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1 Introduction 

An important problem in the theory of strong interactions is to calculate, 
from the first principles of QCD, hadronic wave functions cp,..(x ), 'PN(xi, x2 , x3), 

... [3] that accumulate necessary information about the non-perturbative long
distance dynamics of the theory. These phenomenological functions naturally 
appear as a result of applying "factorization theorems" to hard exclusive pro
cesses [3], [4], [5]. It seems now that only the QCD Sum Rule (SR) approach [6] 
and lattice calculations [7] can provide information about the form of hadronic 
wave functions (WFs). 

The most popular set of hadronic wave functions, due to V. L. Chern yak 
and A. R. Zhitnitsky (CZ) [8], was produced with the help of QCD SR fodhe 
first moments ((N)h (N = 2, 4) of mesons WFs. But the method they used 
has three main drawbacks: 

1. reducing the initially non-local objects to a few local ones: 
(q(0)q(0)), (G(0)G(0)), ... , - leads to the fast growth with N of the 
power corrections in the operator product expansion (see discussion in 
(12]); 

2. the reconstruction of the whole function cp,..(x) from just two non-trivial 
moments (e2),.. and ((4

),.. is an unreliable procedure; 

3. the phenomenological model of the spectral density, based on local quark
hadron duality, is too crude for QCD SRs for the WF. 

, 
Now it is kp.own that the hadronic WFs are rather sensitive to the strµcture 
of the non:pertu'rbative vacuum (9]. Therefore one should use a non-local 
condensate like (q(0)E(0,z)q(z)) and/or (G{O).E{O,z)G(z)) [10] whi~h can 
reflect the complicated structure of the QCD vacuum. 3 

The modified QCD SR with non-local condensates have been constructed 
in [9] and it has been demonstrated that the introduction of the correlation 
length for condensate distributions produces much smaller values for the first 
moments of the pioU: WF compared to the CZ values {see also [11], [12]). Thi:5 
leads to a form of the pion WF strongly different from the CZ two-hump form 
and a little .wider than the asymptotic form cp~•(x) = 6x{l - x). 

In our previous paper (1] we have obtained directly the forms of the 
pion and its first resonance WFs, using the available smooth ansatze for the 
correlation functions of the non-local condensates and without any suggestion 

3Here E(O, z) = P exp(i J; dtµA~(t)Ta) is the Schwinger phase factor required for gauge 
invariance. 



· about the quark-hadron duality for the spectral density. This program has 
been suggested and realized in [2], and we have developed alternative methods 
of extracting WFs from this sum rule for a non-diagonal correlator [1]. It 
should be mentioned that we d<_> not need the principle of stability over the 
Borel parameter M 2

, and the Borel SR appears only at an intermediate stage. 
Here, we test our method using an exactly solvable model as an example 

(initiated by the two-dimensional quantum-mechanical oscillator). We demon
strate the validity of the method and also suggest a pure algebraic procedure 
for extracting the masses and WFs of the particle under consideration. We in
vestigate the stability of the procedure to perturbations of the theoretical part 
of the sum rule and obtain some results to believe that it works well in real 
QCD SR. In application to the pion case, this results in.producing not only 
the mass and WF of the first resonance ( 11"

1
) b~t also to provide an estimate of 

the 71"
11-mass. 

Our quantitative results, i.e. the details of the WF shapes and the val
ues of masses, are dependent on the certain form of the ansatz used for the 
non-local condensates. This form may be obtained in a future theory of the 
QCD vacuum. In the absence of such a theory the form of the ansatz was 
chosen as a phenomenological "input" (for details see [1]). From this point 
of view, our calculational scheme may be considered as a suitable framework 
for connecting the hadronic properties, on one hand, with the future theory of 
the non-perturbative· vacuum on the other. • 

2 Non-diagonal QCD SR.for pion wave fur\c
tions and the Method of Int_egral 0l'rans
form 

2.1 Non-diagonal QCD SR 

The sum rule for the "axial" WFs cp,,. ... (x) of the pseudoscalar mesons, based 
on the non-diagonal correlator of the axial and pseudoscalar currents 

cp,,.(x) + ( ) -m2 /M2 ( ) -m2 /M2 ;r..( 1 ) cp,,., X e "' + 'f',r" X e_ "11 +.·.='\I.' Af2, X (1) 

M2 ( ,\2 ) · = 2 1 - x + 
2

~ 2 f(xM 2
) + (x-+ 1 - x), 

2 

·t 

r ,. 

fi 

has been suggested in [2] and possesses some remarkable properties. For the 
WFs on the l.h.s. of (1) one has 

((N)M = 11 

'f'M(x)(2x - l)N dx; 

(t:N=O) 1 (t:N=O) (t:N=O) · Q 
C:, 1r=' C:, 1r'=e:, 1r"=---=. . (2) 

On the r.h.s. of (1) there appears a single correlation function f(v) parametriz
ing the z2-dependence 4 of the non-local quark condensate: 

(: ij(O)q(z) :) = (: ij(O)q(O) :) 100 

e',z
2

/
4 f(v)dv, 

{

00 

f(v)dv = 1, j 00

.vf(v)dv = ! ((: ii(~(D
2
)q(O) :} = ,x;). 

Jo o 2 (: q(O)q(O) :} 

(3) 

(4) 

Here D is the covariant derivative, ,\~ can be treated as the average virtuality 
of vacuum quarks. Equation ·(1) demonstrates in the most explicit manner 
that the distribution cp,,.( x) of quarks inside the pion over the longitudinal 
momentum fraction x on the l.h.s. of the equation is directly related to the 
distribution f(v) over the virtuality v of the vacuum fields on the r.h.s .. 

It should be noted that the sum rule (1) results from the approximations 
both in the theoretical (for a detailed discussion, see [2]) and the phenomeno
logical parts (see [l]). These are 

1. a reduction of three-point correlators to two-point ones; 

2. a reduction of the quark-quark-gluon distribution function to a quark
quark one; 

3. neglecting the contributions of higher non-local condensates, like (ijGGq}, 
(ijGGGq}, ... ; 

4. a representation of the phenomenological spectral density p( s) on l.h.s. 
of the SR as a sum of very narrow resonances 

p(s) = o(s). f,,.cp,,.(x) + I:o(s - µ;). f;cp;(x). 
i~I 

4
In deriving these sum rules we can always make a Wick rotation, i.e., we assume that 

all coordinates are Euclidean, z2 < 0. 

3 



In the present work we shall use a specific form of the correlation function 
f(v), given by 

J(v) = Nq•exp(-A2/v-a·v); (5) 

Nq = A ~ y'a , I<1 (z) is the modified Bessel function. 
27uI<1 2A a) 

As was established in our preceding paper [1), this ansatz (A2-ansatz there) 
conforms with pion physics. A similar form for the ansatz also appears in the 
framework of the instanton model for the non-perturbative vacuum 5

• Here, 
the parameter A 2 ~ 0.2 Ge V2 was extracted from the meson QCD SR for 
the heavy-quark effective theory [2); the normalization constant Nq and the 
parameter a are fixed by Eq.(4). For the average virtuality of vacuum quarks 
we take the usual QCD sum rule value.,\~~ 0.4 GeV2 [14). . · 

As.is clear from the structure of the r.h.s. of (1), the form of the function 
<I>(J2 , x) on the variable xis given by two humps (one centered at XA = sA/M2

, 

where SA is the point of maximum for the ansatz correlation function f(v), 
and the other at XA = l-sA/M2

) moving as M 2 changes. When M 2 increases, 
the humps become narrower, higher and more close to the boundary points 
x = 0 or x = 1. However, <I> ( J 2 , x) is not yet the pion WF: the larger M 2

, 

the larger the contamination from higher pseudoscalar states 1r', 1r", .. ... Due 
to the properties summarized in (2), the corresponding WFs should oscillate 
( see, e.g., Fig. 11 ) ; therefore the function <I> ( J 2 , x) does not resemble to r.p,r ( x) 
at not sufficiently low M 2

• 

At low M2, the pi~n WF dominates in the total sum <I>( J 2 , x) (however, 
one cannot take too low M 2 because the operator,product expansion fails for 
M 2 <.,\~)-When M 2 = 0.4 GeV2

, it was observed that <I>(J2 ,x) is very close 
to the asymptotic wave function of the pion (see [2]). But there is no strict 
criterion for selecting the value of M 2 to determine the WF of the ground state 
(pion). Our method of extracting the WFs and masses of resonances from (1) 
allows one to avoid this problem. 

2.2 The Method of Integral Transform 

In what follows it is convenient to use a new variable r = 1/M2 instead of 
the Borel parameter M 2

• The r.h.s. of SR (1), i.e., <I>(r,x) is then defined for 
- r E [O, ;2 ]. Let us consider this function in the whole complex plane of r and 

q 

5 A. Dorokhov (private communication) 
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define the integral transformation (IT) P( N, To, w ): 

(N )( ···) = ~1 exp(";(T-To))(···)d p 'To,W 2 . N ( )N+I T , 1riw C T - To 
(6) 

where the integration is performed along the vertical line C = ( c-ioo, c+ ioo) 
with c lying to the right with respect to any pole of the integrand, w > 0 and 
To E (0, :&). 

q 
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B - Toy model case 

Re(r 

Figure 1 : Here C is the contour of integration in the complex plane of T; 
crosses ( x) denote the positions (in case A - possible) of the integrand poles. 

To obtain the result of this operator action on the initial SR-representation 
(here µ; = m;) · 

r.p(x) + L'P;(x)exp(-Tµ;) = <I>(T,x), (7) 
i=l 

consider its action on a simple exponential e-Tµ. Evidently, if w > µ we can 
close the contour C to the left and get (due to the well-known residue theorem) 
the contribution from the pole at T = Toi if µ > w we can close the contour 
to the right and, due to the absence of poles in that part of complex T-plane, 
obtain 0; therefore 

P(N, To,w) exp(-µT) = O(w - µ) · exp(-µT0 ) ( 1 - ~)N (8) 

Then, for w > 0, we have 

r.p(x) + L 0 (w - µ;) r.p;(x) ( 1 - µ;) N exp (-r0µ;) 
i,=:I W 

P(N,T0 ,w)'1>(T,x) 

= lflN(w,x). (9) 
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We see that by varying w one can switch on (switch off) successively more 
and more resonances on the l.h.s. of the SR. So, we have obtained a real 
step division (smooth at N > 0) of the set of resonances by the parameter w 
in (9), instead of the exponential suppression of the whole set of resonances 
with respect to the inverse Borel parameter r in (7). Accordingly, the hadronic 
characteristics {µi, cp;(x)} are determined by the positions of singularities ( and 
zeros ) of the correlation function f(l/r) in the complex r-plane. 

Let us assume now that the mass values are known µ0 = 0, µ 1 = µexp ~ 
1. 7Ge V2

, •••• Then, we can obtain an expression for cp( x) by employing equa
tion (9) with the parameter w = w1 ::; µ 1 that corresponds to the saturation 
of the ground state cp( x) 

cp(x) = P(N,r0 ,w1)ib(r,x) = ibN(w1,x). (10) 

The final result should not depend on the parameter N strongly. However, 
in a real life we don't know the position µ 1 exactly; therefore we may get 
contamination from the next state. This contamination becomes smaller when 
N increases due to the power suppression near the threshold µ 1 (see l.h.s. of 
Eq. (9)). One should also take into account that the WF form is saturated 

· smoothly in the region w < µ 1 and its norm reaches unity at the end of the 
region. The curves corresponding to the function cp(x) = ibN(w1 ~ µ1,x) are 
shown in Fig. 2 for different values of N. Their form varies very slightly with 
N = 1, 2, 3 (the same happens when_ the parameter r0 decreases from 2.5 to 
1.5 GeV2, see the discussion in (1]) and is always somewhat narrower than the 
asymptotic one. Note that formula (10) may be easily generalized to a state 
with,a finite width (see (l]). The contribution to the pion WF due to finite 
width effects is not significant numerically. 

_We now describe the pure algebraic procedure that allows one to extract 
from the SR (9) both the positions (µi) and the WFs (cp;(x)): The procedure 
will be based on .the simple step representation appearing on the l.h.s. of (9). 
Indeed, let us consider the difference 

D1ibN(w,x) = ibN(w,x) - ibN+i(w,x). (11) 

We see that the same contributions due to cp( x) are cancelled out and this 
difference becomes non-zero just after w > µ1 : 

D1~N(w,x) = L0(w-µ;)<P;(x)exp(-r0µi)._.!. 1- _.!. • 
µ· ( µ-)N 

i~l W W 
(12) 

Therefore, this· difference is a trigger for the first resonance - the function 
D1~N(w,x) must have a root at w = µ1 that fixes the resonance (at fixed x). 

6 

' } 

.) 

r 
h 

i' . I 
I 
2 
' ?l 

Analogous trigger-like differences could be constructed for higher resonances. 
By induction, let the difference Dn is trigger-like for the n-th resonance (i.e., 
it has a root at w = µn) and has the following form 

DnibN(w, x) = L 0 (w - µ;) 'Pi(x)e--roµ; µ; µ; - µ1 ... µ; - µn-1 (1.- µ;)N. 
i~n W W W W 

{13) 
Then the difference Dn+i is defined recursively by the recurrence relation 

( 
µn) . Dn+libN(w,x) = 1--:;; DnibN(w,x)-DnibN+i(w,x). (14) 

For instance, for the second resonance the corresponding difference is of the 
form 

D2ibN(w, x) = (1 - : ) D1~N(w,x) - D1~N+1(w,x), (15) 

an~ it yields the value of µ2 provided the value of µ 1 is known from the previous 
step. Hence,·with the help of these trigger-like differences one can easily deter
mine successively the masses µ;. After that it is straightforward to determine 
the WFs cp;(x) itself, i.e.: 

( ) 
(~1(w,x)- <b1(µ1,x))exp(roµ1) 

<p1X = (1-1;-) (16) 

where the value of the parameter w E (µi, µ 2] corresponds to saturation of the 
first resonance. One can try the other formula for cp1(x) following from (12), 
VIZ. 

( ) _: D1ibN(w,x)exp(roµ1) 
'Pl X - I;- ( 1 - I;-t (17) 

The function cp1 ( x) in ( 1 7) should not depend on the value of N in an appre
ciable manner when the saturation of the resonance is reached .. , 

3 An exactly solvable toy model 

The above formulated procedure is based on the understanding of the initial SR 
{1) as an exact equality. But in the real case the connection between the non
perturbative vacuum distribution J(v) on the r.h.s of SR and the pseudoscalar 

·meson properties reflected on by the spectral expansion L; cp;(x) exp(-µ;r) on 
the r.h.s. of SR is only an approximation. To understand the reliability of 
the suggested technique (IT) as an approximated equality, it should be useful to 
check it, first, with a model ~( r, x) having an exact spectral expansion. After 
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that we deform <I>( r, x )-in some special way to destroy the exact equality in the 
spectral expansion with the initial WFs and masses, and apply our procedure 
again. Following this way, one may investigate the stability of the procedure 
to perturbations and its suitability. We hope, despite the fact that the exact 
equality is broken, that the procedure will "work" and that the-new extracted 
parameters {µ:, cpHx)} will be close to the initial values, if the deformation is 
not too strong. Only in this case our procedure makes sense. 

3.1 Formulating the model 

We should like to test our approach for some simple exactly solvable model. 
We select one which originates from the 2D harmonic oscillator problem in 
quantum mechanics (for more details see ref.[15]). The Borel transformed 
Green fm:1;ction M(r,x) of the 2D harmonic oscillator (with w0 = 1) in the 
coordinate representation 

has for r = 0 the form 

M(r, r) = L l1Pk(r)l2e-,-Ek 
k=O 

m 
M(r,O) = 27rsinh(r)" 

(18) 

(19) 

The spectrum of this.model (as one can easily see from the geometric progres
sion summation formula) is equidistant with a two-fold step 

Ek= 2k + 1. (20) 

We can also write down an explicit analytical form for M( r, r) with r -=I= 0, but 
there is no need for this, sine~ we shall work, for simpli.city, with a modified 
quantity. To this end, we define the function 

1 
<I>(r,x;¢)= 1-¢(x)exp(-2r) (2l) 

which obviously has the spectral expansion we are interested in, viz. 

<I>(r,x;cp) = L¢(x/e-2
,-k_ (22) 

k=O 

This toy model has a 'nice feature: all its resonance WFs are_ defined .through 
one WF, namely the WF of the first resonance cp1(x) = cp(x) which_ can be 
selected at free choice. For our convenience, we take the following form 

cp(x) == 4x(l - x), (23) 

i.e., the asymptotic WF of the pion (albeit with wrong normalization). 
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3.2 IT-technique for the toy model 

For evaluating <I>N(w,x) in our toy model, we use the well-known residues
technique. Separating residues (see Fig. 1) from the r0 -pole (D.,-

0
<I>N) and the 

poles Tn(x) = ,\(x) + i1l"n with ,\(x) = ½ log(¢(x)) (D.~<I>N ), we obtain 

<I>N(w,x) = D.,-0 <I>N + D.~<I>N (24) 

D.,-o<I>N = O(w)exp(-wr0 )d(N) [ exp(wr0 ) ] (
25

) 
wN drf l - cp(x) exp(-2ro) · 

D.~<I>N = -0(w)f(N+l)exp{-t~:);,\(x)l} x · 

X 
[ 

1 ~ cos [rnw + (N + l)¢n] l (
26

) 
2(ro - ~(x))N+I + ~ [(ro - ,\(x))2 + 7r2n2fN+1)/2 . 

Here <Pn = arctan [7rn/ (r0 - ,\(x))]. 
The l.h.s. of SR (9) in this model has the form 

(27) 
. ( 2k)N l+L0(w-2k)¢(x/ 1-~ exp(-2kr0 ). 

k~l 

By this way we obtain the exact SR in the form 

(24) = (27). 

Saying "exact" we mean, that this SR is valid for all x E [O, 1] and for all w. 
Moreover, it holds also for all choices of the initial WF ¢(x)! This behavior 
is shown explicitly in Fig. 3, where the step-like structure on the l.h.s. of SR 
(see (27)) is reproduced by its r.h.s. (see (24)). Our trigger-like differences 
exactly determine masses µk = 2k and the corresponding WFs <t?k(x) = ¢(xt. 

3.3 Deformations of <I>( T, x) and the IT-procedure 

All formulas of the- preceding subsection are exact (they are in some sense 
identities). But in real QCD problems we have no such regular behavior of 
the theoretical part of the SR and one can use the spectral expansion only 
approximately. Moreover, we cannot be sure about the adequacy of ansatz 
(5) for the true non-perturbative amplitude in the whole region of variables. 
Having this in mind, let us inspect the stability of the suggested procedure 
under perturbations of the r.h.s. of (9). 

The first problem here is the following: how can one deform the original 
function <I>( r, x) while retaining the possibility of controlling the degree of this 
deformation? 
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We apply the following method. As we know, the function q>( r, x) can be 
expanded in a series of poles over the variable r: 

1 1 00 1 

q>(r,x; </>) = 1- ¢(x)exp(-2r) = 2 + n~oo 2(r -Tn(x))" (28) 

If we exclude in this expansion a set of poles, we obtain some deformed func
tion. It should be stressed that this function does not have the same spectral 
expansion as the·original one. Let us consider our IT-procedure with these 
deformed functions., The exact result for the difference D1 q> 1 is reproduced in 
Fig. 4 . The deformations we have determined will destroy the exact step
structure on the l.h.s. of (9) and (13). This procedure proceeds as follows. 

l. At first we exclude all the poles rn(x) with lnl > K (the corresponding 
deformed q> will be denoted as q>(w, x; K)). Fig. 5 contains the curve for 
D1 q> 1 (w, x; K = 6). As we can conclude in this case, the situation is fine: 
the main deviations from 0(w - 2) are located near the origin (w ~ 0.2). 
The locations of resonances are well-determined. 

2. At the next step we exclude also the last six poles (lnl = 3, 4 and 5). The 
corresponding curve for D1q,1(w,x;K = 3) is i:ep~oduced in Fig.6,. The 
situation is still good: though deviations from 0(w-2) are larger relative 
to K = 6, they do not extend over w ~. 0.2. The locations of resonances 
are also well-determined and our "triggering" is still valid. 

3. The last step is to exclude the same poles as, in the first case, but in 
addition also those with n :::::: ± l. The curve for D1 q>1 ( w, x; K = 6 - 1) 
is reproduced in Fig. 7. Now the pattern is changed: deviations. form 
the initial form are large and they reach w = l. Indeed, this new form 
is rather close-to 0(w - 1): there exists the zero for w = 1 where the 
original function has no resonances at all. Going through the procedure 
with this value (µ 1 = 1) for the mass of the first resonance, we obtain the 
new spectrum µk = k with the new resonance WFs {<pk(x)} -::j:. {</>k(x)}. 
The crucial indication for the correctness of such an interpretation is the 
smallness of the deficit of the initial SR 

D.sn{q,(r, x; K = 6 - 1)} 

- <po( x) - <p1 (x) exp( -µ1 r) 
= q>(r x· K - 6 :_ 1) '' -

<p2(x)exp(-µ2r) - .... 
(29) 

We evaluate this quantity for the new and for the initial spectra and 
obtain a clear signal that the new one provides the genuine description 
of the SR (see Fig. 8 and 9 ). 
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As to the extracted wave functions <t?k(x), we can characterize their evolu
tion under deformations by the following statements: 

• opposed to the exact solution, {<pk(x)} become w-dependent when w E 
(µ;; µ;+1]- They tend to the exact ones with w mor~ close to the right 
end of the corresponding interval (see Fig. IO); 

• the difference between <,?k(x) and the exact WF of the k-th resonance 
becomes stronger for higher k (i.e. for highly exited states; see Fig 10). 

To conclude these investigations: the method really works, even for strong . 
deformations of the structure of the initial spectrum as the last example of de
formation demonstrates. Moreover, we see that deformations of the analytical 
structure of the initial q,(r,x;</>) in the c9mplex r-plane far from (near) the 
main pole r = ,\(x) produce small (large) deformations of the spectrum and 
the WFs. Therefore, the kno~ledge of the analytic properties of the function 
q,( r, x) in a region in the complex r-plane when includes the pole r = >.( x) 
and a few others appears to be sufficient for obtaining information on the fi;st 
few resonances and their WFs. We hope that an analogous situation appears 
in the SR for pion. 

4 IT-procedure for the pion case 

Applying the algebraic procedures to the IT of SR (1) we arrive at the following 
results: 

l. For w = w. = 1.8 GeV2, the difference D1 q>1 (w., 1/2) is equal to zero and 
with increasing w it becomes negative (this means that <p1(1/2) < 0). 
This value of the first-resonance mass is quite reasonable for the pion 
case, the experimental one being µ~xp = m;, ~ 1. 7 Ge V2 

( at the full 
width r,.., = 0.2 + 0.6 GeV). The pion WF <p(x), corresponding to this 
w. has been obtained from expression (10) in subsection 2.2 (see Fig. 

2 ). Its width is traditionally characterized by the value of the 
second moment - (e),.. ~ 0.17. Another characteristic often appearin,g 
in form factor calculations is the integral J; <p(x)/xdx ~ 2.8. Note that 
the method does not work properly in the neighborhood of the endpoints 
x = 0 and x = 1 of the WF. Therefore, to estimate the above values, one 
should exclude these regions in the integral. 

It should be emphasized that q>1 (w, x) imitates the l.h.s. of the SR as 
a function of w rather well, despite its different origin. Note here that 
the position of the root w. depends also on the value of x: in the region 
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0.35 ~ x ~ 0.65 this dependence is rather weak. We don't see the 
step structure on the l.h.s. of Eq. (12) - the structure is destroyed 
due to the employment of too crude approximations in the theoretical 
part of the SR. Following our experience in the "exactly solvable toy 
model" considered in subsection 3.3, we may hope, nevertheless, that 
the roots of the few trigger differences D1,2, ... <I>N(w., 1/2) yield reliable 
approximations for the masses. 

2. The saturation by the first resonance is reached near w ~ 3 Ge V2
• The 

curves corresponding to .the reso~ance ip1(x) (for w ~ 3 GeV2
) are shown 

in Fig. 11. 

3. · The last information we can extract in this case is the position of the 
second resonance: the equation D2<l>1(w •• ,x) = 0 gives us the range of 
values w •• = µ 2 = 3 + 4GeV2

, which is converted to the mass value 
m2 = 1.86 ± 0.14GeV. The experimental parameters for this resonance 
are still in question in the Particle Data booklet (April 1994), despite 
that the first evidence was obtained many years ago (16]. However, tlie 
recent measurements in (17] certainly provide for the mass m,,.,, ~ 1. 78 ± 
0.007 GeV (at full width r,,.,, = 0.16 GeV), which is rather close to our 
estimate. 

5 Conclusion 

We have considered a model SR for the pion and the pseudoscalar resonance 
WFs based on the non-diagonal correlator .introduced in (2]. The theoretical 
side (r.h.s.) of this sum rule ~epends only on the non-l_ocal condensate. We 
have tested the approach proposed in our recent paper (1], which enables one 
to extract WFs and masses from this SR, using the exactly solvable toy model 
as an example. We demonstrated the validity of the method and suggested a 
pure algebraic procedure for extracting the masses and WFs relating to the 
case under investigation. We investigated also the stability of the procedure 
under perturbations of the theoretical part of the sum rule. We obtained as 
a result that. the most crucial domain in the complex plane of r = M-2 is 
the neighborhood of the poles lying oh the real axes - the perturbations near 
these points essentially reorganize the spectral expansion under investigation. 
Applying this method to the pion case and using one of the ansatze given in 
[1] not only the mass and WF of the first resonance (7r') have been derived, 
but also the mass of 71'
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• Our results confirm the main conclusions about the 

shapes of the WF of the pion and its resonances, obtained in (2]. 
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3 

Figure 8: The deficit of the initial SR ~sR{<I>(T,x;I< = 6 -1)} for the new 
spectrum µk = k in the toy model case. 

3 

Figure 9: The deficit of the initial SR ~sR{ <I>( T, x; I< = 6 - 1)} for the1old 
spectrum µk = 2k for the toy model case. 
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It should be mentioned that the specific form of the_ ansatz for the corre
lation function J(ii) plays an important role in determining concrete values of 
masses and shapes of the WFs corresponding exactly to the pion resonances 
(on the contrary, the WF of the pion ground state is not too sensitive to the 
shape of the ansatz). We have chosen our ansatz (5) among others (see e.g. [1]) 
just due to this reason. So, one may consider it as a first step towards solving 
the inverse pr~blem, namely to obtain the vacuum condensate properties from 
hadron phenomenology. 
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