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A comparrson of two methods in the relat1v1s ic k1net1c theo yof. the’ Ferml
'fsystems is carried out assumlng,(as -an example, the s1mplest G(D-verslon of quantum
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~features ‘A d1rect method of derivation of k1net1c equatlons is proposed “This method
'does not contam such drawback and . grves rise ito- VRKE :in hadrodynamrcs
of a non~contrad1ctory form in wh1ch both - sp1n degrees ot freedom and states
'w1th positive and‘negatrve energles are’ taken lnto account ; '
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1. Introduction

The kine.tic approach is one of tile main theoretical instruments in the modern
relativistic nuclear. physics! It has been successfully applied at intermediate energies
to the description of both heavy-ion collisions [1] and nuclear reactions initiated by
hadrons and other projectiles in the framework of different ca.sce;.de—type models [2].
During the last years, a tendency toward the change from a semiphenomenological level
of deécription of the kinetic stage of nﬁcléa;r matter evolution to a more sophisticated
and dynamically justified theory, is evident. The relativistic kinetic equation of the
Vlasov type (VRKE) for nucleon component of the spin-saturated nuclear matter was
one of the first results in this direction [31-7]

D(zP)F(zP) = {Pa% + (MgA{ + gvP*F, ) a‘; }.F(xP) =0. (1)

This equation was derived in the quasi~classical approach within the framework of ‘
the simplest ow-version of quantum hadrodyna.fnics. In eq.(1), F(zP) is the scalar
part of the expa.hsibn of the covariant Wigner function in terms of Clifford algebra (séev
details in §2 below); M = M(z) = my — gs@(z) is the effective nucleon mass in the
nuclear matter, P = p — gv@, ﬁ,w = 0,w, — 0.W,, and $(z) and T¥(z) are the average
scalar and vector meson fields, respectively.. .

In the recent years, more genéral VRKEs with consideration for spin degrees of
freedom and states with positive and negative energies were obtained [8}~[12]. In spife
of the fact that methods used in these researches are numerous and various, they
may be classified under two types. In the more popular approaches of the first type,
one introduces the procedure of squaring the Dirac equation written in the mean-field
approximation. The methods of the second type do not use this procedure. The results
of calculations performed according to these two approaches are distinctive in some
details. It is worth remarking that VRKE derived using the procedure of squaring
contains sorne source terms which violate barion number conservation and lead to
entropy production even by mean-field dynamics [10]. The authors of the fundamental
lwork {10] have fra'nkly pointed out that they did not have a simple. interpretation of
this constraint (see Appendlx 3 of Ref. [10]). '
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In this paper, we provide a detailed analysis of these two types of VRKE obtained
using the same approximations in both approaches. In §2, it is shown that the proce-
dure of squaring leads to appearance of the above-mentioned anomalous sources in the
VRKE and, therefore, such a VRKE has to be removed from the class of dynamically
justified kinetic equations. Therewith, not only the s;:a.lar part of VRKE casts some
doubts but also the VRKE as a whole, including the spin degrees of freedom and states
with positive and negaﬁve energies. Alternatively, in §3, a VRKE is derived by means
of the direct method of kinetic theory. It does not imply the difficulties of the VRKE
of the first type and, therefore, isAdyna.mica.ll'y justified. Finally, in §4, the results of
our work are summarized. .

Our analysis is based on the simplest ow-version of the Walecka model with the

. Lagrangian density
[(0up)0*p — mp?] —

miw,w* + 95Tl — gy@fy!‘u}ull' R (2)

= _ 1
L(z) = %waﬂ“w - my T + -
| 1

T et
where ms and my are the masses of scalar () and vector (w,) mesons, resp‘ectively,
whlle gs and gv are the relevant coupling constants. For a kmetlc description of the

nucleon subsystem of the model, let us write the one-particle cova.rla.nt Wigner function

fus(zp) = (27)* / g™ Tz + /) Volz - /),

where < --- >= Sp--- p denotes the procedure of statistical averaging with the dens1ty,
matrix in the Heisenberg representation. - ' f

In ordér to derive the VRKE, we adopt the dynamical approach proposedﬁﬁ
refs. [8, 9, 12] that allows us to use alternatively at an intermediate step either/,‘/the
procedure of squaring (§2), or the direct method (§3). Such a way is convenient for
comparison’s sake as far as the results of the two approaches are concerned. Sihce no
consideration will be given here to collision processes; it is sufficient to use tﬂe short-
ened version of the theory [8, 9, 12] which — in its'complete amount — represents an

extension to the relativistic region of the well-known Zubarev’s method based on the

non-équilibrium statistical operator. N ceo )
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2. VRKE derived by means of the squaring procedure

Let us write according to the definition (3) the one-body operator

Us(z +y/2)Va(z - y/2) .

Since in a space-uniform and stationary—state case the correlation function

FPop(zy) =

< P,s{zy) > does not depend on z*, we assume that, for a small deviation from
equilibrium, function < Phg(zy) > depends slowly on z# in comparison with a “fast”
dependence on y*. This behaviour gives reason to introduce a,“slow” invariant time,
T = nz, where n* is — for the moment — an a.rbitra.ry unit time-like vector directed
towards the future. After differentiating the Wigner function (3) with respect variable

T and usin.g the Liouville equation, dp/dr = 0, we have:
: . d
df(.'l:p) Bf(zp) (27!')—4 / dy e—tP!l <EP(Iy)> . . (4)

dr T 9z
Here, the arbitrariness in choosing the direction of-the unit-vector n* has been elim-
inated as well, assuming n* = u* = p*//p* [8, 9, 12]. Further manipulations of the
right-hand-side of eq. (4) can be performed using alternatively one of the\methods
stressed above. :
The direct method is based on the motion equations in the Heisenberg representa-

tion as a starting point. In this case, we have

af zp) —i/p(2r) /dy e—a‘py\({p(zy),H]) - \(\5)

‘ . . . \
If the Heisenberg operator, H, is defined as a uniform two-linear form relative to the\

. field operators, ¥ and U, as this is actually the case of our model in the mean-field \

approximation, eq (5) gives rise to a closed VRKE after calculation of the commutator.

We will make use of this procedure in §3.
Let us consider now another version of the theory based on the technique of

squaring.  In the right-hand-side of eq. (4), we take into account the fact that

d/dr = u,0"(z) and use the relation:

P = i (y)e . (6)

\
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After integration by parts we have (z+ = z +y/2)

O fas(z P ap— _
P22 oyt [dye Qe balen) - Talen)ulz)) , (D)
where Q = Q*+° and @ is the operator-source in the wave equation (0 — m%)¥ = Q.
The increasing of the order of differential operator when passing from eq. (4) to eq. (7)
is a consequence of relation (6). A

For the model (2), in the mean-field approximation, we have

Q = {~20.8M + 23" +i9*(9,M) + -"Va“"F +2igv*0, - I} W, (8)

.

where o = %(7“7" —7“4*). The substitution of this expression into eq. (7) gives rise
to a VRKE of a non-Markovian type. The restriction of our consideration to minimal

orders of the gradient expansion {15] allows us to write a VRKE in a local form -

O  yOMOL | o of 1oM
Pyt Mo ap+ovP Fugp — 55

v 1} ZEL ™, fl=0. (9

In order t? obtain a closed system of equations, it is necessary to complement this

equation/l;y those defining the mean meson fields:
/

7o) = g5 [dyDla=y) [aPspiur),
) = ov [dyDia-) [aPsprieP), (10)

wh/ere D(z) and D,,(z) are the free scalar and vector meson-field Green functions,
respectlvely The relations (10) are true under the assumption of the absence of mean
/meson fields when the interaction with the nucleon component of nuclear matter is
“witched off”.
A VRKE like (9) was derived for the first time in ref. {10] by means of the contour
Green function technique (with the replacement P — —P and taking into account a

misprint in ref. [10]) using’the procedure-of squaring.

To analyze the VRKE-(9), let us separate out in the Wigner function (3) the states

with positive and negative energies f = f9) + f(-), and let us perform a transition

from the spinor representation to the spin one [14]

B (zP)

Z / L TR ED (kW (R)(P — )

Z/w"

s,r=1

5 @P) F k), (R)8(P + k) (11)

where P® = (M? 4 P?)Y/2. The spinors of nucleon states with positive and negative
energies u(k) and v(k) play an important rolé here. 1t is assumed that in the mean-field

approximation they satisfy the “quasi-free” equations of motion:
(P + M)u(P) = 0, where P=p*

This fact means that mesoﬁ fields may be quite large in amplitude (my > _qy,?),
but ‘adiabatically slow ’(in the scale 1/mpy). Moreover, the adoption of such a spinor
basis leads to the introduction of the mass-shell condmon P? = M? which was absent
before the transformation to the spin representation. This circumstance hinders the
transition to the spin representation for quasi-particle excitations like A-isobars with
distributed masses [17].

Let us rewrite the VRKE (9) in a symbolic form in order to perform the transfor-

mation to the spin representation,
Lf={iMW+L9}f=0, (12)

where L) and L are homogeneous differential operators of the first and second order,

respectively.
Lt(:llﬁ a’ﬁ’(zP) = A (IP)gC'C"gﬁﬁ' [
10M v = . ,
L wp(=P) = 550 [Year998' + Vpig9aer] = 5 Fu (000900 — 03 90er] - (13)

Operator ﬁ(zP) is specified by the relation (1). According to the definition (11), the

transition to the spin representation is carried out by means of the following matrices::
R (P) = m(PYu(P)  RG)(P) = (P)oy(P) .

The contraction of the operator, L (see eqs. (12) and (13)), with one of these

matrices results in projection of VRKE (9) on states with positive or negative energies.



Due to the formal charge symmetry, it will suffice to analyze only one of resulting

equations. In particular, after integration over P°, we have

Forst s 2P)FS(2P) = s RS (P) Lapgar (e PY RS (PYE(P) = 0. (14)

2P

Here, the allowance for [[:(1), R“’)]': 0 is taken into account. It is also worth pointing
out that the local character of the mass-shell condition by its dependence on the point
of observation, z*, does not contribute to the drift-movement of the nucleon liquid in

the sense that
/dPO R (PYRE) (P)LS) 41oi(2P) {2P06 [P° VM? + P? ]} =0.

Further manipulations of operator I:, eq. (14), are based on a number of formulae
for contractions of different combinations of 4-matrices with spinors. We recall here

some necessary formulae

ﬁu,,ﬂr(P),yu,yvus(P) =4 {PO (Hoy,) — M—-|1-PT° (PH)-FE [Po’,,]} ,
—r a 8 — aT(P) 8 _
U(P)WU(P)—— aPku() M+P0[Po’”] )

where & = 1,2,3, o are the Pauli matrices, EF = Fok, and H* = —%E"“F‘,—; are the
vectors of “electric” and “magnetic” intensities of the vector meson field.

The resulting VRKE in the spin representation reads as:

] oM oM OF®)
9 _1 w _ M 0 )| O
{Paz MPa }F {Mazk+g"(PE +[PH])} oP*

v { (v - 20) et r9] + 0 Bt ) = 0,09

The Wigner functions, F®), are defined on the mass—shell in a seven-dimensional

_ phase space. Let us carry out their expansion in terms of the Pauli algebra basis
F®(zP) = FH)(2P)s,, + FP(aP)ot, . (16)

In order to analyze the character of the problems noted in the Introduction and
to find out their sources to VRKE (15), it will suffice to consider the case .of spin-

_saturated nuclear matter which is consistent with VRKE relevant to the scalar Wigner

functions (k.= 1,2,3)

OF ) oM 0k K\ | OFE ) oM
- il @)
P—- {Mazk +gv (P E* + [PH] )} P 1 poM 5 F )

As one could expect, these equations are reversible in time. The left-hand sides
of VRKEs (17) have the usual structure for the Vlasov equation describing a drift-
movement of nucleon llquld in presence of mean meson fields. On the contrary, in their
right-hand sides VRKEs have out—of—range sources with a non-drift character leading
to unphysrca.l results. This result can_be immediately proved by writing the barion

current density as follows:

- (34(k))

il

(Tapu@)) = [ P Sprs(ap) =
pe R
=9 / PP 15 {FD(zP) - FO)(zP)) (18)
and the entropy flow density as

P—: {F¥)(zP)In F<+)(¢P) + FO(zP)In FH(IP)} . (19)

SH(z) = —/d3P P

Then, employing the VRKE (17), the corresponding continuity equations can be easily

obtained: / y

, 1.
8u()j" = 7 0u(a)M

u(z)S" ————3 M/d3 :{F(” (14 FP]+ FO 14+ FO]} .

Hence, tfh? VRKEs (17) lead really to non—conservation of the barion charge and
the entropy (we refer here just to the change of entropy without collibsions, but not to
its monotone increasing due to them). |

The‘ 'nnomalous source in the right-hand sides of VRKEs (17) can be formally

eliminated by resorting to the modified Wigner functions

i

FE(zP) = @) FE(zP),  £(z) = mn/M(z) . (20)

"’A’ctua.lly, this transformation leads to a conventional form of VRKEs which reads

as:
OF @) oM o ok BF®



(some distinctions of this equation from VRKE (1) are caused by the .definition of
functions F®) on the mass-shell). But local quantities like as densities of physical
values (18) and (19) are defined as before in terms of usual Wigner functions (3), so
that the transformation (20) has a character of pure camouflage.

Now, it is easy to find out the reason of appearance of the anomalous source in
the right-hand side of eq. {17). Tracing the waly. of derivation of this equation, one
can see that the term ~ J,(z)M {v*, f} of VRKE (9) leads to an anomalous source
in VRKEs (17). This factor is gen.erated in its turn by term i’y“@u(z)‘in the source,
Q(z) (8), of the wave equation. Asa consequence, the anomalous term appears when
-passing from eq. (4) to relation (7) by means of eq. (6) and the the order of differential

6perator in the right-hand side of eq. (7) increases as a result of the squaring procedure.

3. VRKE derived without the squaring procedure
. . ) : Y
It is possible to take advantage of eq. (5) and derive a VRKE without using the
squaring procedure. Let us define the covariant Hamilt;oﬁian opertm\)r featured in it by

the relation

H= /da'(:c[n) n*T"n, ,

where n* is a normal time-like vector which defines the orientation of 'the space-like
hyperplane o(z|n) passing through point x. Here, T*" is the energy-mon;gntum tensor
of the system. In the nucleon sector of Walecka model (2), in the mean—field approxi-
mation, we have . A

A

H=- / do(z|n) ¥ {%’7“5}(1:) -M- gm"aﬂ} v, (22

Here, 0, = d;” — 8, and the arrows show the directions of action of operatiﬁf {?”(.1:),
and 05 (z) = A%9,(z). By means of the projection operator A,, = g,, — nun,,‘\,\one
eliminates the differentiation in the time-like direction. In other words, the opt;\rétor,
- 8%(z), works on the hyperplane, o(z|n). This fact is essential in calculations with

formula (5) when we have to integrate by parts integrals given on hyper‘plane a(zln),

Y

One takes also into account that the Hamiltonian operator (22) does not depend on
the particular choice of hyperplane o(z|n).
In derivation of the right-hand side of formula (5}), it is useful to use the following

expression (see, e.g., {8, 9]):
/c(z'ln) Sap(z — 2)@p(z") = inyyh,;8p(z) , z € o(z'|n), (23)

where ®,(z) is a function depending on field operators, and

S(z —2') =1 [¥(z),¥(z")], . (24)

+

The relation (23) is based on a covariant extension of the known feature of the reposition
function (24), S(%,0) = i7y°6C)(Z). At the end of our calculation we assume that
n* = u*.

The outlined recipes will suffice for derivation of VRKE on the basis of eq. (5). In

the minimal order of gradient expansion [15], we obtain
1 A ~
PrOu(2)f + 50°(@)M {4, 0.(P)f} + gv P*FL,0"(P)f +

o 01+ iM 5,1 - sovFu (P = 0, (29)

where 4 = P,v*.
The same set of approximations was used in the derivation of both VRKEs (9)

and (25): Namely, the mean—field approximation and the limitation to only the lowest

* orders of the gradient expansion. However, the resulting VRKEs (9) and (25) are found

significantly different. -

In order to analyze this difference, let us turn to the spin represen.tation and confine
ourselves to the case of spin-saturated nuclear matter. Then, VRKE (25) reduces to
the following equation: (k = 1,2, 3):

IF) oM OF &)
— M= POE* + [PH]F) } ———=0.
bz { o * 9v (P8 + [PHY') p o =0 (20)

The comparison of this VRKE with the analogous expressions (17) and (21), ob-

tained on the basis of the squaring procedure, shows that VRKE (26) does not contain
the anomalous sources intrinsic to VRKE (17) and, therefore, does not require a tran-

sition to the modified Wigner functions, as in the case of VRKE (21).



We turn back now to comparisons of more general VRKEs, egs. (9) and (25), which
take into account also spin effects. It should be noticed that a simple elimination of
the term ~ 6“(1:)M‘{7“,f},leading to anomalous sources in VRKE (17) from the
VRKE (9), is not sufficient to give identical VRKEs in egs. (9) and (25). This fact
clearly shows that VRKEs (9) and (25) déscribe spin effects in a very different manner:
In this instance, the non-contradiction of VRKE (26) suggests us the assumption.that

the more general VRKE (25) be correct as well.

It should be also observed that anomalous effects generically dictated by the pres-

ence of mean scalar fields in the Walecka model helped us to reveal evidence of in-
_correctness of VRKE (9). The elimination of the scalar field would make difficult
the problem of choosing a non—contradictory kinetic description of polarization effects

within the framework of one of the two different approaches previusly discussed.

" 4. Summary

The comparison of two dynamical approaches in the relativistic kinetic theory of
Fermi systems, namely, the direct method (§3) and that based on the squaring proce-
dure (§2), has shown that, at least in the Hartree approximation for models containing
scalar fields, tlig second method leads to unphysical fez?.tures in VRKE (violation of the
barion number conservation and entropy production without collisions), as well as to
an incorrect description of spin effects. This form is conditioned by an artificial increas-

ing of the order of differential operators used at intermediate steps in the derivation

of relativistic kinetic equations, but presumably — from a formal point of view — it -

.does not affect the structure of collision integrals (of the Boltzman-Uehling-Uhlenbeck
or the Bloch types). At the same time, the direct method of derivation of VRKE is
_devoid of any contradiction and allows us to avoid these unpleasant peculiarities.
Thus, the available dynamical methods in the relativistic kinetic theory based on the
squaring procedure would require a careful analysis of the relevant results and, perhaps,
need some corrections which would permit to avoid such a dangerous procedure. On

the other hand, this situation gives priority to the direct methods of the relativistic

10
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/
kinetic theory and, above all, to the Zubarev’s method of the non-equilibrium statistical
operator as one of the most sequential and universal tools for the description of non-
equil/ibrium systems. .
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