


1 Introductlon

Attempts to find the probobility density for photons heve a long and dramstic, lnsiory As :

‘far as we know, the first attempt wes mude by Landau and Peierls in 1836 [1]. However,

" the density obtained by them was not positive definite and, thus, had no physical meaning.
This paper has been severely criticized by Ehrenfest (2] end Pauli {3,4]. Further, Newton
ond Wigner [5]! have clarified the phyeical meaning of the particle localizability. Their defi-
nition of localizebility differs from the usual intuitive one which defines the localizability s
the vanishing of the wave fanction outside the finite region of space.  On the contrary, the

- wave function localized in the Newton-Wigner sense differs from zero everywhere?. Later,
Hegerfeldt [7] generalized their resulis by proving an important theorem which states that
even if the initial wave function is confined to the finite space region, it instantly fills the

" whole space at a subsequent time. In an important Zeldovich paper {8) the number of photons

. was represented as an integral of an expression bilinear in electromagretic strengths and its
relativistic invariance wes proved. In two papers by Cook [9,10] two suxiliary functions re-
lated to the photon density were introduced. Unfortunately, they are not behaved like tensors
under the Lorentz transformations. Akhiezer and Berestetsky [11] and later Bialyricki-Birula

.. [12] considered the complex form of the Maxwell equation. The photon wave function snd its

" density were associnted with ¥=(E+ iff) and and (B2 + B%)/ [(E? + I?’)d"z resp. In the

pepet by Sipe [13] the photon wave function was identified with the positive-frequency part

of the electric strength, Correspondingly, the photon density wes normalized to the energy. -

In the present paper, we develop end pumerically investigate the formalism suggested B
in refs.[9,10]. The plan of our exposition is ea follows. In sect.2, necessary mathematical -
detzils are presented. In particular; » number of conservation laws is obtained and their .’

‘physical interpretation is given. In sect.3, these results are spplied to & relatively simple

model. We numerically investigate the time evolution of the photon density and other den-

sities corresponding to the conmserved quantities. It furns ont thot the photon wave function

(WF) slightly extends over the region where electromagnetic strengths differ from zero. It is

. tempting to sesaciate this part of the photon WF with the so-called ’empty’ wave (8 detmled

exposition of the empty wave theory accompanied by the thorough analysis of the performed

and planned experiments aimed to detect empty waves cen be found in book [14}). In sect.4, .

we turn to the Ehrenfest-Pruli objections egainst the\L&ndau-P_e_ie;ls WF that are equally .
‘applied to the present function. We believe that at least partly we succeeded in overcoming
the Ehrenfest-Pauli objections. In sect. b; we present our viewpoint on the Hegerfeldt the-
orem having in mind its application to the time evolution of the photon wave function. In -
sect. 6, we try to resolve the contradiction between the possible localizability of the classi-
. cal electromagnetic wave, its absence for photons and the foct that an eleciromagaetic wave -
consists of photons. Our resolution of this paradoxical situation differs eseentislly from that =
“guggested recently by Kim et al. [15]. ‘A brief account of the results obtained is given in’
sect.7. E

2 Preliminaries

. Photon densities.
~ We consider the free electromagnetic field {(EMF) described by the Maxwell equations

1 A nice exposition of their ideas may be found in Bacry's book (6] ]
31n what follows under the localization of the electromagnetic field we mesan the possibility of its confinement
within the finite region of space, thus, not the localization in the Newton- Wigner sense. o
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curll = —ﬁ/c, Eurlﬂ = E"/c, divE =0, de; = 0‘ (2.1)

(the‘dort above the letter means a time derivative). The Fourier transformations of Eand
are: . , L :

B= [FR@wer, A= [Fhoar - @22)

The reality of E and requires that E(-F)= E(k), H*(- k) = H(F). These equatlons
‘Are automatlcally satisfied if Ex and ﬂy. have the form [16]

E,.-‘/—(/,.w_,.), A= ﬁkx(ﬁ.—/‘:,.)._ @3

Here w = clkl In the Coulomb gauge (de =0, Ag = 0) the vector funclions fi satisfy 7

the equatnons

- kf o\./ wf. | (2.4) -

For the free EMF f{F) = JoB) ex'p(—wi) where f; is independent of time. The first of Eqs.

(2-4)-guarantees the transversalxty of EMF (divE = 0, divll = 0). It is essential that E

and & defined by Eq.(2.2) contain both poslhve a.nd negahve frequencles\ The energy is
equal to :
| o Gwr=g [ B = [ulfbper. 25)
It turns out thet f E*dV aund [ H?dV are not conserved quantlhes, only their sum does. It
follows from (2.5) that ‘
ps(F) = IFE /A ' 2y
coincides with the  photon density in the momentum space. The number of photons is glven
by N = [ pj(k)d"k Thus, f{k) may be considered as the photon wave function in the

momentum space. - Further, the number of® photons may be written as an integral over the

space vanables

| N'= [ o3 p/(3)= e aer (27)
Here f{Z) is the Fourier transform of F(B: :
@)= / fE) exp(iED)E. (2.8)

It turns out that p;(Z) may be viewed as the photon density in the coordinate space Since

p(k) is independent of time, the number of photons N is a conserved quanhty In what follows
we need the representation of the field strengths alternative to (2.3)

AR="L2G0 + FB), By =-5 SEx @R -FCB). (29

As before, y(k) = _qo(k) exp(—iwt). Obviously, (k) and (k) may be expressed through
E(F) and H(E):

- fiky = 7=( B~k x AF), (k)= -}3(17(5)+’2X E(F)), (2.10)

and throlxgh each other:
GEy=Ex f(F), FiF)y=—kx (). , (2.11)

F e e

Here k= E/k. Since ,
IFEN = 13RI = Z(E® + HEP),
the quantities . )
polf) = EDP/A sad po(d) = i@, @)= [emGEaaD®y (12

mtly be also viewed as photon densities in momentum and coordinate spaces, resp. (on the

~ same fooling as p!(E) and ps(£)). Note that p‘g(i) # ps(Z) despite the fact that

/ pr(B)ds = / py(@)dz = N, ‘\ @1y

Tlie relativistic invariance of the photon number N follows from the possibility to represent
it in the following bilinear relativistically invariant form [8].

1 /E(fi)ﬁ(i) +§(5)}?(D‘4szday' (2.14)

= 16x%he Z—#1

The conser‘uaimn laws .
From the fact thgt f(Z) and §() satisfy the same equahons as E( Z) and I;(z)

—j = curlg, lg = —-curl], dw/ = divg = 0, (2.15)
c .
the following two éohtinuity equations are easily obtained: o
b i x G fxp=0, )
(P+y)+¢%fxm—0 ' e

Here p(z) {ps + p,)/2 Equuhon (2.18) gives the local differential conservation.law for
the photon density p(Z). The densities p; and p, taken separately also sahsfy continuity
equations but they being highly nonlocal are of no interest for us.

Separating the real and i 1magumry parts in Eq.(2.17) one gets

- 5;5(/?+9.— P-@)+dio(f, x§ - fix g) =0, (2.18)

_g.(ﬁf‘.{.@j)-f—diu(f:Xg“;+/'.'~xj)=0. (2.19)

Here f, = Ref, fi=Imf, § = Rej, § = Im§ Consider the integlral‘

1= [P+@ds :

By expressing i (Z) and g(2) tbrough their Fourier transforms one gets I = 0. The vamshmg
of real and i 1magmary parts of I nges

I = /(f’.-i- F-R-Pz=0 L= f(f'f. +g,y.)dsz = 0. (2.20)

Equatlons (2.18) and (2.19) mean that some quentities composed of vectors f and § sahsfy

" contisuily equations. Their physical interpretation is not clear as the space integrals of the

corresponding densities are equal to zero.



Further, we observe that Eqs.(2.15) are equivalent to

8, - . . ~ . ~
5(! +i§) = —icurl(f +13), div([ +ig)=0. (2.21)

From the first of these equations and its complex conjugate one gets

8, % re e ; = P
sV 13 +i@F — f@) + edivlf x &+ f* x §+i(f x f+Gx ) =0.

Combining this equation with (2.16) one obtains

~

O ; rav. ro A . , '
g - Ig) redi(fx [T+ jx g)=0. " (2.22)

The separation of real and imaginary parts gives one relation indeﬁeﬁdent of the previous

ones, ,
8 o & O :
sfg = [.@) tediv(fy x i+ G, x §)=0. -
To clarify the physical meaning of Eq.(2.22), consider the integral
i [GF - i@,
Substituting for f{Z) and §(Z) their Fourier transformations one gets
c [ =i PN 3. Ny Fe
i [GF - T#)Pe = 202x)i [ ZRAE) x F B, (2:23)

Sjnce JUE) is orthogonal to E, we develop it over the unit vectors of right and left polarizations:
J = Jr€r+ fL€L. Inserting this into Eq.(2.23) and making use of the orthonormal properties

of polarization vectors & (€3€r = €16 = 1, €} X €r = E, & x &, = —F) one gets:
PR oo oo '
i [ SRR x FE) = [0 = 1P (2.24) -
On the other hand, the photon number may also be expressed through fz and fi,
N = i 2 2 |
= 2 [Ual + 11k, (2:25)
(;omparing this with Eq.(2.24) we conclude that ‘ » v
. 17/
. N- =5 [(1aP = 112P), (2:26)

coincides with the number difference of the right- and left- polarized photons. It turns out
tt'mt Eq.(2.22) describes the conservation of the difference of right and left photons numbers.
leellvise the photon number, N_ is a conserved relativistic invariant quantity {17].

lfs f, g satisly the same equations as E.f itis possible to write out for them the set of
zilch-type invariants similar to those obtained by Lipkin [18] and Ragusa [19] for £ and H.
For example, take the densities

pdE1) = ZFENTEO-FENFE] 28G9 = =P 056G 076,051,

(2.27)

. e «
I

{

satisfying the continuity equations

pd +divJi =0, pI+divJZ=0, . (2.28)
with - 2 .
= 3 - . ‘ 7% L] - 'Y
Ji= 6w Zi:(!ﬁf; -fiVf) and J¥= o0 Zi:(yﬁy; - gtVg). (2.29)

The space integrals of pe are given by
[ oiwe= [poda= [l fEpPaE. (2.30)

Although these integrals are equal to the electromagnetic energy, the space density pe! and p?
do not coincide with the electromaguetic density pgur. In perticular, p. may take pegative
values and may have tails in the regions where E and H are equal to zero. _
Equations (2.15) may also be rewritten in & covafiant form. Putting % = fi; kY = eijugn
one gets ' o o
b = 0, (_b:f’_)c’d =0. (2.;1)

* From the fact that equations (2.26) have a covariant form it does not follow that h*” are

transformed like tensors (more accurately, they transform according to the nonlocal Lorentg
transformation {9,10]) when one compares them in two different reference frames. However,
the form of these equations is Lorentz-invariant. This means that if A* satisfy Eqs.(2:31) in -
one particular frame, they satisfy the same equations in any other reference frame, as well.
The existence of the invarianis different from the energy, momenta and sngular momenta of
the free EMF is not & new thing at all. In addition to refs.[ 18,19] mentioned above, we refer
to books [20,21] where the history of the findings of EMF invariants is presented in detail.
The symmetry propertics of the Maxwell equations under the transformations of the E(2)-like -
little group [22] leaving the four-momentum inveriant were discussed recently in [15). It is the
aim of this consideration to investigate some of the afore-mentioned invariants numerically
snd clarify their physical meaning. k ‘
Ezxlernal currents. :
Note that when passing from (2.3) to (2.5) we have not used the second of Eqs.(2.4). Thus, we .
suggest the validity of Eq.(2.3) in the presence of the current source F(7, ). In the momentum
space the Maxwell equations are . .

. Ex BB = -1, &x AE) = 1B + TIE), (2.32)
Here j(F,t) is the Fourier transform of HED N EAOE f F(E,t) exp(iE7)d®k). Substituting
(2.3) and (2.10) into (2.32) one recovers the following equations for F(E) and, F(E):

Rt = —iwf(B) - Yoi B 1), §(F 1) = —iwg(F) — LIRS (@239)
)= \/JJ s8R I) = v g Vo FACS S .

We rewrite these equations in the coordinate space

s 2, . 3 ’
curlf+ Y= =225, amig-ii=20, (2.34)
¢ ¢ ¢ c
with £k . i o ~
g = / 7-“_,exp(u?;),’(i;) ond Jy= /'Tagxp(;ini; x 3(B). (2.35)
From this one finds the following equations for fend g .
- 2 . 3 2. - .
0f =257+ Lewntd;, U= A %z-curlll. (2.38)

@



‘3’ Numerical results

We apply the consideration of the previous section to the following simple model. Let at the
initial moment ¢ = 0 the magnetic field H equals zero everywhere while the electric field £
differs from zero only inside the sphere S of radius a:

E(Pi=o = iy 6in 0 FyB(a — 7). ()

(It is therefore suggested that only the ¢ component of £ differs from zero for t = 0). Making . '

the Fourier transformation of E one finds from (2.3) the Fourier components of 7). Only
its ¢ component differs from zero:

—1Ey sin 1[J(ka)

k)= \/_ ) o V(ka) =2 2coska — kasin ka. - (3.2)

Here 0, is the polar angle in the momentum space (k, = kcosf;). We normalize the wave

function to N photons:
17, =
= [\fEP&EE=N,

which gives
- 3VrwheN

T

Then, using Eqs.(2.2),(2.3),(2.8) and (2.14) we evaluate B(Z,1), H(2,1), f(Z,1)and §(Z,1).
It turns out that only the ¢ components of E and § differ from zero, while Hand g have
nonvanishing r and # components: '

By =~GovRe22lry, B, = 20vRelny, ﬂ,—_co\/—iﬂﬂf,,,,
,d__,,go\/“ﬂifff, g,_znxcn-——f r, g= mq,\/i“‘“olg. (3.3)

Here Co = ;f"mfwzj,

Is'= [ dk(ii% coskr )"’(" ) cosut, If = / dk("“"" kr)"’('“") sinwt, (3.4)

Iy, = /dk[sm kr(l—w)+w:fr]%:)- sinwi, If = /dk(sm kr os kr) ¢I¢(5/2) exp(—iwt),

- sinkr  coskr (ka) eiv P coskr Y(ka) _;,
I;:/dk( ¥ Tk ) o ¢,v I = —/dk[smkr(l e 2)+ 0 =1 PIER e
All these integrals can be taken in a closed form.

Th\e density of EMF is given by

Phur = (B + B, (3.5)

The time evolution of this denslty is shown in the upper parts of figs.1,2. 1 For the
definiteness we choose a = 0.25, N = 1,sin8 = /2/3 (as for this angle pf,p, and prur
coincide with their values averaged over the sphere of an arbitrary radius). As expected, the

lIn what follows the radial variables are measured ir fm, the erergy in meV, the erergy density in meV -
fm™3, the photon density in fm™3.
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Fig.1. The energy densities for the clectro-
magnetic wave (upper part) and photon
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Fig.3. The magnified image of energy
density for the electromagnetic wave and
photon for ¢t = 2. The first is exactly zero
outside the interval ¢t —a < r < ct + q,
while the latter has small tail there.
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"Fig 4. The photon densities corresponding
to the positive-frequency wave functions
(upper part) and the wave functions contai-
ning both positive and negative frequencies
(lower part) for ¢t = 0,1.
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Fig 7. Same as Fig.6 for ct = 2.
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Fig 8. The ”pseudo”-energy density for
ct = 1. The integral of p} coincides with

a=0.25

the phioton energy. v

10

density of EMF energy equals zero for the space points (r > cf + a) for which the action has
not arrived from the nearest parts of S as well as for those points (r < & — a) for which the
action has passed from the most remote part of S, The EMF initially confined to the sphere
S propagates outward it with the light velocity c.

Sometimes the photon WF is identified with the posltlve frequency part of E and H [ll 12}

e e et e e A A e

6
o B, = —CoV/RENO I p o B = i/l
2r r3 4

Hy = HY = ~-,c°\/E""’91<+’
1§ = I —ily, IP =15 —ily, IP =15 -ily, (36
IB = /dk(smkf kr)‘b( )smwi Iy = fdk(il-n—l"-—coskr)ﬂﬁ—a) coswt,

coskr_y(ka)
k’ i

Ig, = j dk[smkr(l— comut. (3.7)

The followmg equahons are valid:

/ p(mdv [otE)av = [ Foral? = j wl fAEP .
Here ) ' 1 _ )
o(Es) = 5 Bu B, (H+)=—H+H:, Piroe = 3I0(E) + (B (38)

These quantmes may be consldered a8 photon energy- densities. Contrary to ppur givén by
(3.5) the densities (3.8) cannot be localized (see lower parts of figs.1,2). Closely following
PEur they have small tails in the region where pBMF = 0. The magnified repreaentntlon of
Piur 8nd py, densmes for pa.rtzcular value cf = 2 is shown in fig.3. :

t
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1000 P " B i Fig 10. Demonstrates the absence of the
o superluninal spreading for the particle
2,5,8. positive-definite density initially confined
: to the region r < Ry and s.msfvmg, )
the continuity equation.

Fig 9. Same as Fig.8 for ct =

Turning to the time evolution of the photon densities ps, p, and p we observe that they, being
maximal in those space regions where pg ;. differ from zero, have small tails outside them
(these tails are in fact so small as indistinguishable on the most of figures). The typical
behavior of p = (ps + p,)/2 is shown in the upper paris of figs 4,5.
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The local differential contmulty equahons (2.18) and (2 19) suggest the existence of the
conserved densities

2 and pl)=Ffi+dd » (3.9)

'
the space integral of which is zero {(fige.8,7). Likewise py,p, and p they follow closely the
electromagnetic density peyr and practically are equal to zero outside the region where £
and # differ from zero. So far the physical meaning of these densities remains unclear to us.
Probably, they characterize the internal structure of the photon.
Now we turn to the density p./ defined by Eqs.(2.27). Its typical behavior is shown in figs.8,9.
The quantity p./ has the following properties: it has small tails outside the regionwhere E‘
and # differ from zero. Inside that region p.f exhibits one-two oscillations. The spatial
integral of p,’. is equal to the electromagnetic energy The physwal meaning of the densities
p and p? is also a mystery for us.
It would be interesting to look 8{ the spatial distribution o

oL).= f? + 53 - -‘f -

i oz e
HN-) = 55=5(3f" - Je°) (3.10)
of the difference of right and left photons numbers N_ (see Eqs.{2.23)-(2.25)). Yet, this
density identically vanishes for the treated photon conﬁguratlon deﬁned by Eqs (3 2) and
(3.3).
We evaluate now the photon current densities J; and J; introduced at the end of sect.2 for
the particular current density. We chooee it in the form’

3@ = f)eirin @), ‘,

simulating the infinitesimal magnetic dipole moment placed at the origin and directed along
the z axis. Its time dependence is governed by the function fo(t) At first we find the Fourier
transform of -

ik, - .
]:(k) 87 ’,fo ]y( ) - —8 3 0y v]l(lk) =

The components of the photon current density entering into Egs. (2.33) and (2.35) are given
by

. sinfsin ¢ . sinfcos ¢ . 1

Jie = =555 TR Jy = Sjo——77 Ju=0, jo= 7 Jae
.. sinfcosfcos ¢ sm0cos0sm¢ ) .. 1—Igin%¢
Jg_, = —-21!]0 2713 3 J = —21 70 ”2 ) Jj, = —121]0—;*772—

4" On the Ehrenfest-Pauli objections

Although the Pauli objections were primarily concerned the photon densities suggested by
" Landeu and Peierls, they, in fact, are equally applied to the photon densities discussed in the

previous section.

The first objection by Pauli is that at the point where E,H # 0but p = 0 the photon

density looses its sense as it is not clear what means the absence of photons at the point

where £, # 0 (this contradicts the generally accepted identification of photons as carriers

of £ and H). It follows from the numerical resulis of the previous section that there are no

space regions where photon density equals zero but B, # # 0. This is also confirmed by the

Hegerfeldt theorem discussed in the next section.

On the other hand, the nonvanishing of the photon density in the space reglons where E=

12

N

i i i

o e e

- if the following procedure is adopted. It is known how E and

H = 0.means that the role played by photons is not limited by that of E, H carriers. This
claim is supported by the existence of the invariants dxscussed in sect.2 as well as the new
helicity invariant obtained recently in {17].

The second objection is due to the complicated behavxor of the photon density under the -
Lorentz transformation and to the absence of the covariant 4-current satisfying the continuity
equation. In our case we have thé 4-vector J4 = (p, "(f X7+ f‘ X 7)) satisfying the
continuity equation and having a posmve definite densxty The components of J# exhibit
the nonlocal Lorentz transformation when one passes from one reference frame to another.
Yet, the complicated nature of this transformation does not destroy the Lorentz invariance

“.of the integral { pd®z (see the next section). “Thus, this Pauli objection is considerably

weakened* After all, one may disregard the complicated nature of the above transformation
H behave under the Lorentz

transformation. Having £,  in one particular frame we evaluate £(E), H(E), /(R), §(E), f(Z)
and §(Z). Using the Lorentz transformation to obtain E, H in another reference frame and

- performing the same procedure ss above we 9va]uate f,§ and, finally, J* i in a new reference

frame.

5 On the Hegerfeldt theorem and all that

Klein-Gordon equation :
This theorem states [7} that a wave function being ongm&lly confined to the space reglon
S and, thus, giving zero probability to find a particle outside S, at a later time gives a

. finite probability to find the particle at a distance r > ct away from S. At first glance this

implies that a particle travels with a superluminal velocity. As an illustration, consider the

Klein-Gordon equation
(@+4*)¥ =0,

We seek 1ts soluhon in the form

¥(3,1) = / expli(kz - u,.:)qu)ﬂ wy = cky, k“=‘/k=‘+p?. (5.2)

¥

n= me/h, : (6.1)

We exprees 'I’(k) through the initial value of ¥(Z, t)

V&Y = / Gu(E - F,)%(@)ds, Gy = / exp[tk(z - )= i &%, (6.3)

(2 @)

Let ‘Pg(:i:') = ¥(Z, 0) be zero outside the space region S. Then, the Hegerfeldt theorem states
that ¥(Z,1) will be everywhere nonzero for t > 0. To see the reason for this strange behavior,

. we observe thet (5.2) is & very special solution of Eq.(5.1). Its general solution is completely

determined by the initial values of ¥ and its time derivative (23], .
OD,(F-2,t R -
¥z = [ d’z'l—‘i(-%,—z——)-‘l’o(i')f D,(Z - 7,10, (5.4)
N RT . S 1 fk, o
D,(Z,t) = W'/ -i‘:-exp(lké') sinw,t = 5;2—"/ k—"-djl smkr sink,ct.
The following properties of D,,, ’ '

Dy(#,0) =0,

=0 = c8%(3),

8D,(Z,1)
e
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guarantee the fulﬁllment ‘of the initial conditions. Further, D,(Z,t) = 0 outside the light -

cone. Equation (5 4) tells us that the disappearance of the initial wave function outside the

space Tegion S is not enough for the disappearance of ¥(Z,?) outside the light cone. ‘The

lstter tckes place only if the initial values of both ¥ and ¥ equal zero outside S. '
Turning agein to ¥ defined by Eq.(5.3) we evaluate the initial value of its time derivative

8¥(z, 1)

. \I;°= Bt ]g=o (2 )3

/w,ezy[sk(z—é")}‘l’(z 0)dkd’z’". (5.5)

It then fol]e';:s from this that ‘llq(i) differs from zero everywhere even if ¥of(Z) disappears
outside S. Substituting initisl values ¥, and ¥, given by (5.5) into (5.4) we arrive at (5.3).

Thus, we obtain an alternative interpretation of the Hegerfeldt theorem. Consider the solution

(5.3) of Eq.(5.1) corresponding to ¥y = 0 outside S. Then, nonzero values of ¥ outside the
light cone are due to the nonvanishing of ¥, outside S. .
To clarify the situation, consider the energy density of the scalar field
lgrad¥f? + 191" + 7|9
Now, if ¥ = 0,. ¥y # 0 ouiside S, the xmtml ‘energy density also differs from zero outslde
S. This- points out on the unphysical nature of the afore-mentioned initial condition (as 1t
is not clear what means the absence of the particle probability density and the presence of
its energy density in the same space regxon) leadmg to the superlummal spreading of the
probability density. "
As far as we kmow, the first estimations of the eﬂ'ects arising from the superlummal spreading .

of the Klein-Gordon wave functlon 88 well as the poseublllty of their expenmental verification -

" were performed by Shirokov (24].
Wave eguation. o
All these considerations remain valid for the wave equation if one puts ;m = 0 in Eqs.(5.1)-
(5.5). The general solutlon is completely determined by the initial values of ¥ and its time

derivative
V(3 1) = / .f,'[i'@ﬁ:_f’_‘)

il

¥o(#) + Do(# = 7, b6(@), (56)

Do(3,t) =

@7 )3 / 3 exp(nk:i') sinw = lz,. /dk_sxn krsinkct = I};[&(r - d) —§(r+ct)).

The function f{Z) defined by Eq:(2.8) and its time derivative may be rewritien as \
@ = (—2;7 / expliE(z - 2) —i)f(@, 0k,  (57a)
j-r(é', )= (2 g /wexp[nk(z — &) - wl) f(&, 0)d°kd’z". . (5.7b)

Let the initial value of Fbe zero outside S. It follows from the Hegerfeldt theorem that f will
be different from zero everywhere for ¢ > 0. It turns out that the total density p = (I 1P+1g1%
will be different from zero everywhere for every moment of time even if F=0{orthis pa.rtlcular
moment. To prove, this we put ¢ = 0 in (5.7),

‘e

fz,0) =~ / wexplik(z - "’)]f(z 0)dkd’a".

(2 x)*
. Obviously, this function differs from zero everywhere. It follows from Eqs (2.15) that g ;& 0
everywhere for this particular moment of time. This completes the proof.

R
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For the wave equation (in addition to the expression similar to (5.4)) there is known
another formula (the Poisson one, see,e.g., Smirnov [25] or Courant-[26) treatises ):

¥(e,v,5,8) = o [ dVTo(e B, .,)+ = [ 49%(a, 8, 7)1 (5.8)
where ¥, and ¥, are the initial values of ¥ and v, Further, dY = sinf@'df’'d¢’, o =
z+ctsin@’cosd’, B =y+ctsin®singd’, 7= z+ cdcosf’. It would be useful to have &
similar closed expression for the solutions of Klein-Gordon equations.

We observe that ¥ given by (5.2) has the constant (i.e., independent of time) norm. Being
initially confined to the space region S, it fills the whole space for a later time. On the other
hand, if for ¥ given by (5.4) the initial values of ¥ and ¥ lie inside S, then ¥ prope.gates
with_the light velocity, but its norm [ |¥[?dV changes with time.

" Mazwell equations. )
The following qualitative considerations show that it is impossible to localize the posltlve

frequency solutions of the Maxwell equations. For this we put

¥, =f+iH,

where £ aud H were defined by Eqs.(3.6). Evide_ntly,‘\l.; satisfies the equations

é‘l’l = curl¥, div¥ =0. . (5.9)
According to our assumption ¥ contains only the positive frequencles,
U(E,1) = / §(E)eFi~ngy, (5.10).

It turns out that F(k) satisfies the equation

i:-\ff(i;) =ikx§(F), v=Br+E . (5.1;)

- Using {5.9) we express W(F) through the initial value of ¥z, 1) = Yo(Z):

o O = Gy
Let ¥, be localized inside a finite space region around the origin. Then, expanding the
exponential factor and integrating over = one concludes that (lz) and therefore RHS of
(5. 11) are entire functions of k., ky, k,. On the other hand, the LHS of the same equatxon is
not an entire function due to the factor v = ,/k’ + kI + k2 in it.

This contradiction means that the positive l‘requency solutions of Maxwexl equatxons can-
not be localized exactly.
On the other hand, let the solution of (5.9) be a superposition of the poemve and negatlve
frequency solutions:

/ Fo(& e~"5d3 ' (5.12)

§(z,0) = / e-‘*[@,(i;)e—‘wf F_(E)e™9).

Substituting this Eq. into (5.9) one gets

(P, ¥ ) =ik x (T, +¥_). {5.13)

Now, if ¥(Z, 0) is localized in.the space region including the origin, the same reasoning as
above shows that RHS of (5.13) is an entire function of k., k,, k,.- However, no contradiction
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arises since different functions (¥, + ¥_) and (¥4 ~ ¥_.) enter into right and left hand sides
of (5.13). Thus, the solutions of Maxwell equations containing both positive and negative
{frequencies can in principle be localized. The appearance of positive and negative frequencies
is & necessary but nct sufficient condition for the Jocalization. To'illustrate this, consider two
vectors,
Ja(e) = & [F i+ Pk and fu(e) = o [ FEx (- )k
2x —k . 2x w —RE
It is easy to check that 4 '
5 . - '3 1 TN 2 33
[#dz =5 [IFEPLE,

coincides yvith the photon number . However, the space density
i R R
#(@8) = s la(@)) + Gu(@)]

is not localizable for f(k) defined by Eq.(3.2) although p) contains both positive and negative
frequencies. The typical behavior of p’ is'shown in lower parts of figs. 4,5. A deteiled analysis
~ ghows that it is impossible to localize E,. Hand fz, fi (and, therefore,p’) simultaneously.
The initial condition (3.1) corresponds to the localization of E and # at the moment ¢ = 0.
- The initial conditions may be chosen so as to localize fz and f.};. Yet, in this case E and #
will be distributed over the whole space and, therefore, nonlocalizable. Due to the greater
physical meaning of E and H we have preferred the first possibility. 1

We turn now to the Sipe paper {13]. The wave function used there was chosen to be the
positive definite part of E ie, . :

B = YEF®), §.6) = [ Erec(EDE) (5.14)
Ti:e value of ¥, at the moment f iz related to its initial value by the expression similar to

(6.7)
1

(2=

It.follows from this that ¢,(Z,t) differs from zero everywhere even if the initial value differs

from zero only inside the space region S. For example, we choose D (F1=0)= E?(R —r)

(@ is a constant vector, © is a step function) and evaluate the initial derivative of y:
' 8 - ic 1. r+R,
—_ z q = —~G——|— -
1 'I)l(zst)lt—o 027r2f[4 ln(' - R) (rr R)]I ) )
where $(r, R) = 7/2 forr> R, =rx/4, forr=Rand =0forr< R. This derivative
differs from zero everywhere. Then, turning to (5.6) we conclude that ¢,(7, t) will be different
from zero everywhere-for ¢ > 0. Obviously,- this conclusion may be obtained without any
calculations by applying the Hegerfeldt theorem to the Sipe wave function (5.14).
On the {ransformations of photon densities. :
Consider the definition of f(Z) given by (2.8):

&= / eikﬁz)dak.

Let f(k) be transformed like a tensor. Then, F(2) is not a tensor as d*k is not an invariant

volume. For f(£) and F(F) having the same tensor properties, the transformation law should .

be as follows: s Bk
‘ f(z) = / expli(kz — wt) fR) - - o (5.6)
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RN = G [ exvlifz - #) - il (Z, 0)d k. (5.15)

The densities in z and k spaces used in section 2 were related by the condition ’
1 o o

ey [ @ = [IFEFEE. (5.17)

Now, if {f(i)l’ in the RHS is a scalar, the LHS is not still a scalar (due to the same non-

invariance of d°k). For the scalar product in k space being invariant, it should have the

form : ' ) '
o g Ak

| Jii®r (5.18)

We extract f(F) from (5.16) ‘ '
sk . 2 P g

7B = gz expli) [ 7@ expi-ika)a’=

and insert it into (5.18):

/ l.f”(l?)l’—"l;c£ = f pra(Z)d’z. (5.19)

Here .
va= @@, @) = [cE-a)re@)0s, GE-7) = (_211r_)° [ k& kexpl-ik(z-2).
(5.20)

Although the integral in (5.19) is a positive definite quantity, the relativistic density p,a(%)
may take negative values. This invalidaies its physical meaning. The numerical investigations
of these densities have been reported in ref. [27].

Despite the fact that f{z) in (5.17) does not behave properly under the Lorentz transfor-
mation, the.integral in the RHS of (5.17) is a Lorentz invariant quantity. To prove this,
we consider the complex tensor F.(z) satisfying Maxwell equations. £ and ¥ forming this
tensor may be taken as positive frequency parts of E(z) and H(z) (the positive and negative
frequency parts of a tensor are egain tensors). F(2) can be expressed es an integral over
the plane waves

Fulz) = / }',‘,(k)?, Fu(k) = alk)(euks - ek, )eiE-1), (5.21)
Here e, is tﬁe polarization vector of the plane wave satisfying the conditions
(ke) = Ee— koeo = 0, e = —enet=1, ' (5.22),
a(k) is the Lorentz scalar. The explicit form of F, is |
£(k) = a(k)(@w - Eeo), AK) = a(k) x E. '
It then follows that under the Lorents transformation Fy, (), £(k) anld H(k) are transi"érmed
like F,,(z), £(z) and H(z) , resp. As Eqs.(5.21),(5.22) are invariant WRT the gauge trans-

formation e, — e, + ak,, it is possible to put eg = 0 in them (the consideration following
below does not depend on this fact). Elementary calculations show $hat

8 k 3 k .2 .
l ‘(‘)2)1 - r’"‘f’z)l = |a(k)12’ ) (5‘23)
ie., £(k)/w® and H(k)/w® are the Lorentz scalars. It follows from Eqgs. {2.2),(2.3) and

(2.9) that under the Lorentz boosts the quantities w¥/? fie™* and w*/3ge™* are transformed
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like £(z) and (=) and, therefore, like £(k) and (k) (as, being multiplied by d°k/w and
integrated they coi!_J.cide with the positive frequency parts of E(z) end H(z)). L{t follows
from (5.23) that w}fi}* and w|gif? ere the Lorentz scalars. Thus, the quantities [ | f;.l’wé}" =

Il f;.|’d’k and [ | §k|’w%’1 = [ |G [?d*k are the relativistic invariants. This completes the proof. 7\
The moral of these considerations is that the seemingly noncovariant form of the integrand

does not necessary mean the noncovariance of the integral itself. - ' ]
Cansality and positive definiteness of the probability density. R
The following considerations point to close relationship between the causality and positive
definiteness of the probability density. The idea was put forward by Wigner [22}: Let at the
initial moment 1 = 0 the pariicle be localized inside the sphere 5 of the radius Ry (fig.10).
We surround S by two spheres of radii R, and R,, (Bo <A< Ry). Let sphere 5, expand

with the light velocity ¢ up to the radius R} = R, +¢, while sphere S; contracts to the radius

Ri=R,—d, RI<R, Consider the 4-volume V surrounded by the 3-surfaces: -
1=0, R, <r < Ry, ‘ -
t=t, Ri<r<R,

o<i<t, r=R+¢t, -

p<t<t, r=R—c a (5.24).

\ -

‘Due to the Gauss Theorem
L2 =
? d‘a} . / Judo,,

R

the flux of the 4-current through the closed hypersurface equals zero if the, continuity equation

8J,/8z, = 0 is fulfilled. Being applied to hypersurface (5,24) this gives:

R B R : N Cos
' / (0 = I Ne=groraycdV + / p(r,)dV + / (p + I )e=rarysedV = / p(r,0)dV =0. (5.25)
Ry R R R

The last integral equals zero as at the initial moment ¢ = 0 the probability density-equals
" gero for By < r < Ry. Thus, the sum of the remsining three integrals is zero. The positivity
of the integrands in (5.25) leads to the dissppearance of each integral and integrand entering
this equation.. In particular, this gives p(t) =0forr > By +ct. This means that the cmrlsality
is not violated for the conserved 4-current with positive definite dengity. o

We prove now that for spin 1/2 the causality is not violated for rather general interactions.
Consider the Dirac equation ’ . ’ '

(7»38- +Q¥ =09, ) (5.26)
N

where Q is the operator independent of coordinates with the property that the wave function
. ¥ = ¥*y, satisfies the equation '

/] B .
Erg — Q) =0. (6.37)
. . . . {13 .
It follows from these equations that the continuity equation is fulfilled:

A | .

8 . _ _
i) = 32 =0

X
From the positive definiteness of p and the time likeness of J, it follows immediately that p2> ]j].
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For the plane wave . - .
» ¥(z) = expli(FZ — ef))u, (5.28)
one gets
(—enu+ip7+Q)u=0, d(-en+ip7+Q)=0.
D‘ifferentiate the first of these equations with respect to f

L It (men +.iﬁ+Q)%:7,£ 0. | (5.29)

Multiplying (5.29) by & one gets
L i{aFu) _

~Piyu+i(8Fu) =0 or v= =
Juf?

® |y

glng to the positive definiteness of p and time likeness of J, the velocity of |#] is always smaller
an c. ) ’
Another example is the motion of & neutral particle with spin 1/2 and anomalous magnetic
Ex;oment (e.g., ln)e}ltron) in a constant electromagnetic field. The corresponding Dirac equation
z—e=p= 18 - ) B
' 8 1
(‘7,‘32—” - 5 W + 11))W =0.

For the plane wave (5.28) this gives

. 1
(ipur = 3P0 + mu = 0.

The corresponding dispersion eyquation‘
1 ‘
detlip, v, — 2wt +ml]=0

deﬁnes’ the energy as a function of the momentum (¢ = ¢()) and this in turn allows one to

obtain the group velocity ' '
. Oe

- o

The analysis of (5.30) shows [28] that |7] is always smaller than c. For the maguetic field

eqngl 1o zero and F directed along E the indeterminacy of the form 0/0 arises. Being resolved

it again gives |¥] < c. This case is equivalent to the conical refraction in optics predicted by k

—
v=

(5.30)

" Hamilton [29].

'

6 The electromagnetic waves versus photons
Consider the complex form of Maxwell equations:

i ) ' :
z—&l = curl,, div¥, = 0. ‘ ’ {6.1)

Here &, = E + ifl. Consider the positive- fréquéncy plane wave

FR(z, 1) = ak)eFI~, (6.2)
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Substituting (6.2) into (6.1) one gets

Ye= l(k xé), ék=0. (6.3)
[ . B
Let vector = (0,0, %). Then, it follows from (6.3) that &= (1,4,0)/v2 and

Er=¢. oos(kz —wt) — & sin(kz —wi), Hr=¢& sin(kz — wt) + & cos(kz —wit). (6.4)

It turns out that ER and H r are rotated in the clockwise direction for an observer looking -

along the E direction. Thus, the plane wave (6. 2) is a right-polarized one. The negative-
{requency solution of (6.1)
\I’L — E[k) —i(hz—wt) (6 5)

(the vector €(k) is the same as in (6.2)) describes the left-polarized electromagnetic wave. In
general, the superposition of (6.2) and (6.5)

¥(3,1) = AR)[Cre ™Y 4 Cre®-on] C(8.6)

corresponds to the classical elliptically polarized wave. Particular cases Cg = 0 (or C’L = 0)

ead |Cg| = |C’L[ correspond to the circular and linear polarizations, resp.
Now we interpret (6.1) as equation describing photons. In quantum field theory only the
positive-frequency solutions are admissible. This means that Eq.(6.1) describes the photons
with right-hand polarization. To describe the photons with left-ha.nd polarization, Lonslder
the function W, = E — i} which satisfies the equation -
i 8% ' '

—'C-Wz = Cufl‘ig. ) (6.7)
This equation also has positive- and negative- frequency solutions corresponding to the left-
hand and right-hand polarizations, resp. The positive-frequency solution of {6.7)

E; = & cos(kz — wt) + &, sin(kz — wit), .I?L =¢é, Bin(“kz — wt) — &, cos(kz —wi) (6.8)

.corresponds to the left-hand- polarized photon, while the negative-frequency solution de-
scribes the right-hand polarized entity (not a photon, as it corresponds to the positive-
frequency solution). The negative-frequency solution of Eqs.(6.7) and (6.1) are complex
conjugated to the positive-frequency solution of (6.1) and (6.7),resp. As negative-frequency
solutions are discarded, the positive-frequency solutions of (6.1) and (6.7)_are no more com-
plex gon_;ugated We refer to them as to ‘i;g and ¥,. Wé conclude: positive-frequency

solutions ¢orrésponding to the right-hand-(¥ ) and left-hand- (¥.) polarized photons satisfy
the following equations:

1% = curl\I’R, div¥iz =0, it =curl¥y, div¥,=0 (6.9)
c Ot : c & .

The pay for discarding the negativ&frequency solutions and the necessity to have right- and -

left- polarized photons is the doubling of the number of equatlons This doubling is not
needed for the classical electromugnehc wave as both poemve and negative frequencies are
allowable for its desenptlon “Under the Lorentz transformation Ex; and I?R,L defined by
Eqs.(6.4) and (6 8) behave as usual field strengths £ and H. .
Now the following dramatic situation arises:
" 1) Single photons as positive-frequency solutions of Maxwell equations are not localizable.
This fact is confirmed by numerous experiments [30].
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2) Classical electromagnetlc waves are localizable.. Mention '8 clystrons, waveguides, laser
beams propagatmg in vacuum without spreading, etc.

3)itis generally believed that the electromagnetic wave consists of photons. Experiments’
seem to confirm this viewpoint ( for example, a photomultlphe.r being placed nto the elec-
tromagnetic wave detects particular photons).

The appearance of negative frequencies in the classical electroma.gnetlc ﬁeld may be under-
stood in the framework of quantum electrodynamics. In it, the quantized EMF is described
by equations of the same form as the classical ones (6.1) in which the function ¥ should be
changed by the operator. In quantum mechanics the time derivative of the operator ¥is
expressed through the commutator of ¥ with the Hamilton operator 'H

.ﬁh\f = &7 - (6.10)

~ : ,
It is suggested that # has the same form s its classical counterpart H:

7 — i 2T 13 . ‘ '
. H= s«/'i; ¥z . | (6.11)
Equations (6.10) and (6.11) are récoociled if ¥ satisfy'thejollowing commutation relations
([Bn(,1), 82200 = s;xhe;,,.,:’—.s(s— # (6.12)

(other commutators are zero). These commutation relations are satisfied if we take the usual

,second-quanhzed expression for the 4-vector potential 4,. Then , evaluating B, H and

=E +ilf we arrive at commutation relations (6.12). The expressions for A,, E A
a.nd ¥ operators contain the terms with positive and negative frequenciés (of the creation

and annihilation operators). According to the prescription of quantum electrodynamics the

clussical electromagnetic field is obtained by averaging the quantum operators B, H over
the so- ca.lled coherent states. As a result, terms with positive and negative frequencies arise
on the. same footing. The obtained Ej., and H,, are reduced to the sum of plane waves with
positive and negative frequencies. Summing is performed over all possible wave vectors and-
polarizations. Changing the sum over k by the-integration ((1/V") T; = (2x)% f d°k) and

. averaging over the polarizations one obtains for E,., and H ., expressions exactly coinciding

with (2.2) and (2.9) in which |fi|? and ]gi|* mean the average number of photons with the
wave vector k. Thus, representations (2.2) and (2.9) arise in & natural way. They, in fact, are
the consequence of averaging over the coherent states. This procedure is justified by the fact
that photon states generated by the classical current coincide with the coherent ones [11,31].

 Obviously, the photon states are not exhausted by the coherent ones. As an example, mentlon

the black body radiation and other states used in quantum optics ([31,32]).
The main result of this section is the fact that the classical electromagnetic wave contains
both positive- and negative— frequency solutions of the Maxwell equations, while only positive

A frequency solutions (if we do not abandon the standard interpretation of particle in quantum

field theory ) are permissible for the description of photons. The availability of positive and

- negative frequencies makes the localization of the electromagnetic wave to be possible. On the

other hand, in the interpretation by Kim et al [15] both the electromagnetic waves and photons
are superpositions of positive- frequency solutions. The sole difference between them is that
photons require the covariant description, while electromagnetic waves do not !.” According to
the Hegerfeldt theorem the photon and electromagnetic wave thus defined cannot be localized

1We have seen in sect.5 that the illusive noncovariance of the integrand does not mean, in generel, ‘the
noncovariance of the integral itself
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in the sense to be confined witilin o finite’ volume V. However, the positive- frequency photbns
cannot be locslized in Newton-Wigner sense either (as particles with mass zero can be
localized only for spins © and 1/2 [5] ). As far as we can understand, Kim et al [15] tried to

achieve appmnmate localization of the photon wave function in the Newtion-Wigner sense.
" The photon wave functlon localized in the Newton- Wigner sense differs from zero everywhere.

As claims of ref. [15] and of the present consideration are referred to different definitions of

localizability, there is nq contradnctlon between them.

7 Discussion
The main question to be answered is whether the functions f and g introduced in sect.2
have a physical meaning. Consider one particular photon. Its wave function, density and

energy densxty are distributed over the whole space and cannot be localized. We have seen
that major parts of the photon density and energy density: ere confined to a small region of

space with small tails outside it. Let the detector D (e.g., photomultiplier) be placed into the

photon field. How much should the photon or energy density be overlapped with detector
in order 1o be registered? The same question concerns the electromagnetic wave in which
E and H# equal zero outside a finite volume V but the pheton density p = 1f? + 157 differs
from zero everywhere. Can this densxty produce any physlcal effect? In the momentum space
there is only one vector function f(k) defining the evolution of EMF. For the choice (3.2)
the electromagnetic field initially confined to the sphere of radius a expands radially with
the light velocity ¢. Can the initial conditions be chosen so, that the subsequent motion of
the EMF bunch would be in one particular direction (e.g., along the z axis)? Consider the
impenetrable sphere’S with a smsll hole in it. Let.the emitter of electromagnetic waves (e.g.,
oscillating electric dlpole) be placed st the center of 5. Then, outside S a thin nondivergent
. electromagnetic wave beam will be observed. Now let inside S (instead of the afore-mentioned
electromagnetic wave emitter) the source of photons {e.g.,radioactive atom) is imbedded.

Sometimes the particular photon will pass through the hole in S and the isolated photons
should be observed outside S. As photons cannot be localized, their density differs from
zero everywhere and, this can, in principle, be obsérved. It is tempting to associate the
. afore-mentioned tails of photon and energy demsities with the so-cal.led -empty waves [14].

Their existence was predicted by the founders of quantum ‘mechanics (Gapensterfelder {or
ghost fields) according to Einstein, vn'tual waves according to Bohr, etc:). ‘According to the
modern viewpoint on empty waves they are needed for the correct eveluation of quantum
probabilities as well ag for the preparation of a quantum system to the subuequent arrival of
‘the EMF wave. We quote two citations from book {14}:

»How can one ever hope to reveal the presence of a wave which does not carry energy
"or momentum? This problem can have an answer if it is noticed that one does not only
measure energy changing processes but probabilities as well: the wave could therefore reveal
‘its presence by modlfymg decay probablhtles for an unstable svstem”(p 137).

And further:
..the associated v wave packet, l.hougx. *levoid of ¢ energy and momentum, has a chance to
reveal its existence by generating a zero-energy transfer simulated emizsion” (p.138).

The authors of the present consideration although being not the ndherents of the empty
wave existence, should msake emphesis on the following properties of the functions f ang g
(see set.2 and 3) resembling the empty-wave ones:

i) For the electromagnetic wave the photon densities differ from zero everywhere and, in
particular, in those space regions ‘where E = H = 0. This takes place at each instant of time
including the initial one. Such a space distribution of densities is needed to obtain the correct

value of the photon number N.
22

ii) There are the energy-like carrying densities p{ and p? (see sects. 2 and 3) distributed
over the whole space ( contrary to the electromagnetic energy density). Under the term
'energy carrying densities’ we mean that the space integral from them coincides with the
electromagnetic energy. Among the followers of the empty wave concept there is no overall
agreement whether empty waves carry the energy and momentum or not { for example, de

" Broglie suggested that an empty wave carties a tiny part of them). The present consideration

shows that the photon wave carries the entity that strongly resembles the energy Yet, it is
not known how this entity affects a charged matter. = -

Among the three densities ps, p, and p introduced in sect.2 the most promising seems to
be p as it satisfies the local differential conservation law (2.16). .

A few words should be added on the photon localization. It is not localizable in the ord'mary
meaning { photon confinement within a finite region of space) if by the photon wave function °
one understands the positive-frequency functions Fand §or positive-frequency parts ‘of E
andff . ‘According to the Hegerfeldt theorem all of them~-are distributed over the whole
space. . On the other hand, the electromagnetic wavg can be localized in the same sense as-
it contains both positivé and negative frequencies. So far we have identified photons with
positive-frequency solutions of the free Maxwell equations. The situation changes for the
photon placed into the cavity with absolutely reflective boundaries. As a result of reflections
the standing photonic wave arises inside the cavity and this makes the photon locahzatlon to
be possible.

.Another drawback of this conmderatlon is that we have not concretized the process of creation

and’ detection of photons. The importance of this effect was demonstrated by Sipe [13],
Shirokov {33] and Kaloyerou {34].

To the end, we see that photon has a number of mtngumg features. The appearance of ;
the first volume of the book The Enigmatic Photon’ {35] is also an argument confirming the
inexhaustibility of photon properties. '
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Numencal mvestlgatlons of . dlfferent photon densmcs and correspondmg
to them conservatlon laws are’ prescntcd The Ehrenfest-Pauli objectlons against

the non]ocahzablhty of the smgle photon can be rcconcnled w1th the locallzablhty
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