+|m+s|
Inm * 9 :

For s > 0 the mult1p11c1ty of degeneration of levels (3) at ﬁxed and n is

= Y Gt X G -

fm2[s] Im|<[s]-1
where the upper limit of summation is determined from the condition g5, 20,

fm=—s|+|m+s<2m—-2

: Therefore, .

[s]-1 [n}-1
go = z (n—s)+2Z(n—m)z(n—s)(n-i-s) (17)

me=~[s]+1 m=|s]

The same result follows from analogous computations also when s < 0.
The quantum numbers s and n in formula (17) assume simultancously either integer
or half-integer values, and thus, we have

n—1

Z gn = ln(2n -1){2n+1)

s=—n+1

where g,, stands for the multiplicity of degencration of the encrgy levels (13) of the 4d
oscillator. Since N = 2n — 2, we arrive at the known result

1 ;
gN = E(N + 1)(N +2)(N +3)
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