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L INTRODUCTION 

Recently an increasing interest has been expressed to the search of soliton
like solutions because of the necessity to describe the elementary particles 
like extended objects. In this work, the nonlinear spinor field is considered 
in the external gravitational field of the Godel universe. The Godel universe 
exhibits a number of unusual properties associated with rotation [1]. It is 
homogeneous in space and time and is filled with a perfect fluid. The main 
role of rotation in this universe consists in the avoidance of the cosmological 
singularity in the early universe, when the centrifugate forces of rotation 
dominate over the gravitation and the collapse d~es not occur [2]. 

The paper is organized as follows: in Sec. 2 the nonlinear spinor field with 
CN = F(Is) in the external gravitational field Godel universe is considered 
and exact solutions to the corresponding field equations are obtained. In 
Sec. 3 the properties of the energy density are investigated. In Sec. 4 this 
field is considered in the flat space-time in order to determine the role 

· of gravitation over the nonlinear spinor fields. In Sec. 5 we consider the 
nonlinear term CN = G(Ip) in the Lagrangian of the spinor field in the 
Godel universe and we obtain exact solutions to the corresponding field 
equations. In Sec. 6 the analysis of the energy density distribution is made 
for three different functions G(Ip)· In Sec. 7 we study this field in the 
Minkowski space-time. A discussion and interpretation of our results is 
presented in Sec. 8, together with a summary of our research. 

2. NONLINEAR SPINOR FIELD WITH 
LN = F(Is) 
The Lagrangian of the nonlinear spinor field reads 

(1) 

where the nonlinear term C,N = F(Is) represents an arbitrary function of 
the spinorial invariant Is = S = '1i'1i; -y" are the spinorial matrices in curve 
space-time defined by the tetradic vectors and the metric tensor components 
in the following form [3] 

TTab = diag(+l, -1, -1, -1); 

(2) 

(3) 

where ei form a set of tetradic 4-vectors which is given by the expression [4] 

, etb1ot1~u:ii';~,a ,.1,:r1ryy I 
QA~~iWl HCCJ!l~lilll 
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;~~ ........_., -

(4) 



and 7° are the flat space-time Dirac matrices; we have chosen them accord
ing to Ref. [5]. V µ are the covariant spinor derivatives; they ate defined as 

follows [6]: 
V µ = 8µ - r µ(x), (5) 

where r µ ( x) are the spinorial affine connection matrices of curve space-time, 

determined by the relation 

r ~(x) = ¼ 9p6(8µe~ . e: - r~u),6,u; (6) 

r~u being the Christoffel symbols. 
The metric of Godel universe is represented in the following form [7] 

ds2 = dt 2 - dx2 + 1 e2v'2"nx dy2 + 2ev'2"n.x dy dt - dz
2

; (7) 

here n is the rotating angular velocity of the universe. 
For the 1 µ and , µ we have 

"'o - ;;, · "' - ;;, · "' - 1 ev'2"nx( ~2;;, +;;, )· ..,, - ;;, · 1' - ;;, · , -,o, ,1-,1, ,2-,12 VL-,o ,2, ,3-,3, s- 15, 

1
o = 7o -V2;,2; ,1 = -y1; ,2 = V2e-v'2nx-y2; · 1,3 = ·/; 

,5 = -{ Eµv>.T'Yµ'Yv'Y>.'YT = -y5;_ 

where _Eµv>.T = Facµv>.T and co123 = 1. 
Consequently, the spinorial affine connection matrices become· 

n-1-2. 
fo = 2 'Y 'Y , 

_ n -0-2. r1 = 2 , , , Q "\/'20.x'Yl'YO; - -- .e f2 = 2,/2 

The set of field equations corresponding to (1) is 

. µ" ,T, 8F - 0 
i1 vµW-m~+-=-, 

{)\JI 

- - 8F 
i"il µW,µ + m\JI - o\JI = 0 . 

f3 = 0. 

(8) 

(9) 

(10) 

We ,ho~,"'= (!D· =d "'•(z, y, z, 1) =,.(,),whom o = I, 2, 3, 4. 

For the first equation of (10) we obtain the resultant expression 

-y1 O:r;V + ~(-y0 -y172 + v'2 71 )v + i(m - F')v = o, (11) 
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where F' = !~. ·Consequently, for the v0 (x) one gets the next. set of equa-

tions , . n . n , 

, n · • n , 

{ 

v4 + 72 V4 - i ( 2 - m + F ) v1 = 0, 

v 3 + 72 v3 + i ( 2 + m - F) v2 = 0, 
, n •(n F') 0 (12) 

V2 + 72 V2 - 1 2 + m - V3 = , 
v~ + 72 v1 + i ( g - m +F') V4 = 0. 

From (12) we obtain the following relation for the invariant. S = if w 
;l v1+ ~2 V2- ~3 V3- ;4 v4: 

which has the solution 

dS + hns= o, 
dx 

S - C -v'2"nx C - t - 1e , •1 - cons . 

(13) 

(14) 

From (14) it follows that F[S(x)] is a function of the x variable. 
With the transformation u0 (x) = v0 (x)e-n.r/v'2, the set of equations 

(12) becomes 

{ 

u~ + i(m - ~ - <l>)u1 = 0, 
u; + i(m + g - <l>)u2 = 0, 

u; - i(m + ~ - <l>)t13 = 0, 
u~ - i(m - ~ - <l>)t14 = 0, 

where <l>(x) = F'(S). From (15) we obtain 

{ 

u~ ± i(m - g - <l>)~ = 0, 

u; ± i(m + g - <l>)Ja~ - u5 = 0, 

u; =F i(m + g - <l>)~ = 0. 

ti~ =f i(m - g - <l>)Jar - tt? = o. 
where a1 and a2 are constants. The solutions of this system are 

{ 

t11 = ±a1 cosh[01(x)], 
t12 = ±a2 cosh[02(x)], 
t13 = ±ia2sinh[82(x)], 
t14 = ±ia1 sinh[01(x)]; 

( 15) 

(16) 

where 01 = rn -m) X + I <l> dx + b1 and 02 = - ( g + m) J: + J <l> dJ: + h 
b1, b2 = canst. 

Thus, the general solution corresponding to equations ( 12) has the form 

{ 

v1 = ±a1e-nx/v'2 cosh[01(x)], 

v2 = ±a2e-n.x/v'2 cosh[02(x)], 
V3 = ±ia2e-n.x/v'2 sinh[02(x)], 

V4 = ±ia1e-nx/./2 sinh[01(x)), 

3 
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We have obtained exact one-dimensional solutions -to the' set of field equa
tions (12); the general solution contains four integrating constants: a1, a2, 

b1 , b2. For the invariant S =;1 v1 + ;2 v2..: ;3 V3- ;4 v~ we have 

S = ( ai + a~)e-v'2 nx, 

which leads to C1 = a?+ ar 
3. ENERGY DENSITY DISTRIBUTION 

(18) 

In this section we investigate the energy density distribution of the nonlinear 
spinor field along the x axis and deterrriine the properties of the solutions 
in the Godel universe. The energy-momentum tensor corresponding to (1) 
IS 

Tt = {<w,,. v' vllf + W,v Vl'llf - v',.llf,v w - v' vW,,. \Jf l - li::c. (19) 

For the zero-component of the energy-momentum tensor we obtain 

Tg = SF'(S) - F(S). (20) 

In order to determine whether the solution of the _nonlinear spinor field is 
a soliton-like one, it is necessary to analize the distribution of the energy 
density per unit of invariant volume, i. e. t: = T(] ,/j3gj, where 3 g is the 
determinant of the matrix containing only the spatial components of the 
metric tensor. Since ,/j3gj = T2 ev'2°x, then fort: we have the following 

relation 
C1S d (F) 

t: = ,/2 dS S . 
(21) 

The· total energy Er of the nonlinear spinor field is defined by the formula 
(by integrating within the unit limits of the y and z axes) 

+oo 

Er= j rgJpgjdx = ~~ (f) C (22) 

-oo 

In order. to obtain a finite value of Er it is necessary to choose F(S) in an 
appropriate way. For example, if 

A (S/c1r+1 

F(S) = ; [1 + (S/C1)]" '. 

where A is the nonlinear parameter and n ~ I, then Er is 

A 
Er= 2ni1. 
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In this way we have obtained a nonanalytic dependence ·of 11; it means that 
when n -+ 0 (transition to Minkowski space-time) the total energy of the 
nonlinear spinor field tends to infinity: Er-+ oo. An important peculiarity 
in this expression is that_ Er is directly proportional to A, so when A = 0 
(the case of the linear spinor field), the total energy is also equal to zero. 
On the other hand, by susbstituting (23) in (21) we obtain 

A ·e-nv'20x 

€ = ,/2 (1 + e-v'20x)n+l · 

From (25) follows that€ has a maximum when 

1 
Xmax = - ,/2n Inn 

and has the following asym_ptotical behaviour 

'{ e --.12nx -+ 0 
€ ~ ' e-nv'20x -+ 0, X -+ +oo, 

X_-+ -00 1 

(25) 

(26) 

i. e., the energy density per unit of invariant volume is regular and localized 
in the vicinity of its maximum. Thus, from (24) and (26) one can deduce 
that the solutions of the considered spinor field with .CN in the form (23) 
possess localized energy density and finite total energy, i. e. are of soliton
like type. The qualitative dependence of€ along the x coordinate is plotted 
in Fig. 1. 

E 

n= IO 

n,,; 3 

n=2 

n=I 

X 

Fig. I Qualitative distribution of the nonlinear spinor field energy density 
per unit of invariant volume along the x coordinate. 
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When n = 1, € is a symmetric function with respect to Xmax = 0. In 
this case the rotation axis passes through the maximum of the localized 
distribution of the energy density (across its center) and for this reason the 
soliton-like configuration is not deformed. In all the other cases n > 1, 
Xmax f= 0, so the rotation axis does not pass through the maximum and this 
fact leads to the deformation of the soliton-like objects. ·This means that 
when n = 1 we have an ordinary spinorial field configuration of soliton type 
[8] and for the other cases (n > 1), deformed soliton-like solutions due to 
the rotation of the universe. From (25) it also follows that when n -+ 0, 
€ -+const, i. e. there is no localization of the energy density. It means that 
in the flat space-time there are no nonlinear spinor field configurations with 
localized energy density by choosing F(S) in the form (23). 

4. NONLINEAR SPINOR FIELD IN FLAT 
SPACE-TIME 

In this section we consider the nonlinear spinor field in the flat space-time as 
it is interesting to know whether or not, this kind of field leads to soliton-like 
solutions in it. In this case the corresponding set of field equ~ti_ons is: · 

{ 

v~- + i(m - <I>)v1 = 0, 
v~ + i(m - <I>)v2 = 0, 
v2 - i(m - <I>)v3 = 0, 
v~ - i(m - <I>)v4 = 0. 

From (27) we obtain an equation for·the spinorial invariant S: 

dS = O, 
dx 

(27) 

then S =const. and <I> is also constant. Let us put M = m - <l>=constant. 
Then from (27) we get the set of equations 

v~ -M2 va = 0, a= 1, 2, 3, 4. (28) 

Every equation of the set (28) has the solution · 

Va= C~ieMx +Ca2e-Mx, 

where Cai and Ca2 are integrating constants. Then we substitute Va i11 the 
set (27) and obtain the relation between integrating constants. Finally the 
solutions of the equations (27) adopt the form: 

{ 

V1 = C11eMx + C21e-Mx 

V2 = C12eMx + C22e-Mx 

V3 = -i(C12eMx - C22e-Mx) 

V4 = -i(C11eMx - C21e-Mx). 
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In this case the energy density T8 is constant in the whole Minkowski 
space-time (see formulae. (20)-(21)), so the total energy of the nonlinear 
spinor field is infinite for any function F(S). This means that for the equa
tion system (27) there is no soliton-like solution.since the energy density is 
not localized and the total field energy is infinite. This conclusion agrees 
with the previous result for n -+ 0. Thus, we conclude that. t.he external 
gravitational field of the Godel universe is determinative in the formation 
of soliton-like objects in the nonlinear spinor field. 

5. NONLINEAR SPINOR FIELD WITH 
.CN = G(lp) 
Let us consider the Lagrangian (1) with the nonlinear term LN = G(lp), 
where G(Jp) is an arbitrary function of the spinorial invariant Ip = P 2 = 
(iw,5 w) 2 . This Lagrangian leads to the following field equations 

i,µ v' µ w - mW + aq_ = 0, 
aw. 

- - ac iv'µw,µ + mW - aw= 0. (29) 

A, before we ch~, ,j, - ( !D and ,j, .(,, y, ,, t) - "• (x ), wh,·re o 

1, 2, 3, 4; then the first equation of (29) adopts the form 

n -y 1 axv + 2 (-y0 -y 1 -y 2 + v'2-y1 )v + imv + N(P)-Z/l' = 0. (30) 

where N(P) = 2G' P and G' = f[',,. Consequently. fort.he r,,(i·) one gets 
the next equation system 

{ 

V~ + 72 V4 - i rn -m) VJ - Nt13 = 0, 
· , n • (n ) N 0 V3 + V2 V3 + l :f + m V2 - !14 = , 
V2 + 72 V2 - i rn + m) V3 + Nv1 = 0, 
v; + 72 V1 + i rn -m) V4 + Nv2 = 0. 

( 31) 

From (31) we obtain the equation system for the bilinear forms P, R 

~2 V1 + ~1 112 + ~4 V3 + ~3 V4 and S = ~w: 

{ 

P'+-/2nP+2mR= 0, 
R' +-/2nR+ 2mP+ 2N S = 0, 
S' + -1?.ns+ 2N R = o. 

7 
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In the Heisenberg's nonlinear unified field theory [9] the mass term does 
not exist since it does not have the meaning which it has in the linear theory. 
So, for simplicity we omit min (1) and consequently in (31) and (32). From 
the new system (with m = 0) we obtain the following equation for P: 

P' + ,,/?.n,p = 0, 

hence we have 
p = C2e-,/2nx· (33) 

where C2 =const. This res~lt means that if one defines G(Jp), then N(x) 
will be a concrete function of the x variable. 

If v0 (x) = w0 (x)e-nxfh, then our equation system becomes: 

{ 

w~ - if w1 - Nwa = 0, 
w; + if w2 - N w,i = 0, 
w; - if W3 + Nw1 = 0, 

wt + if w,i + N w2 = 0. 

(34) 

By suming and substracting the corresponding equations, we obtain the 
next system for the new set of functions T/1 = tv2 + w1 , 172 = w2 - w1 , 

T/3 = w,i + wa and T/4 = w,i ...:.. wa: 

{ 

'+m N · O 1}3 · 2 T/2 - T/3 = , 
TJ; __ if TJa - NTJ2 = 0, 
TJ; + if TJ,i + NTJ1 = 0, 
' m +N 0 1}4 - 2 T/1 T/4 = · 

From (35) we get the following pair of equations 

{ 

TJ~,3 - 2NTJb - ( ~
2 

- N 2 + Nx) T/2,3 = 0, 

TJ~,4 + 2NTJL4 - ( ~
2 

- N 2 - Nx) T/1,4 = 0. 

(35) 

(36) 

B d · h r · -fNdx ·d fNdx y· omg t e trans1ormat1ons T/I,4 = µ1,4e an T/2,3 = µ2,ae , 
then (36) takes the form · 

/I n,2 . 
µ 0 - 4 µ 0 = 0, U' = 1, 2, 3, 4. 

The general solution for this system is 

µo = Cal enx/ 2 + Ca2e-Ox/Z, 

where C0 1 and C 0 2 are constants. 
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By substituting these solutions in (35) we obtain the' following relation 
between the integrating constants 

C,i1 = iC11; C,i2 = -iC12; Cai= -iC21; Ca2 = iC22- (39) 

Thus, the general solution to the equati~n system (31) (when m = 0) is 
. ·, 

vi = ½ e-nx/,/2 [e- f N dx (quenx/2 + c12cnx/2) :--

. - el N dx_ ( C21enx/2 . .+ C22e-nx/2)] , . 

V2 = ½ e-nx/~ [e- J N dx. {Cuenx/2 + C12e-~x/2) + 
+ ef N dx· (C21enx/2 + C22e-Ox/2)] , . 

~3 = -½ e-nx/-./2 [e- l Ndx (Cuen~/2 - C12~-nx/2) +. 
+ el N dx (C21enx/2 - C22Cnx/2)] ' 

V,i = ½ cnx/,/2 [e-l N dx (C11enx/2 _ c12e~nx/2) :-

. - el N dx (C21enx/2 - C22e-nx/2)] . 

· (40) 

Thus we have obtained exact solutions to the nonlinear spinor field equa
tions (31) in the Godel Universe. The general solution contains four inte
grating constants: Cu, C12, C21, C22. We substitute the expressions of v0 

in P = i'll·y5'11 = i(v1 V3 - ;1 V3 + v2 V4 - ;2 V4) and then 

P = 2(C11C22 - C12C21)e-v'2nx_ (41) 

In correspondence with (33) we have C2 = 2(C11C22 - C12C2i). 

6. ENERGY DENSITY DISTRIBUTION 

In• this case for the zero-component of the energy-momentum tensor we 
have 

~ = 2G'lp - G, 

so, the energy density per unit of invariant volume adopts the form 

d ( G) . c = V2C2lp dlp ..J[p . (42) 

For Ee (by integrating within the unit limits of the y and z axes) we have 

+oo . C2 G . ) loo 
Ee= j rgJi3gjdx = 2Q (..J[p o (43) 

-oo 

9 



If we choose G(lp) in the form 

. A(!..E.)n [i;_ 
G(Ip) = c; V g; 

n(1+1E..)n, n=l,23 ~ ' ... , 
2 .,.. 

where A is the nonlinear parameter, the total field energy takes finite values 

A 
Er= 2nn· (44) 

The properties of this expression are analogous to the obtained ones from 
(24). For the energy density per u_nit of invariant volume we get. the following 
asymptotical. behaviour when x approaches plus and minus infinity: 

e-2n../2nx { 0, x -;, +oo, 
C = v'2A -----=~- -;, . 

(1 + e-2;,12flxr+l 0, X _. -00. 
(45) 

Thus, we have obtained again soliton-like solutions since the total field en
ergy is finite and the energy density c is regular and localized in. the vicinity 
of its maximum Xmax = -!;¾~. When n = 1 the soliton-like configurati<;>n is 
symmetric with respect to Xmax = 0, whereas n > 1 the soliton-like objects 
are deformed due to the rotation of the universe as in the £N = F( Is) case. 
The qualitative distribution of c along the x axis also corresponds to the 

Fig. 1. 
Let us consider the following nonlinear term in the Lagrangian ( 1 ): 

,. _ G _ ln{l + Alp r 
.._,N- - J/p n=l,2,3, ... ( 46) 

By substituting ( 46) in ( 43) one gets the following expression for the total 

energy 

For c we have 

nC2A 
Er= 20· (47) 

c = nV2C
2 

[ln(l +Alp)_ A ] _, { 0, x-;, +oo, (4S) 
lp 1 + Alp 0, x-. -(X), 

So, once more we have obtained soliton-like solutions, but. in this case all the 
soliton-like configurations are deformed due to the rotation of the universe. 
By choosing G in the form 

G = [XJ!; - In(l + AJ];)], 

we obtain the next expression for Er 

C2A 
Er= 20' 

10 
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whereas the expression· for the energy density is the following 

c = C2 [ln(l + AJ/p) _ A ] -+ { 0, x-+ +oo, (5l) 
v'2 . J/p 1 + AJ/p 0, x __,. -<X•, 

its asymptotical behaviour is analogous to the (48) one; so we get. equivalent 
results: soliton-like objects since the localization of the energy density and 
the finite character of the total energy of the nonlinear spinor field are 
achieved. These configurations are deformed due to the rotation of the 

Godel universe. 

7. THE FLAT SPACE-TIME CASE 
The corresponding field equation system (when m = 0) in the flat space

time takes the form 

{ 

v~ - Nv3 = 0, 
v~ - Nv4 = 0, (52) 

. v2 + Nv1 = 0, 

From (52) we obtain 

which leads to 

v1 + Nv2 = 0. 

dP = o, 
dx 

P = const. 

Hence N is also a constant: N = k. From (52) we also have the following 

set of equations 
v~ - k 2v0 = 0, a= I, 2, 3. 4; 

which has the solution 

Va= Ca1ekx + C 0 2e-kr, 

(53) 

(54) 

where C
01 

and C02 are integrating constants. The the following relation 
exist ~etween them: C11 = iC14., C21 = iC2-1, C12 = iC13 ,and C22 = -iC23• 

At the same time the energy density per unit of invariant volume t: in 
flat space-time is constant everywhere, so the total energy oft.he nonlinear 
spinor field tends to infinity for any function G(/1,). From this result it 
follows that in the Minkowski space-time there are no soliton-like solutions. 
This agrees with the results which has been obtained in Sec. 4. Thus, we 
have arrived to an equivalent conclusion about the role of the gravitational 
field over the nonlinear spinor fields: it localizes their energy density; so, 
it is determinative in the formation of soliton-like configurations in the 

nonlinear spinor fields: 
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8. CONCLUSION AND DISCUSSION 

As result of our investigation we have obtained exact static one-dimensional 
solutions to the nonlinear spinor field equations in the external gravitational 
field of the Godel universe. Moreover, it is shown that by chossing F(Is) 
and G(Ip) in an adecuate way the nonlinear spinor field (1) has solutions 
with localized energy density and finite total energy (by integrating within 
the finite limits of the y and z axes), i. e. soliton-like solutions. These 
solutions have no flat-space analogues because there the energy density 
is not localized and the total energy is infinite for any functions F and 
G. Thus we can conclude that the role of the external gravitational field is 
determinative in the formation of soliton-like configurations in the nonlinea~ 
spinor field. By the way, we have observed that, due to the form of the 
formulae for the energy density and total field energy (see (43), (45), (48), 
(51)), for the Lagrangian depending on the spinorial invariant [p = P 2 (.CN 
must be a real Lorentz scalar) the total field energy is infinite or the energy 
density is not localized, whereas the dependences which conduce to finite 
total field energy and localized energy density contain an odd power of P, 
so the ?-invariance is violated (Pis a pseudoscalar). The manifestation of 
this fact on the classical level reminds of the quantum nature of the spinor 
fields, because we observe this anomaly in their weak interactions. The 
gravitational interaction is even weaker and this fact can lead us to deep 
meditations about the nature of the spinor interactions. 
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