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Our interest in the paper will be to consider the three- dimensional 1sotr0p1c oscil-
lator with coordinates belonging to a two— dimensional cone withaut the tip.. We show
that this system is dual to the cyon [1], i.e. a planar partlcle—vortex bound system

with the Coulomb attractive interaction. This cyon is a simple prototype for the
objects with fractional statistics (2], known also as anyons [3]. Anyons play an important
role in the field theory {4], in the fractional quantum Hall effect (5], and in hlgh—T
superconductivity [6].

Let u, and (u,8,¢) be Cartesian and spherical coordinates in IR®. Define points u,
as belonging to the half-up cone Cf, if 0 = 7/6 and u 7& 0. Consider the Schrodmger )
equation
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It is easy to verify that
o\ —é .Q?_._*_l.g__*_la_z (2)
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where r = u
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Combining (1) and (2), we obta.xn the Schrodmger equatlon in R?
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The tip of the cone has been removed (u > 0) and hence it is not possible to deform one
into the other two loops with different winding numbers. As a consequence, ¥ satisfies
the twisted boundary condition (7] ‘

U(r, ¢ +27) = e™Y(r, p) 4)

As a statistical parameter v can be arbitrary (v € [0,1]), our system is an anyon.In

particular, if v = 0 or v = 1, the wavefunction picks up a plus or a minus mgn and the

system acquires bosonic or fermionic statistics respectively. 3
Let us introduce the new wavefunction 1 instead of the previous one _

U(r,0) = p(r,p)e¥el? (3)
Equation (3) transforms into ‘
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with the periodic boundary condition (
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‘ We can see from (3) and (6) that the canonical angular momentum operator J -—16/ O
is replaced by the kinetic angular momentum operator J=J.4+s Heres=v/2 has
the meaning of the spin of our system. Thus, the spin s and the statistics v appear to
_be related in the conventiopal way (v = 2s).
. To clarify the physics assocxated with equation (6), Tet us 1ntroduce the Cartesian
coordinates

z;#rcoscp' zgzyr‘sinip . (8)

It is easy to verify by direct computation that (6) may be rewritten as a Pauli equation
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with the vector potential
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Here Z; and Z, are unit vectors aléng the z,- and the z;-axes, ®=hcv/2|e| and
Muw? E iy
€= 2" a=-eqg=, - , (11)

. Thus, our initial system is equivalent to the cyon,i.e. the system consisting of a point
charge particle moving on the plane in-the external static electric and magnetic fields

of a vortex localized at the origin: B=®6?)(Z). This system contimiously interpolates'

the bosonic (s = 0) and the fermionic (s = 1/2) systems which have been obtained from
the circular oscillator by the quantum Bohlin tra.nsforma.tlon (8].
Let us introduce the separation ansatz

(r,¢) = R(r)e™ [VV2r (12)

Here m is an integer because of the boundary condition (6). This is true. despite of
- the fact that the algebra of the two-dimensional rotations is abelian and in principle
an arbitrary constant could be added to the angular eigenvalues [9] By substituting the
wavefunction (12) into (6) we are led to the radial equation

@__}__l_dR (m+s)?

a
dr? ' rdr r? R+ (e + 7) R=0 (13)

and conclude that the radial function R and the energy spectrum ¢ of the bound states of
- the cyon may be estimated from eigenfunctions and eigenvalues of the two- dimensional
Coulomb problem [10] by the substitution m — m + s.

Thus, we obtain

R(r) = Ce"lzz".F(-—\/a/(—kro) +m+s|+1/2,2T +1,2) (14) v

where z = 2r/(~2)Y%ro, ro = B*/Ma,  =m + s, s = v /2.
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The corresponding energy is

) . Ma? - : ¢ 1)
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The value of the normalization constant

2 . “T(21 R
C= g 1*(211 T 1)\] (2:,(:: 2+Jn+ 5(1,3)- (16)
follows from the condition N o ‘ e
VROV = 1 \' Can
Eqﬁ;tioﬁs (15) and (11) may be colmbinedvto_‘ yield
| E=twn +2m+s+1) as)

We conclude that the energy levels for the isotropic oscillator on the cone are identical
with energy levels of the circular oscillator possessing, apart fromthe usual angular -
momentum m, also the intrinsic (topologxcal) quantum number # which gives rise to
the spin s == v/2 of the cyon. The spin s is localized near cyon:and the kinetic angular
momentum J = m+s is located at the spatial mﬁmty as for the ¢y on without attractive

- Coulomb interaction [11]:

We are now in a position to give explanation for the memuug of the termn *duality™
which we have used in the title of our paper. Equations (1) and (9) are connected with
each other by the ansatz (E,w) — (¢,«) and by the transformation exchanging the
coordinates (u;,u;) and (z,,z,) in the following way

) = 2un,, Ty = 2uuy
Now,in equation (1) the coupling constant w of the oscillator is fixed and the energy
E is quantized. The situation with equation (9) is inverse: here the cyon's coupling
constant a (or E) is fixed and the energy e (or w) of the cyon is quantized. According
to (11),these conditions are inconsistent among themselves and, therefore, the isotropic
oscillator on the cone and the cyon are rather dual than identical to cach other [1 2].
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