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1. INTRODUCTION

Recently an increasing interest has been expressed to the search of soliton-
like solutions because of the necessity to describe the elementary particles
like extended objects. In this work, the nonlinear spinor field is considered
in the external gravitational field of the Gédel universe. The Godel universe
exhibits a number of unusual properties associated with rotation [1]. It is
homogeneous in space and time and is filled with a perfect fluid. The main
role of rotation in this universe consists in the avoidance of the cosmological
singularity in the early universe, when the centrifugate forces of rotation
dominate over the gravitation and the collapse does not occur [2].

The paper is organized as follows: in Sec. 2 the nonlinear spinor field with
Ly = F(Is) in the external gravitational field Gédel universe is considered
and exact solutions to the corresponding field equations are obtained. In
Sec. 3 the properties of the energy density are investigated. In Sec. 4 this
field is considered in the flat space-time in order to determine the role
"of gravitation over the nonlinear spinor fields. In Sec. 5 we consider. the
nonlinear term £y = G(Ip) in the Lagrangian of the spinor field in the
Godel universe and we obtain exact solutions to' the corresponding field
equations. In Sec. 6 the analysis of the energy density distribution is made
for three different functions G(I,). In Sec. 7 we study this field in the
Minkowski space-time. A discussion and interpretation of our results is
presented in Sec. 8, together with a summary of our research.

2. NONLINEAR SPINOR FIELD WITH
Ly = F(Is)

The Lagrangian of the nonlinear spinor field reads
L= %(ﬁw V¥ -V, ) - mT + Ly, (1)

where the nonlinear term Ln = F(Is) represents an arbitrary function of
the spinorial invariant Is = S = WW; v* are the spinorial matrices in curve
space—-time defined by the tetradic vectors and the metric tensor components
in the following form [3]

7 =g el (Tma¥’, @)
Tlab =diag(+1’_°—1v -1, _1); (3)
where e form a set of tetradic 4—vectors which is given by the expression [4]

Juv = nabeﬁeﬁ (4)
§ BbueREegE RLTTRTYY
Qa<yAuX HecaezIzAEl
. BUSIHOTEHA




and §° are the flat space-time Dirac matrices; we have chosen them accord-
ing to Ref. [5). V, are the covariant spinor derivatives; they ate defined as

follows [6): ‘
V, =08, ~Tyu(z), - (5)

where T',(z) are the spinorial affine connection matrices of curve space-time,
determined by the relation

. 1
Cu(z) = 1 gpﬁ(apez -ep — I‘ﬁ,)-ya'y"; : (6)

i being the Christoffel symbols. ) , ‘
The metric of Godel universe is represented in the following form [7]

ds? = dt? — dz® + %e’ﬁ fs gy? 4 2¢O dy dt — dz*; M

here Q is the rotating angular velocity of the universe.
For the o* and -, we have :

N . 1 - i )
YTo=70; M= T2 = _\/—ieﬁnz(ﬁ'fo +72); T3=T3 V5 =T8S

PR VI A= = VR =

i - . ,
P = =2 Eurse "Y' =705 ®)
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where ‘Eupar = /—9€uvar and gg123 = L. . )
Consequently, the spinorial affine connection matrices become

Q Q
2. T ==3%% Ty=-—Fx V2Qzz120. T4 = 0. 9
v 1 2 T 2 '2\/56 7 3 (9)

The set of field equations corresponding to (1) is

' F
i—y“V,,‘I’—m‘I’+?—-==0, [

oy
= — OF.
iV ¥yt +m¥ — ¥ =0. (10)
. ¥,
We choose ¥ = g:’ cand Yoz, y, 2, 0) = ve(z), where o = 1, 2,3, 4.
A : '

For the first equation of (10) we obtain the resultant expression

7' 8o+ —2—(70—7172~+ V27 + i(m — F'yu =0, (11)
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where F' = %. ‘Consequently, for the v, (z) one gets the next set of equa-

tions . .o
v4+75v4—1(—2——m+F’)u,:_—.0,

v+ Fvs+i(§+m=F)v; =0,
v’2+%v2-—i(‘2—l+m—F’)v3=0.
v’1+7n§v1‘+i(%—m+vF’)v4=0.

(12)

From (12) we obtain the following relation for the invariant S = ¥¥ =

- L
(3] v1+ V2 V2— V3 v3— V4 V4!

ds ‘
=+ V2QS =0, (13)
which has the solution )
S= Cle"ﬁn’, C, = const. , {14)

From (14) it follows that F[S(z)] is a function of the x variable.

With the transformation uq(z) = va(:c)e’n"/ﬁ, the set of equations
(12) becomes

uy +i(m— & - ®)u; =0,

uy +i(m + & — ®)uy = 0,

uly —i(m + & = ®)ug =0, (15)
ul—i(m - % —®)uy =0,
where ®(z) = F'(S). From (15) we obtain
uyti(m—$ = ®)\/a} —u3 =0,
uyxi(m+ § - @)y/a —ui =0,
u’2$i(1n+%—-®) a - ul =0,
u’lxi(m—%——d)) ai —ui =0,
where a; and ay are constants. The solutions of this syst.em ar\e
u; = %a, cosh[f (z)],
up = % h{é , X
2 as COS][ 2(1,')] (16)

ua = Ziapsinh{f2(z)],
uq = *ia, sinh[6;(z)];

where 6, = (%—m)x+fd>dz+b1 and 8, = — (%+m) r+ [ddz 4 b
by, by = const. _
Thus, the general solution corresponding to equations (12) has the form

v = :tale’n’/ﬁcosh[()l(x)],
vy = :tage“n’/‘/gcosh[ﬂg(z)],
vy = :}:iaze_n’/ﬂsinh[ﬂg(r)],
= :l:iale‘n’/ﬁsinh[ﬂl(;t)],

(17)



We have obtained exact one-dimensional solutions to the set of field equa-
tions (12); the general solution contains four integrating constants: a1, az,

by, b2. For the invariant S =51 v+ Up vg— U3 v3— 54 vs we have
S = (a} + a3)e” V22, (18)

which leads to C = a? +dl.

3. ENERGY DENSITY DISTRIBUTION

In this section we investigate the energy density distribution of the nonlinear
spinor field along the z axis and determiine the properties of the solutions
in the Godel universe. The energy—momentum tensor corresponding to (1)
is ‘

T = %(TIT-," V¥ + Ty, VAV — VAT, ¥ - V, 094 0) = 6L, (19)
For the zero—compbne_nt of the energy-momentum tensor we obtain
T = SF'(S) — F(S). (20)

In order to determine whether the solution of the nonlinear spinor field is
a soliton-like one, it is necessary to analize the distribution of the energy
density per unit of invariant volume, i. e. ¢ = T2./Pgl|, where 3¢ is the
determinant of the matrix containing only the spatial components of the

metric tensor. Since \/|3¢| = 715 eV29% then for ¢ we have the following

relation
c= /R d5\S

The total energy Er of the nonlinear spinor field is defined by the formula

(by integrating within the unit limits of the y and = axes) .

i o (F\[°
= Sgldz = =~ (= )| - 22
B= [ mVRlie= 22 ()| (22)
—o0 .
In order to obtain a finite value of Ef it is necessary to choose F(S) in an

appropriate way. For example, if

A (s

F S)== - 23
() n [L+(S/C))]" - ()
where A is the nonlinear pérameter and n'> 1, then Ef is

E= 2. (29

S d (F) | | )

In this way we have obtained a nonanalytic dependence of ; it means that
when € — 0 (transition to Minkowski space-time) the total energy of the
nonlinear spinor field tends to infinity: EFr — co. An important peculiarity
in this expression is that Ef is directly proportional to A, so when A = 0
(the case of the linear spinor field), the total energy is also equal to zero.
On the other hand, by susbstituting (23) in (21) we obtain

’ Y ,e—n\/_inr
= —=— o,
V2 1+ e—\/fm-)nﬂ
From (25) follows that £ has a maximum when
1

ZTmax = ———— lnn
max ﬁQ
and has the following asymptotical behaviour
c | ev2as _, 0, . — —00,
™2 0 1 oo,

(25)

(26)

i. e., the energy density per unit of invariant volume is regular and localized
in the vicinity of its maximum. Thus, from (24) and (26) one can deduce
that the solutions of the considered spinor field with Ln in the form (23)
possess localized energy density and finite total energy, i. e. are of soliton—
like type. The qualitative dependence of ¢ along the = coordinate is plotted
in Fig. 1.

&

X
Fig.1 Qualitative distribution of the nonlinear spinor field energy density
per unit of invariant volume along the z coordinate.



When n = 1, € is a symmetric function with respect to zmax = 0. In
this case the rotation axis passes through the maximum of the localized
distribution of the energy density (across its center) and for this reason the
soliton-like configuration is not deformed. In all the other cases n > 1,
Zmax # 0, so the rot,:dtion axis does not pass through the maximum and this
fact leads to the deformation of the soliton-like objects. This means that
when n = 1 we have an ordinary spinorial field configuration of soliton type
(8] and for the other cases (n > 1), deformed soliton-like solutions due to
the rotation of the universe. From (25) it also follows that when  — 0,
€ —const, i. e. there is no localization of the energy density. It means that
in the flat space~time there are no nonlinear spinor field configurations with
localized energy dens1ty by choosing F(S) in the form (23).

4. NONLINEAR SPINOR FIELD IN FLAT
SPACE-TIME

In this section we consider the nonlinear spinor field in the flat space—time as

it is interesting to know whether or not, this kind of field leads to soliton-like
. solutions in it. In this case the correspondmg set of field equatlons is:

vy +i(m — ®)v; =0,
v3 +i(m — Qv = 0,
oh — i(m — ®)vg = 0, @
4 v} —i(m — ®)vy = 0.
From (27) we obtain an equation for-the spinorial invariant S:

ds
=0

then S =const. and ¢ is also constant. Let us put M = m — $=constant.
Then from (27) we get the set of equations '
v — M?vq =0, a=1,2,3,4 (28)
Every equation of the set (28) has the solution -
Ve = Ca1eM? 4 Cope=M7,

where Cqy and Cyo are integrating constants. Then we substitute vg in the
set (27) and obtain the relation between integrating constants. Fmally the
solutions of the equatlons (27) adopt the form:

= C11eM% 4 Cpre~M*
‘vg = ClgeMI + sze_M:
vz = —i(CueMz —_ nge—M':)
vq = —i(CueM’ - CzleﬁMI).

i e e, =

In this case the energy density T9 is constant in the whole Minkowski

- space~time (see formulae. (20)-(21)), so the total energy of the nonlinear

spinor field is infinite for any function F(S). This means that for the equa-
tion system (27) there is no soliton-like solution since the energy density is
not localized and the total field energy is infinite. This conclusion agrees
with the previous result for Q@ — 0. Thus, we conclude that the external
gravitational field of the G&del universe is determinative in the formation
of soliton-like objects in the nonlinear spinor field.

5. NONLINEAR SPINOR FIELD WITH
Ly = G(Ip)
Let us consider the Lagrangian (1) with the nonlinear term Ly = G(Ip),

where G(Ip) is an arbitrary function of the spinorial invariant Ip = P? =
(1¥~°W)2. This Lagrangian leads to the following field equations

iy V¥ —m¥ + Z_—g— =0,

R -  0G '
iV + mb — 3 = 0. (29)
¥,
As before we chose ¥ = g-, and Yq(z, y, 2, t) = vo(x). where a =
) 3
¥y

1, 2, 3, 4; then the first equation of (29) adopts the form

Q \ e .
Y0+ (7°7'5 + V27 v+ imv + N(P)i"v =0, (30)

where N(P) = 2G’P and G' = ECL Consequently. for the v,(x) one gets
the next equation system ,

v4+7-v4—1(——m) vy — Nvg =0,
va+7§va+1(2 +m)vy— Nvg=0,
vé+%v2—i(%+m)v3+Nlrl:0,
v'l+%v1+i(%—m)v4+Nvg:O.

61

From (31) we obtain the equation system for the bilinear forms P, R =
1‘)2 v +1')1 v2+1‘)4 v3+;)3 v4 and S =0¥:
{ P +V2QP+2mR=0,

R+V2QR+2mP+2NS =0, (32)
S +V2QS+2NR=0.



In the Heisenberg’s nonlinear unified field theory [9] the mass term does
not exist since it does not have the meaning which it has in the linear theory.
So, for simplicity we omit m in (1) and consequently in (31) and (32). From
the new system (with m = 0) we obtain the following equation for P:

P'+V2QP =0,

‘hence we have

P = Cpe™V202 (33)

where C, =const. This result means that if one defines G(I,), then N(z)
will be a concrete_function of the z variable.
If va(z) = wa(z)e~?*/V2, then our equation system becomes:

w4——w1 Nws =0,
. w3+-—-w2—Nw4_.0,
wz——-w3+Nw1 =0, (34)

w1+7w4+Nw2_0

By suming and substracting the corresponding equations, we obtain the
next system for the new set of functions 1, = w2 + wy, 790 = wa — wy,
73 = wg + w3 and 7y = wy — w3:

5+ 8nz — Nig=0,
ny—Htng — Ny =0,

; 35

M+ e+ Ny =0, : (35)
Unp—8m+ Npy=0.

From (35) we get the following pair of equations

7%, —2N, 53— (Z - N24 N, n2,3 =0,
{ 3 2,3 (4 ) (36)

M4+ 2N 4 — (%i - N?- N:) 1,4 =0.

By -doing the transformations 7y 4 = p1'4e"de’ and 13,3 = Hg.aedeI,

then (36) takes the form

02 '
#Z - Tl‘ta = 0) a = 11 21 31 4 (37)
. The general solution for this system is
lla‘z C'crlemr/2 + Ca?,e-n:/zy (38)

where C,) and C,2 are constants.

g
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By substituting these solutions in (35) we obtam the following relation
between the integrating constants

Ca1 =iCri; Caz=—iCrz; Cs=—iCn; Cs2=iCr. (39)

Thus, the general solution to the equatibn system (31) (when’ m=0)1is
f 1',1 =1ec —ﬂz/\/—[ -[Naz (C11e%=/? + Croe™ nz/z)
— Nz (Cs em/z_*_c2 e—ﬂz/2)]
vy = §emeIVE [¢m [N 4 (0110512 4 Crpe=0e17) +
oy eder (Care®=12 + C”e—nz/z)]
va = _ig-fz/VI [ [ Ndz (C a2 — Cmé-n:/z) e
te dea: (CareR=/2 — O e-nz/z)]
i o=0z/VZ [ dez (Cu Ne/2 _ Ciz e=0/2) -

V4 = 35
der (C enz/z Cz e—ﬂz/Z)]

'.< © o (40)

[

\

Thus we have obtained exact solutions to the nonlinear spinor field equa-
tions (31) in the Godel Universe. The general solution contains four. inte-

‘grating constants: Cu, Clz, Ca,. ng We substltute the expressions of v,

inP= iU = i(v, ‘03 — ) U3+ vy Vg — vz v4) and then
= 2(C11Czz — C12Ca1)e™ V2=, (41)

In correspondence with (33) we have C2 = 2(C11C22 — Clzc')l)

6. ENERGY DENSITY DISTRIBUTION

In this case for the zero-component of the energy-momentum tensor we
have

T = 2G'Ip — G,

so, the energy density per unit of invariant volume adopts the form

e =V2C,Ip % (\/—GI_;> . (42)

For E; (by integrating within the unit limits of the y and z axes) we have

i (75)

(=]

(43)

[

400 - v
m=/mw@a=



If we choose G{Ip) in the form

oum - B VE

=~ n=1,23...,
I
n(1+ &) )
where ) is the nonlinear parameter, the total field energy takes finite values
A
Ef = —.
I~ 220 (44)

The properties of this expression are analogous to thevobtained ones from
(24). For the energy density per unit of invariant volume we get the following
asymptotical behaviour when z approaches plus and minus infinity:

—2nV 20z .
c= 3 e {0, z — 4o, (45)

A —
(1 + e~2V20z)n+1 0, = — —o0.

Thus, we have obtained again soliton-like solutions since the total field en-
ergy is finite and the energy density ¢ is regular and localized in.the vicinity
of its maximum Zmax = — 1"2'(‘1‘. When n = 1 the soliton-like configuration is
symmetric with respect to Zmax = 0, whereas n > 1 the soliton-like obj'ects
are deformed due to the rotation of the universe as in the Ln = F(I §) case.
'ghe qualitative distribution of ¢ along the z axis also corresponds to the
1g. 1.
Let us consider the following nonlinear term in the Lagrangian (1):

In(1+ Mp)”
VIr

By substituting (46) in (43) one gets the following expressibn for the total
energy

Ln=G=- n=1,223,... (46)

nC'_,n\
‘ E; = 20 (47)
For £ we have _
In(1 + Mp) A 0, z— oo
£= n\/—2-C - — ’ ’
’[ Tr 1+x@] {o,z-fm. (48)

So, once more we have obtained soliton-like solutions, but in this case all the
soliton-like configurations are deformed due to the rotation of the universe.
By choosing G in the form

G'=[Ip = In(1+ MWIp), (49)

we obtain the next expression for Eq

=2 ‘ (50)

£

J—-1
v

et

whereas the expression for the energy density is the following

ez_@[ln(wwf?)_ A ]_,{0, roto0, (g
NIRRT 1+ A/Ip 0, z— —ox, _

its asymptotical behaviour is analogous to the (48) one; so we get equivalent
results: soliton-like objects since the Jocalization of the energy density and
the finite character of the total energy of the nonlinear spinor field are
achieved. These configurations are deformed due to the rotation of the
Gadel universe.

7. THE FLAT SPACE-TIME CASE"

The corresponding field equation system (when m = 0) in the flat space—
time takes the form

v'4 - N‘U3 = 0,
vh— Nvg =0, : £
vh+ Nvy =0, (52)
v, + Nvz = 0.
From (52) we obtain
. P _ o
dr ~
which leads to

P = const.

Hence N is also a constant: N = k. From (52) we also have the following

set of equations _
vg—kzva:O, a=1,2 3 4 o _ (53)

which has the solution
va = Ca16¥® + Caze ™™, - (54)

where Cy1 and Coaz are integrating constants. The the following relation
exist between them: Chy = iC1a, Cay = iCas, Cr2 = iCa and Cag = —iCha.

At the same time the energy density per unit of invariant volume ¢ in
flat space-time is constant everywhere, so the total energy of the nonlinear
spinor field tends to infinity for any function G(1,). From this result it
follows that in the Minkowski space~time there are no soliton-like solutions.
This agrees with the results which has been obtaiued in Sec. 4. Thus, we
have arrived to an equivalent conclusion about the role of the gravitational
field over the nonlinear spinor fields: it localizes their energy density; so,
it is determinative in the formation of soliton-like configurations in the
nonlinear spinor fields-

11



8. CONCLUSION AND DISCUSSION

As result of our investigation we have obtained exact static one-dimensional
solutions to the nonlinear spinor field equations in the external gravitational
field of the Goédel universe. Moreover, it is shown that by chossing F(/s)
and G(Ip) in an adecuate way the nonlinear spinor field (1) has solutions
with localized energy density and finite total energy (by integrating within
the finite limits of the y and z axes), i. e. soliton-like solutions. These
solutions have no flat-space analogues because there-the energy density
is not localized and the total energy is infinite for any functions F and
G. Thus we can conclude that the role of the external gravitational field is
determinative in the formation of soliton-like configurations in the nonlinear
spinor field. By the way, we have observed that, due to the foml of the
formulae for the energy density and total field energy (see (43), ( (48)
(51)), for the Lagrangian depending on the spinorial invariant Ip = P?(Ln
must be a real Lorentz scalar) the total field energy is infinite or the energy
density is not localized, whereas the dependences which conduce to finite
total field energy and localized energy density contain an odd power of P,
so the P-invariance is violated (P is a pseudoscalar). The manifestation of
this fact on the classical level reminds of the quantum nature of the spinor
fields, because we observe this anomaly in their weak interactions. The
gravitational interaction is even weaker and this fact can lead us to deep
meditations about the nature of the spinor interactions.
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