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where e2 form a set of tetradic 4-vectors which is éivéh by the expression [5]
Juv = Navege, | 3)

and ¢ are the flat space-time Dirac matrices; we have chosen them according to
Ref. [6]. V, are the covariant spinor derivatives; they are defined as follows [7):

Vi=8-Tuz), . @

where T',(z) are the spinorial affine connection matrices of curve space-time,
determined by the relation

- ;
Lu(z) = 4“.%6(3#6?7 : ebp - Ffm)'7670§ : (5)

T4, being the Christoffel symbols. »
* The metric of Gdel universe is represented in the following form [8]

. .
ds? = dt? — dz? + 3 V20 gy? 1+ 9V dydt —d2%; (6)

here Q is the rotating angular velocity of the universe. .
For the v# and v, we have

B ) . - 1 ‘~ - - N .
Y=%; M=% T2= —ﬁeﬁ“’(ﬁvo +%); =9 15 =7Ts;

=3V =i Y= VRIS =
i ~
7" = =1 Bune?* 'Y = 75 (7)
where E 0 = v/~g€uuar and o123 = L.
Consequently, the spinorial affine connection matrices become |

Ql2. Q0

“1s e Q ral
To=279% =37 7% F2='——€‘/§‘? 5% Ts=0. (8)
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From (1) we obtain the following set of field equations:

1 OR
IV, —m¥ 4 = ppf—= =0,

2 ov
i | OR ‘
iV Uy + m¥ + '2‘80,/380’p ~75 =0 (9)

< (VT uR(S) =0,

i A S
B R T

s

where R(S) = 1+ F(Is) and g = det |g,,,|. We consider ¥ and ¢ depending
only on z. Then, from the last equation we have

. o = %e"ﬁn’; o= %, C = const. (10)

On the other hand, the first equation of (9) takes the form
30,0+ JEF +VI Him- @) =0, ()
where &(z) = 1 C2~2V295 . dQ/dS and Q(S) = 1/R.
, v,
Assuming that ¥ = gz and ¥o(z, y, 2,1) = va(z), @ =1, 2,3, 4, we
3
Yy ‘ 4
et
& v,’,+%v4+i(m—-%——¢)vlz0,
vh + %v3+i(m+%—¢)v2=0,

’ a : a (12)
vh + 7;v;—1(m+ 3 —®vs =0,
A v{+%v1—i(m—%—¢)v4=0.‘
From (12) we obtain the following equation for 5 = Ty
45 | Vias=o, (19)
dz .
which has the solution
S=CreV?%, () = const. (14)-

With the transformation u,(z) = va(z)e= 9" IVZ the set of equations (12)

becomes uy+i(m = § ~ ®)u; =0,

ug+i(m+%—d>)uz =0, (15)
uh—i(m+ § - P)uz =0,
11

uy —i(m =%~ ®uys=0.
The solutions which satisfy this system are
| uy = %ay ch{fy(2)],
uy = ay Ch[02(z)]) (16)

us = tiag sh[f2(z)],
Ug = :i:ial Sh[ol(z)],

where 8; = (3 —m) z + [ ®dz +b; and o=~ (2+m)z+ [®dz+bs.



The general solution to (12) has the form

vy = %aje=/VZ ch[fy(z))],
vy = taze~/VZ ch[fy(2)],
v = tiage~/VIsh[f,(z)),
Vg4 = :I:iale'n’/‘/ish[ﬁl(x)],

. (17)

Thus we have obtained exact solutions to the set of field equations (12); the
general solutxon contams four mtegratlon constants: ay, as, by, ba. For the

invariant S _vl v+ 'U2 vo— Vg v3— V4 v4 we have

S = (a? + a2)e~ V20, (18)

3. ENERGY DENSITY DISTRIBUTION

In this section we study the energy density distribution of our system along
the z axis and determine the properties of the solutions in the Godel universe.
The energy-momentum tensor (EMT) which corresponds to (1) is

T# = i(ﬁ(‘w V, U4y, VAU~VAT, U -V, Ty* ¥) 45, 0* R(S) =61 L. (19)

By using the first two equations from-(9), the Lagrangian can be written as
follows

1
- - B 2
L= 5 P.0% ( dSS+R) (20)

Substituting.(20) to the zero-component of the EMT, one obtains

C2

1 d
e 52 (Qb) (21)

0

~ In order to determine whether the solution is a soliton one, it is neceséary
to analize the distribution of the energy density per unit invariant volume,
i. e., € = T2+/|39], where 3¢ is the determinant of the matrix containing only

the spatial components of the metric tensor. Since \/@ = eﬁnf/\/i =
(a? + a2)/v2 S, for € we have:
c?s
2\/_(a +a3)? dS

" The total ehergy of the field system is defined by the formula

(Q ) (22)

+o0
£y = [ T9v/Falav. © (23)
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"To obtain a finite value of E} it is necessary to choose F(S) in an appropriate

way. For example, if
(AS)nt!
14+ (AS)’
where ) is a coupling constant, for E; (by integrating within the finite limits
of the y and 2 axes) one gets the following expression:

Cc? oo c?
o (@) = mera oy
4Q(a + a3) o 4AQ(ai +a3)
From (25) it follows that when A = 0 (absence of interaction), E; — co. The’

same result we obtain when {I'— 0 (transition to Minkowski space-time). ¢
has the following asymptotical behaviour

€~.{ 1/§ -0, z— —oo, (26)

F(S) = n=123,... (24)

E;= - (25)

S—0, r — 400,

i. e., the energy density per unit invariant volume is localized. Thus, from
(25) and (26) one can deduce that the solutions of the field system under

.consideration possess a localized energy density and finite total energy, i. e.,

are soliton-like. The qualitative dependence of £ on the z coordinate is plotted
in Fig. 1.
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Fig.1 Qualitative dependence of the energy density per unit of invariant
volume on the z coordinate: a deformed soliton due to the rotation of the

" universe.



Thus we have obtain an asymmetric (deformed) soliton due to the rotation
of the universe.

4. INTERACTING SPINOR AND SCALAR
FIELDS IN FLAT SPACE-TIME

In this section we consider the interacting spinor and scalar fields in flat space-
time in order to understand the role of the external gravitational field of the
Gédel universe. It is of interest to know, whether or not this interaction in
Minkowski space—time leads to soliton-like solutions. With the transition to
flat space-time, when 2 — 0, all T matrices vanish. At the same time, V,
reduce to d, and ¥ to 9#. The corresponding set of field equations is

vh +i(m—d)vy =0,
v+ i(m — vy = 0,
v, ~i(m = ®)v3 =0,

—i(m— <I>)v4 =0

(27)

where <D = (C2/2) d@/dS. From (27) we get an equation for the spinorial -

invariant S:

S'=0,
then S =const. and & is also constant. Let us put M = m'— ®. Then from
(27) we obtain the set of equations

o~ M2y =0, a=123A4. (28)

with the solution
Vg = Caleﬂl:: +C e-—]‘lr,

where C,; and Cq2 are integration constants.
Thus, the solutions of the equation system (27) adopt the form

= C11eM* + Cpe~ M7,

= C12eM® + Cpae~M7,
vz = ——i(ClzeM: - nge"M"'),
vg = —i(C11eM* — Cyre M),

where C11, Ci2, Ca1, Ca2 are constants.

In this case the energy density is constant in the whole Minkowski space—
time (see (21)-(22)), so the total energy of the field system is infinite for any
function F(S). This means that for the interacting spinor and scalar field
system there is no soliton-like solution, since the energy density is not localized
" and the total field energy is infinite. This conclusion agrees with the previous
result for @ = 0. We conclude that the external gravitational field of the
Gé6del universe is determinative in the formation of soliton-like objects in'the
interacting spinor and scalar field system.

(29)

.%._., Ty

5. INTERACTION Ly = X% ﬂgo’ﬂG(Ip) IN THE
GODEL UNIVERSE

Now we shall consider the Lagrangian

P — — 1 1 '

L= %(\1'7“ V¥ = V004 0) ~ mUV + 5 0,007 + 5 0,50 G(Ip),  (30)
where G(Ip) is an arbitrary function of the spinorial invariant Ip = P? =
(%% ¥)2. This Lagrangian leads to the following field equations:

1 aJ
u e Bl
V¥ — m\Il+290p<P 5T =0,
— - 1 oJ
; H -= B2~ 31
‘IV”\II'y +mU - 5 pp07 =% =0, (31)

Fa .,(\/_y"”souJ(IP))—O

where J(Ip)=1+G.
We consider ¢ and ¥ depending only on z; thus, for the scalar field we have

-:_g V20, /_Qﬁ _
¢ =SV o= o ~C = const. (32)

At the same time the first equation of (31) takes the resultant form

78, + -;3(70-71-72+\/§71)mp+imW+N—;5\p=o (33)
where N(z) = CZe~2V2O= /P W' = dW/dIp and W(Ip) = 1/J. For
Tol(z, v, 2, 1) = ve(z), =1, 2,3, 4 we get

v,’1+-\%v4—i(%—m)v1—NU3=0,
vé+%va+i(%+m)vz—NU4=0,
v§+:‘77-v2 i(¥+m)v3+Nv1=0,
v1+7-v1+1(——m)v4+Nv2=0.

(34)

From (34) we obtain g
P’+\/§QP+2mH=0,
H+V2QH+2mP+2NS=0, (35)
S'+V20S+2NH=0,

- I - * * * - -
where S =v; v;+ vy v3~— V3 va— V4 v4 and H = vz v1+ Vy vp+ V4 U3+ V3 V4.



In the Heisenberg’s nonlinear unified theory [9] the mass term does not exist
since it does not have the meaning which it has in the linear theory where it
defines the total energy of the field system. So, for stmplicity we shall omit it
in (30) and consequently in (34) and (35). From the new system (with m = 0)
we obtain the following equation for P:

y PlV2QP =0,

hence we havg )
P = Cpe™ V295 (36)

where C; =const. This result means that if one specifies G(Ip), then N(z) will -

be a concrete function of z. ‘
If va () = wa(z)e~%/VZ, then our set of equations becomes

wh— (IQ/2) wy ~ Nws =0,
wi + (iQ/2) wg — Nwy = 0,
wy — (iQ/2) wz + Nwy =0,
wi+ (iQ/2) wq + Nwy = 0.

(37)

By suming and substracting the corresponding equations, one obtains the fol-
lowing equations for the new set of variables M = wa 4w, M2 = wy — Wy,
N3 = wq + w3, g = Wy —~ w3: )
5+ Gy — N =0,
nh— By~ Npp =0,

: ; 38
i+ e+ Ny =0, (38)
= 5m+ Ny =0.
From (38) we get the following pair of equations
N%,3—2Nn) 53— (%92_N2+N:) 72,3 =0, (39)

Ma+2Nn ,— (3Q° = N2 —N,) g4 =0.

After the transformations 1, 4 = ;11,4e-dez and 79,3 = /J-zlaedeI, the
equation system (39) takes the form
Q2 ;
pZ—T;‘a:O, a=1,23, 4. (40)

The general solution to this set of equations is
Ha = Calenz/z + Ca25_nz/21 (41)

where Cyy and C,2 are constants.
Substituting these solutions to (38), we obtain the following relations be-
tween the integration constants

Cy = iCyy, Cyz2=—iCry, Cs = —iCh, Csz = iCoa. (42)

The general solution to the set of equations (34) (when m=0)is

v =be % [V (00512 4 Crpe0er?)
_fNdz (Car 212 + nge‘“’/z)] ‘

vg = %e_% [e" [ (C1e™ /2 + C’ne—ﬂrﬁ)
pefNa (Caiee/2 +nge"n’/2)] ,

v3= -4 e i [e" Jna (C11€75/? — Cpae=0/2)
yefNa (Care®=/2 — Cne—ﬂr/ﬁ)] ,

va = %e-?é [e— [Nar (C11e%12 — Cpye=92/2)

_ SN (Care®*/2 — nge’n"/g)] )

(43)

Thus we have obtained exact solutions to the interacting spinor and scalar
field equations (34) in the Gddel Universe. The solution contains four inte-
gration constants: Ciy, Ci2, Ca1, Co2. Substituting the expressions of v, in

— . * * - =
P = i07°¥ = i(v1 v3 — V1 v3 + v2 Ug — Ua v4), ONe gets

P =2(C11Cay — C12Cay )™V, (44)

6. ENERGY DENSITY DISTRIBUTION

By the field equations (31), we obtain the following expression for the La-
grangian:

1 dJ ’
. _1 B (_9s i 45
L=gepp ( deP+J) (45)
and hence o2
TO = —é—e'zﬁ (W' P2 4+ W). (46)

For the energy density per unit invariant volume we obtain

3 CZPZ , .
5=T§VI‘9|=7§E(WP% “4n

- where (WP)' = (W P).

The total field energy takes finite values if we choose G(Ip) in the form

(APY)PAP

— =1 48
1+(AP2)n, n )2‘ 37 ( )

GUp) =



where ) is a coupling constant; integrating within finite limits along the y and
z axes, we have

C2 oo C2
= = = — 49
Es 4902(WP)0 400C; (49)

the properties of this expression are similar to those obtained from (25). The en-
ergy density per unit invariant volume has the following asymptotic behaviour:

. { 0, z — 4oo, (50)

0, z— —oo0.

We have again obtained soliton-like solutions since the total energy is finite
and the energy density is localized (its qualitative distribution along the z axis

also corresponds to Fig.1).
Quite similar results, including formula (49) for the total field energy and
(50) for the asymptotics, are obtained with some other choices of G such as,

e g, ‘
G = —=[In(1 + AP) = AP) (51)

and .
G = \P. (52)

7. THE FLAT SPACE-TIME CASE

The field equations in the Minkowski space-time corresponding to (34) (when
m = 0) is:

- IYva =0,

~ Nva =0, (53)
vy + Nvp =0,
v{-{-ﬁvgzo, .

where N = C2W'P. From (53) we obtain
| P'=0, then P = const. (54)
Hence N is also a constant: N = k. From (53) we have
v = kv = 0, a=1,2,3,4;. (85)

which have the solution

l.’a = Calekz + CGZE_’”: (56)

where Cy1 and C,2 are integration constants. Between them exist the following
relations: Cll = iCl4, 021 = ng4, 012 = iCla and 022 = —1023.
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At the same time the energy density per unit invariant volume = in flat
space-time is constant, so the total energy of the field system is infinite for
any function G(Ip). It follows that in Minkowski space-time there are no
soliton-like solutions.

Thus we arrive at an equivalent conclusion on the role of the gravitational
field in the interaction of elementary particles: it localizes the energy den-
sity of the field system; so, it is determinative i in the formation of soliton- like
configurations for the interaction of spmor and scalar fields.

8. CONCLUSION,AND DISCUSSION

As result of our investigation, we have obtained exact static one-dimensional
solutions to the interacting spinor and scalar field equations in the external
gravnatlonal field of the. Godel universe. Moreover, it is shown that by choos-
ing F(Is) and G(Ip) in an adecuate way the field systems (1) and (30) have
solutions with localized energy density and finite field total energy (within fi-

“nite limits along the y and z axes), i.e., soliton-like solutions. These solutions

have no flat-space analogues because there the energy density is not localized
and the total energy is infinite for any functions F and G. Thus we can con-
clude that the role of the external gravitational field is determinative in the
formation of soliton-like configurations for the interacting spinor and scalar
fields. By the way, we have observed that,due to the form of the formulae for
the energy density and total energy (see (47) and (49)), for the Lagrangian de-
pending on the spinorial invariant Ip = P2 (Lint must be a real Lorentz scalar),
the total field energy is infinite or the energy density is not localized, whereas

" the dependences which conduce to finite total field energy and localized energy

density contain an odd power of P, so the P-invariance is violated (P is a
pseudoscalar). The manifestation of this fact on the classical level reminds of
the quantum nature of spinor fields, because we observe this anomaly in their
weak interactions. The gravitational interaction is even weaker and this fact
can lead us to deep meditations about the nature of spinor interactions.
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