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· 1 Introduction 

Attempts to find the probability density for photons have a long end dram&tic history. As 
far 88 we know, the first attempt was made. by Landau and Peierls in 1930 (1]. However, . 
the density obtained by them was not. positive definite and, thus, had no physical meaning. 
Thie paper h88 been severely criticized by Ehrenfesf (2] and Pauli {3,4]. Further, Newton 
o.nd Wigner (5]1 nave clarified the physical meaning of the particle localizability. Their defi­
nition of locruizability diffem from the uBual intuitive one which defines the locali.zability cs 
the vanishing of the wave function outside the finite region of space. On the contrary, 1.he 

. wave function localized in the Newton-V/igner seJllle differs from zero everywhere2• ·Later, 
Hegerfeldt {7] generalized their resuUs by proving an important theorem which states that 
even if the initial wave function is confined to the finite space region, it instantly fills the 
whole space ~t a subsequent time. In an important Zeldovich paper (8] the number of photons 

. was represented 88 an integral of an expresaion bilinear in electromagnetic strengths and its 
relativistic invariance WM proved. In two papers by Cook (9,10] two auxiliary functions re­
lated to the photon density were introduced. Unfortunately, they are not behaved like tensors 
under the Lorentz transformations. Akhiezer and Berestetsky (ll] and later Bialynicki-Birula 
{12] considered the complex form of the Maxwell equation. The photon wave function and its 
density were 8B80ciated with '1' = (E + iH) and Md (E2 + H2)/ J(E2 + H2)d3z, resp. In the 
paper by Sipe [13] the photon wave function was identified with the pooitive-frequency part 
of the electric strength. Correspondingly, the photon density was normalized to the energy.' 

In the present paper, we develop and numerically investigakl the formalimn suggested · 
in refs.[9,10]. The plan of our exposition is oo follows. In sect.2, necellSal'y mo.thematic~ 
details are presented. In particular, · a number of conservation laws is obtained ·and their 
physical interpretatio~ is given. In· sed.3, theBe results o.re applied to a reli•tively simple 
model. We numerically investigate the time evolution of the photon density and other den­
sities corresponding to the conserved quantities. U turns out that ~e photon wo.ve function 
(WF) slightly extends over the region where electromagnetic strengths differ from zero .. It is 
tempting to 88SOciate this part of the photon WF with the so-co.lled.'empty' wave (·a detailed 
expooition of the empty wave theory accompanied by the thorough analysis of the perlormed 
o.nd planned experiments aimed to detect empty waves C&D be.found in book [14]). In sect.4, 
we turn to the Ehrenfest-Pauli objections against the 'La.ndo.u-Peierls WF that are equally 
applied to the present {unction. We believe that at least partly we succeeded in overcoming 
the Ehrenfest-Pauli objections. In sect. o; we present our viewpoint on the Hegerfcldt the­
orem having in mind its applicaUon to the time evolution of the photon wave function. In 
sect. 6, we try to resolve the contradiction between the pOSBible localizability of the cl388i­
cal electromagnetic wave, its absence for photons and t.he fact that an electromagnetic wave 
consists of photons. Our resolution of this paradoxical situation diffem eseentially from that 
suggested recently by Kim et el. [lo].'· A brief account of the results obtained is given in 
sect.7. 

2 Preliminaries 

. Photon den,itie,. 
We consider the free electromagnetic field (EMF) described by the Manvell equations 

1 A nice exposition of their ideas ma.y be found in Ba.cry'a book [6}. 
2In wha.t follows under the locallza.tlon of the electromagnetic :field we mea.n the p088ibility of ita con.'inement 

within the finite region o! spa.ce, thu, not the localiza.tion in the Newton-Wigner st:n&e. 
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cu-,.IE = -D/c, curlH = i/c, divE = 0, divH = 0 (2.1) 

(the dot above the letter means a time derivative). The Fourier transformations of E and 
Hare: · · · - -~·-, ':' · 

E = / e'"E,.(t)ct3k, iJ ~1 e'';i1,.(t)d3k. (2.2) 

The reality of E and i1 requires that .E-(-k) = E(k), H•(-k) = H(k). These 'eq'uations 
'ru-e automatically satisfied i£ E,. and n,. hav~ the form [16] 

~ ../w- ~) l!,,. = ,;(A+ I_,. , JJ,. = C ,:-:k X (/~ ..,. /:,.). 
2irvw 

(2.3) 

Here w = clkl, ,In the Coulomb gauge (divA = 0,. Ao = 0) the vector functions/,. satisfy 
the equations 

•, . &f = o, i/ = wl. (2.4) -

For the free EMF l(k) = /~(k)exp(-iwt) where/~ is independent of time. The first of Eqs. 
(2.4) guarantees the transversality of EMF (divE = 0, divH = 0). His essential that E . 
and i1 defined by Eq.(2.2) contain b~th positive and n~g~tive frequencies! The energy is 
equalto · 

EBA.CF= 1-j(E2+ H2)d3:r = / wl{(k)j2d3k. (2.5) . 8ir 
It turns out tha'.t f E2dV ~d f H2dV are not conserved quantities, onl~ their sum does. It 
follows from (2.5) that , · · 

P1(k) = lf1k}l2/h (2.6) 

coincides with the photon density in the momentum space. The number of photons is given 
by N = f PJ(k)d5k.· Thus, /(k) may be considered as the photon wave function in the 
mo~entuin space. Further, the number of'photons may be written as an integral over the 
space variables ' I 3 ' l -N = PJ(ii)d :r, P1(ii) = h(2ir)3 l/(i)j2. (2.7) 

Here"f(ii) is the Fourier transform of /(k): 

/(i).= j l(k)exp(ikii)d3k. (2.8) 

It turns out that pJ(ii) may be viewed as the photon density in the coordinate space. Since 
p(k) is independent of time, the number of photons N is a conserved quantity. In what follows 
we need the representation of the field strengths alternative to (2.3) · 

B(k)"=',/w (i(k) + i(-k)), E(f)'="-2 c r.:;; x (i(k) - i(-k)). (2.9) 
'2ir ' 'lryW . 

As before, g(k) = io(k)exp(-iwt). Obviously, g(k) and J1k) may be expressed through 
E(k) and H(k): 

/(k) = fo(E(k)- ~ X H(k)), jj(k) = fo(H(k) + ~ X E(k)), (2.10) 

and through each other: 

g(k) = k X l(k), /(k) = -k X g(k). (2.11) 

2 
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Here i.: = k/k. Since 
2 

lf(f)l2 = lff(k)l2 = ~(IE(k)l2 + !H(f)l2}, 
w 

the quantities 

pg(k) = lg(k}l2/h and pg(ii) = ti(;ir)31ff(ii)l1. (ff(ii) ·= j exp(ikl}g(k)ct3k) (2.12) 

may be also viewed as photon densities in momentum and coordinate spaces, resp. (on the 
/ same footing as PJ(k) and PJ(ii)). Note that piii) -:f; P1(ii) despHe the fact that 

j PJ(ii)ct3; = I Pg(ii)d3:r = N, (2.13}' 

The relativistic invariance of the photon number N follows from the possibility to represent 
it in the following bilinear relativistically invariant form [8] _ 

N = _1 -j E((ii)E(YJ + H(ii)H(i> ct3 .a ( ) 

16 3
., 

1 
_ ::,

2 
za·y. 2.14 

ir nc _ :r - !11 · 

The co1rueni11tion law8 , 
FI'()m the fact th~t /(ii) and jj(i) satisfy the san,ie equations as E(ii) andi'Jl(ii): 

! / = curljj, !g = -cu;;} div{= divjj = 0, (2.15) 
C C ' 

' ~, .. 
t~e following two continuity equations are easily obtained: 

C - - -p + 2div(/ X !f + f* X g) = 0, (2.16) 

1 8 ~ ..,i - --lJt(f + g ) + div(/ X g) = 0. (2.17) 
2c 

" --
Here p(ii) = (PJ + p9)/2., Equation (2.16) gives the local differential consen;ation law for 
the photon density p(i).-- The densities PJ and p9 taken separately also satisfy continuity 
equations but they being highly nonlocal are of no interest for us. 

Separating the real and imaghi~ parts in Eq.(2.17) one gets 

1 8 (J~ --i J~ ..,i) d' (I- - I- -) o 2clJt r + Or - i - 9, + IV r X Br - ; X g, = 1 

!
8
8 u:r. + 9r9i) + div({. X jj, + f. X Br)= 0. 

C t · 

Here,:= Ref~ f. = Im/~ 9r = Reg, jj, = lmjj. Consider the integral· 

I= j(P + /)J3z 

(2.18) 

(2.19) 

By expressing {(i) and jj(i) through their Fourier transforms one gets I= 0. The vanishing 
of real ·and imaginary parts of I gives 

lr = JU;-+ d:- ff-gf)d3z = 0, I,= ju:;;+ iirii;)cf:r = 0. (2.20) 

Equations (2.18) and (2.19) mean th&t some quentities composed of vectors f and ff e~tisfy 
· continuity equations. Their phyaical interpretation ii; no\ clear ~ the liP~f intE!gTilb. Qf th~ 

corresponding densities are equal to zero. 

3 



Further, we observe that Eqs.(2.15) are equivalent to 

! (l + ii} = -icurl(l + ii}, div(l + ii} = 0. (2.21) 

From the first of these equations and its complex conjugate one gets 

!111v + 1§12 + i(gf"- li')) + cdiv[lx i'+ ,-. X ff+ i([x ,-. + gx i')] = 0. 

Combining this equation with (2.16) one obtains 

. !<ol"-li')+cdiv(lx f"+gx U-) = 0. ' (2.22) 

The separation of real and imaginary parts gives· one relation independent of the previous 
ones, 

8 - - - -/Jt(/,g, - /,g,) + cdiv(/, X /;+Or X g;) = 0. 

To clarify the physical meaning of Eq.(2.22), consider the integral 

j J<ol"- /d')d3z. 

Substituting for l{z) and g(i) their Fourier transformations one gets 

i j(ol° - ld')d3z = 2(2ir)3 i j d:k k(/(k) x J"(k)). (2.23) 

Since l( k) is orthogonal to f, we develop it over the unit vectors of right and left polarizations: 
l = /ReR + /LeL. Inserting this into Eq.(2.23) and mak~g use of the or.thonormal properties 

of polarization vectors e (eiien = ei,eL = 1, eii x en=;;, ei, x eL = -k) one gets: 

i / d:k k(/(k) X f"(k)) = j(I/Rl2 
- lhl2)d3k. (2:24) 

On the other hand, the photon number may also be expressed through /R and h, 

N = ¼ /<IJRl 2 + lhl2
)d3k. (2.2M 

Comparing this with Eq.(2.24) we conclude that 
'. . 

~ , 

N_ = ¼ j(l/nl2 
- lhl2)d3k, (2.26) 

coincides with the number difference of the right- and left- polarized photons. It turns out 
that Eq.(2.22) describes the conservation of the difference of right and left photons numbers. 
Likewise the photon number, N_ is a conserved relativistic invariant quantity [17]. 
As /~ g satisfy the same equations as E, H, it is possible to write out for them the set of 
_zilch-type invariants similar to those obtained by Lipkin [18) and Ragusa [19] for E ~d H. 
For example, take the densities 

p/ (1, t) = ~i/·ci, t)/c:1, t)-l(1, i)i•c1, t)J p/1(1, t):: ~li(z, t)ff(i',1)-o(z, t)~(z, t)J, 
16,r . 16ir ( ) 

2.27 

4 

( 

I ; 
I 

t 
r .. ·, 

I 

satisfying the continuity equations 

p/ + div if = 0, p.g + div J: = 0, (2.28) 

with 
Ji - id ~( '·VI,~ - /~V '·) and J9 - ie ~(o·"'o• - g0 Vg·) 

• - 16tl £.,., J• ' ' J• • - 16tl £.,., 1 
V i i 

1 
' 

I I 

(2.29) 

The space integrals of p, are given by 

. f p/d3z = f pld3~ = j wll(kWd3k. (2.30) 

Although these integrals are equal to the electromagnetic energy, the space density p/ and Peg 

do not coincide with the electromagnetic density PBMF• _In particular; p, may take negative 
values and may have tails in the regions where E an~ H are equal to zero. · 

Equations (2.15) may also be re'written in a covariant form. Putting hOi = /;; hij = E,;1,g1, 

one gets 
(2.31) 8h"" 8h"" , .;- = o, ( .;-)cycl = 0. 

uz" uzP 
From the fact that equations (2.26) have a covariant form it does not follow that h"" are 
transformed like tensors (more accurately, they transform according to the nonlocal Lorentz 
transformation [9,101) when one compares them in two different reference frames. However, 
the form of these equations is Lorentz-invariant. This means that if h"" satisfy Eqs.(2,31) in 
one particular frame, they satisfy the same equation!t in any other reference frame, as well. 
The existence of the invariants different from the energy, momenta and angular momenta of 
the free EMF is not a new thing at all. In addition to refs.[ 18,19] mentioned above; we refer 
to books [20,21] where the history of the findings of EMF invariants is presented in detail. 
The symmetry properties of the Maxwell equations under the ~ransformations of the E(2)-like 
little group [22] leaving the four-momentum invariant were discussed recently in [lo]. It is the 
aim of this consideration to investigate some of the afore-mentioned invariants numerically 
and clarify their physical meaning. 
Ezternal carrenu. 
Note that when passing from (2.3) to (2.5) we have not used the second of Eqs.(2.4). Thus, we 
suggest the validity of Eq.(2.S) in the presence of the current source le,, t). In the momentum 
space the Maxwell equations are 

- ~- l;f­ik x r,(k) = --n(k), 
C 

- ;; - 1 ;1 - 411'., -ik x n(k) = -r-(k) + -J(k), 
C C 

(2.32) 

Here ](k, t) is the Fourier transfon;n of J(i, t) (J(i, t) = 'J ](k, t)exp(ikr)d3k). Substituting 
(2.3) and (2.10) into (2.32) one recovers the following equations for f(f) and,g(k): 

·- - - - 411'2 .. - • - - '411'2 ~ .. -/(k,t) = -iw/(k)- VWJ(k,t), g(k,t) = -iwg(_k)- VWk x,(1:,t). (2.33) 

We rewrite these equations in the coordinate space 

- 1 . 4ir2 
- 1 ·- 4ir

2 
-curl/+-ii= --J,z, curlg- -/=-Ji, 

C C C C 

with 

f cl31: .- ., - J· cl3k ·.- ~ ., -
J1 = v'wexp(,1:i)J(k) and J2 = . v'wexp(aki)I: X J(k). 

From this one finds the following equations for f and g 
. - 4ir2 • 4ir? 4-ir2 • 4ir' .. 
□/ = 7.'1 + 7curl.i;, r:ilg = &.i; - 7 curlJ1• 

5 

(2.34) 

(2.35) 

(2.36) 



3 Numerical results 

We apply the consideration of the previous section to the following simple model. Let at the 
initial moment t = 0 the magnetic field H equals zero everywhere while the electric field E 
differs from zero only inside the sphere S of radius a: · 

E(r'Jlt=O = n1sin8Eo8(a - ,.). (3.1) 

(U is therefore suggested that only the ef, component of E differs from zero fort = 0). Making 
the Fourier transformation of E one finds from (2.3) the Fourier components of /lr'J. Only 
its ef, component differs from zero: 

~ -iE0 • tf,(ka) . 
10(k)=~sm01,~, tf,(ka)=2-2coska-kasmka. (3.2) 

2ry(w) 

Here O,. is the polar angle.in the momentum space (1:, = 1:cos01,). We normalize the wave 
function to N photons: 

1 / --h lf(k)l 2d3k = N, 

which gives 

J2(ln 2 - 1/4)a2 
Eo= 

.3V'll"hcN 

Then, using Eqs.(2.2),(2.3),(2.8) and (~.14) we evaluate E(i, t), H(i, t), Jli, t) and jj(i, t). 
It turns out that only the ef, components of .E and l differ from zero, .while jJ and jj have 
nonvanishing ,. and O components: 

E1 = -Co..r,;__sin_O r 
,- B• 

h = -irC~v'hsin OJI 
,. J• 

Here Co = :_'\.- /r_2_N __ 
G V ,r(Jn2-:1/4), 

H, = 2Co~cos0 I' 
1

2 Hr> 
rJ h°"""sin tJ , 
ns = -Govlic--IH ,. ,, 

• C. cos O r.lil' . C. r.li sin O 16 g, = 211r o--v n. 9 , 99 = air oV n-- g• ,. ,. (3.3) 

/ 
c / dk(si~k,- 1: )t/,(1:a) wt B = ---cos ,- --cos 1 k,- 1:2 

• ' f sink,- ,t,(ka) . 
IH. = dk(~-cosk,-)~smwt, (3.4) 

I • f d'·[ . k (1 1 ) cosk,-] ,t,(ka) . wt 
H, = ,. sm ,. - kZ,-2 +~ ~ sm , 

I f sink,- tf,(ka) . 
11 == dk(~-coek,-) kS/l exp(-awt), 

r_ = f dkc8ink,- _ cosk,-)tf,(1:a) _..,, 
g 1:2,.2 1:,. Ji5/l e , 

1; = - J dk[sin k,-( 1 - _l_) + cos k,-] 1/>( ka) _..,1 
p,.2 k,- 1:s/2 e . 

Ali these integrals can be taken in a closed form. 
T~e density of EMF is given by 

PBMF = .!..(D2 + E2). 
8'11" 

(3.5) 

The time evolution of this density is shown in the upp_El_r_ parts of figs.1,2. 1 For the 
definiteness we choose a= 0.25,N = 1,sinfJ = /iii (as for this angle Pt,P9 and PBMF 

coincide with ·their values averaged over the sphere of an arbitrary radius). As expected, the 

1In wha.t follows the rs.dial varia.bles a.re meaBured in. fm, the energy in. meV, the energy density in. meV · 
/m-•, the photon density in /m-•. 
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density of EMF energy equals zero for the spoce points (r > d + a) for which the action hBB 
not arrived from the nearest parts of Sas well as for those points (r < d - a) for which the 
oction has passed from the most remote part of S, The EMF initially confined to the sphere 
S propagates outward it with \he light velocity c. ; 
Sometimes the photon WF is identified with the positive frequency part of E ~d H [11,12]: 

"_ E ra-sinO .1 ) 
" - + = -Covhc--1;+ 21' B' 

1t. = H~. = iCo.fhccosO _n+) rl Hr, 

'J.I. _Hg __ f.c. -./hcsinO _n+) 
'"fl - + - 2' o, C I' H,' 

/ (+) Je "/' .f+) Je "J• .f+) Je . "/' 
B = B- 1 B• 1k. = H.,-• II.,• 1k,:: H,-• H,• (3.6) 

• f sink!' t/i(ka) . e f sink!' t/i(ka) , 18 = dk(~-coskr)~smwt, In,= dk(~-coskr)~coswt, 

c / : · l coskr ,t,(ka) 
In,= dk[smkr(l - k2,.2 ) +~]~cos wt. (3.7) 

The following equations are valiil: 

f p(E+)dV = f p(H+)dV = f p;,,,,idV = f wlflk}l2d3A:. 

Here 

p(E+) = ·2
1
1r E+~• p(H+) _= 2~ H+H:, P;1oo, = ½(p(E+) + p(H+)). (3.8) 

T1!ese quantities may be considered.~ photon energy densities. Contrary to PBMF given by 
(3.S) the densities (3.8) ~a~not be localized (see lower parts of figs.1,2). Closely following 
PsMF they have small tail~ in the region where PsMF = 0. The magnified representation of 
PsMF and P;1ooc densities for particular valued= 2 is shown in fig.3. 
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Fig 9. Same as Fig.8 for ct = 2, 5, 8. 

Fig 10. DPmonstrates tlw ahsPnn· of tl1<' 
supcrluminaf spreading for thr partid<' 
positive-ddinitc dmsity init.ially confinPcl 
to tl1C' r<'gion r < Ro and satisfyi111?: 
the continuity equation. 

Turning to the time evolution of the photon densities PJ, p9 B.Dd p we observe that they, being 
maximal in those space regions where PsMF differ from zero, have small tails outside them 
(these tails are in fact so small as indistinguishable on the moot of figures). The typical 
behavior of p =(Pt+ p9)/2 is shown in the upper parts_of figs 4,6. 
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The loca.l differential continuity equations (2.18) and (2.19) suggest the existence of the 
conserved densities ' 

p(J.).= l: + g; -gf- lf and p(Ji) = l/: + UrOi, . (3.9) 

the space integral of which is zero (fig11.6,7). Likewise Pt,Pg and p they follow closely the 
electromagnetic density PBMF and practically are equal to zero outside the· region where E 
and jJ differ from zero. So far the physical meaning of these densities remains unclear to us. 
Probably, they characterize the internal structure of the photon. 
Now we turn to the density p/ defined by Eqs.(2.27). Its typical behavior is shown in figs.8,9. 
The quantity p/ bas the following properties: it bas small tails outside the regioxi-wbere E 
and ff differ from zero. Inside that region p/ exhibits one-two oecillations. The spatial 
integral ·or p/ is equal to the electromagnetic energy. The physical meaning of the densities 
p/ and p,g is also a mystery for us. 
It would be interesting to look ~ the spatial distribution 

i - --p(N_) = 167f3(ii/*-: Jg•) (3.10) 

of the difference of right and left photons numbers N_ (see Eqs.(2.23)-(2.26)). Yet, this 
density identically vanishes for the treated photon configuration defined by Eqs. (3.2) and 
(3.3). , ,:. ' . · .. ··• · .• 

We evaluate now the photon current densities J~ and i; introduced at the end of sect.2 for 
the particular current density. We choose it in the form· 

](i, t) = /o(t)cu-,.l(n.63(i)), 

simulating the infinitesimal magnetic dipole moment placed at the origin and directed along 
the z axis. Its time dependence is governed by the function /o(t). At first we find the Fourier 
transform of J: · 

j,.(k) = :!~io, j,(k) = -!!~/o, j.(k) = 0. 

The components of the photon current density entering into Eqs. (2.33) and (2.35) are given 
by 

Jiz = -Sjo sin() sin 'P 
,.112 ' ' Ji.= o, 

J2,-; = -21iio sin()cosOcosip 
,1/2 , 

J2,-; = -21ijo sin()cos()sin~ 
. f'7/2 I 

4- On the Ehrenfest-Pauli objections 

/o 1 
io = 81f3/2~ 

J 1 
.. 1-I8m·2.a 

2• = - 2,,0.::..___t_::: " ,.112 

Although the Pauli objections were pr~arily concerned the photon densities suggested by 
Landau and Peierls, they, in fact, are equally applied to '\he photon densities discussed in the 
previous section. 
The first objection by Pauli is that at the point where E, jJ :f; 0 but p = 0 the photon 
density looses its sense as it is not clear what me~s the absence of photons at the point 
where E, jJ :j; 0 (this contradicts the generally accepted identification of photons as carriers 
of E and H). It follows from the numerical results of the pr~vious section that there are no 
space regions where photon density equals zero but E, jJ :j; 0. This is also confirmed by the 
Hegerfeldt_theorem discussed in the next section. 
On the other hand, the nonvanishing of the photon density in the space regions where E = 

12 

1 
J 

. ( 

I 
l 

.u 
q 

ji = 0 means that the role played by photons is not limited by that of E, jJ carriers. This 
claim is supported by the existence of the invariants discussed in sect.2 as well as the new 
helicity invariant obtained recently in [17]. . 
The second objection is due to the complicated behavior o~ the photon density under the 
Lorentz transformation and to the absence of the covariant 4-current satisfying the continuity 
equation. In our case we have th,e~..!t_=:: (p,.f(i X ii:.+f >_< g)}_~atisfying the 
c01itinuity equation and having a positive definite density. The components of JP exhibit 
the nonlocal Lorentz transformation when one passes from one reference frame to another. 
Yet, tlie·complicated nature of this transformation does not destroy the Lorentz invariance 
of the integral J pd3z (see the nexi section). ·Thus, this Pauli objection is considerably 
weakened.'- After all, one may disregard the complicated nature of the above transformation 
if the following procedure is adopted. It is known how E and jJ behave under the Lorentz 
transformation. Having E, jJ in one pa,rticular frame we evaluate E( k}, H( k), /l K), ii( k), l( i} 
and ii(i). Using the Lorentz transformation to obtain E, D:in another reference frame and 
performing the same procedure as above we ~valuate /~if and, finally, JP in a new reference 
frame. ' 

5 On the Hegerfeldt theorem and all that 

Klei»-Gonlo» eq1111tio» 
This theorem states [7] that a wave function being origin~y confined to the space region 
S and, thus, giving zero probability to find a particle outside S, at a later time gives a 

. finite probability to find the particle at a distance r > ct away from S. At first glance this 
implies that a particle travels with a ~uperluminal velocity. As an illustration, consider the 
Klein-Gordon equation · · 

(□ + µ 2)1i' = 0, µ = mc/'h, . (5.1) 

We seek its solution in the form 

ti'(i, t) = j exp(i(ki- w14t)]1i'(k)d3k, Wp = clrp, kp = /k2 + µ2 • (li.2) 

We express ti'(k) through the initial value of ti'(i, t) 

ti'(i, t) = Jap(i - i', t)1i'o(i')d3z', Gp= (
2

~)3 / exp[ik(i - i') - iwpt)d3k. (5.3) 

Let 1i'o(i} = ilt(i, 0) be ;ero outside the space region S. Then, the Hegerfeldt theorem states 
that '(f(i, t} will be everywhere nonzero fort > 0. To see the reason for this strange behavior, 
we observe that (S.2) is a very special solution of Eq.(S.l). Its general solution is completely 
determined by the initial values of 1i' and its time derivative [23), . 

ilt(i, t) = j d3z'[ODp(~- i', t) 1i'o(i') ,+ Dp(i - i', t)~o(i')], 

D,.(i,t) = (2~}3 / ~: exp(iki)sinwpt = 2: 2,. / :,. dJ:sinkrsink,.ct. 

The following properties of D,., 

D (i 0) = 0 ODp(i,t)I = c63(i) 
PI I m I~ I 
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guar8Jltee the fulfillment of the initial conditions. Further, Dµ(i, t) = 0 outside the light 
cone. Equation (5.4) tells us that the disappear8llCe of the initial wave function outside the 
space region S is not enough for the disappearance of W{i, t) ouii;ide the light cone: The 
h.tter takes place only if the initial values of both 'if Blld iir equal ·zero outside S. 

Turning again to q, defined by Eq.(5.3) we evaluate the initial value of its time derivative 

,i, oq,(1, t>1 i f r·i'c~ ...,>1 <.., )d3 3 , 
"'O. =. -8t-- t=O = -.(

2
-ir)3 wµ,ezp u: z - z q, z ,.o kd z. (5.5) 

It then follows from this that qi'0 (i) differs fr~m zero everywhere even if lllo(i) disappears 
outside S. Substitutmg initial values iit0 and Vo given by (5.5) into (5.4) we arrive at (5.3). 
Thus, we oMain an alternative interpretation of the Hegerfeldt theorem. Consider the solution 
(5.3) of Eq.(5.1) corresponding to Vo = 0 outside S. Then, nonzero values of V outside the 
light cone are due to the nonvanishing of ~o outside S. 
To clarify the situation, consider the energy density of the scalar field 

1 . 
lorad'lfl2 + 1 liJi'l2 + µ 2 lil'l2

• 
C 

Now, if 'lfo = 0, q,0· ¢ 0 outside S, the initial energy density also differs from zero outside 
s. This points out on the unphysical 'uatui:eof th; afo~e-mentioned initial condition (as it' 
is not clear what means the absence of the particle probability density and the presence of 
its energy density ~~ the same space region). le~ing to the superliuninai spreading of the 
probability 'density. " · · · · 

1 
• 

As far as we know, the first estimations of the effects arising from the superluminal spreading. 
of the Klein-Gordo~ wave function as well as the possibility of their experimental verification 
were performed by Shirokov [24). ' 
Wawe eqaation. 
All these considerations remain valid for the wave equation if one puts m =. 0 in Eqs.(6.1)­
(5.5). The general solution is completely determined by the initial values of iit and its time 
derivative · , 

iIT(irt) = j d3z'[ 8Do(i; i', t) ilfo(i') + Do(i - i', t)iVo(:f)], (5.6) 

Do(i, t) = (
2
!)3 / ~k exp(ikz)sinw1 = 

2
: 2 ,. j dksinkrsinkct = 

4
!,.[6(r- ct)- 6(r+ ct)]. 

The function i(z) defined by Eq,(2.8) and its time derivative may be rewritten as 

. /(z, t) = (2!)3 / exp[ik(i - i') - iwt][(i', 0)d3J:d3::', 

ft_z, t) = - (
2
!)3 / wexp[ik(i ~ i')- iwt]/(i', 0)d3J:d3z'. 

(li.7a) 

(5. 76) 

Let tile initial value of jbe zero outside S. It follows from the Hegerfeldt theorem that f will 
be different from zero everywhere fort > 0. It turns out that the total density p = (l/12 + 1§12) 

will be different from zero everywhere for every moment of time even if/::;: 0 for this particular 
mo~ent. To prove, this we putt= 0 in (6.7), 

itz, 0)-= -(2!)3 / wexp[ik(z - i')l/Ji', o)d3hd3z' ..... 

. Obviously, this function differs from zero everywhere. It followii from Eqi;.(2.15) that ii -:j: 0 
everywhere for ibis particular moment of time. This completes the proof. 
✓ - • 
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For the wave equation (in addition to the expression similar to (5.4)) there is known 
another formula (the Poisson one, see,e:g., Smirnov [25) or Courant·[26) treatises): 

ti,· ll 'JI . iIT(z,1,1,z,t)= 
4
ir dOilto(o,P,-Y)+ 

81
[
4
ir dOilto(o,P,-y)), (5.8) 

where ilfo and Wo are the initial values of iit and qi'_ Further, dO' = sinfJ'd(J'd~', a = 
z + ct sin (J' cos efl, fJ = y + ct sin (J' sin efl, -y = z + ct cos 8'. It would be useful to have a 
similar closed expression for the solutions of Klein-Gordon equations. 

We observe that 'If given by (5.2) has the consiant (i.e., independent of time) norm. Being 
initially confined to the space region S, it fills the whole space for a later time. On the other 
hand, if for iit' given by (5.4) the initial values of 1JI and qi' lie inside S, then 1JI propagates 
w,ith_thelight vel~city, but its norm J liitlldV changes with time. ' 
( Mazwell eqtsation.,. ... 
The following qualitative considerations show that it is impossible to localize the positive 
frequency solutions of the M~well equations. For this we put 

~ . -'If+= t, +a1t, 

where land ii, were defined by Eqs.(3.6). Evidently, qi satisfies the equations 

~,t = cur/qi, divfi = 0. 
C 

According to our assumption qi contains only the positive frequencies, 

ilt(i, t) = / qi(k)e'<'1~1>d31.,_ 

It turns out that ii(k) satisfies the equation 

W.;t- - .?.- ✓ ;'t'(k) = ik x 't'(k), w = k; + k; + k;. 

· Using (5.9) we express 'i(k) through the initial value of ii(z, t) = iiO(z): 

:?. - 1 / .?. ·{; 3 't'(k) = (
2

ir)3 'J/o(.i)e-• dz. 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

Let f O be localized inside a finite space· region around the or~i~. Then, expanding the 
exponential factor and integrating over z oue concludes that W( k) and· therefore RHS of 
(5.11) are entire functions of ks, k,, k,. On the other hand, the LHS of the same equation is 
uo.t _an entire function due to the fac~or w = Jk; + k; + k; iu it. 

This contradic.tion means that the positive frequency solutions of Maxwell equations can­
not be localized exactly. 
On the other hand, let the solution of (5.9) be a superposition of the positive- and negative-
frequency solutions: . 

i(z,t) = j e'{;[f+(k)e-""1 + f_(k)e""i. 

Substituting this Eq. into (5.9) one gets 

w(f + - f _) = ik x (f ++qi_), (5.13) 

Now, if W(z, 0) is localized in the space region including the origin, the same reasoning as 
above shows that RIIS of (6.13) is an entire function of ks, k,, k,. However, uo coutradictiou 
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arises since differeni functions (i+ + fi...:) and (f+ -fi_) enter into right and left hand sides 
of (5.13). Thus, the solutions of Maxwell equations containing both positive and negative 
. frequencies can in principle be localized. The appearance of positive and negative frequencies 
it/ a necessary bui not sufficient condition foi- the Jocalization. To 'illustrate this, consider two 
vectors, 

iB(z)= 2
1 fei"u~+f:,.)d3k and ln(z)=-=--fei'1'.!..fx(f~-f:,.)d3k. 
1r k w 

It is easy to check that 

j p'd3z = i / i/lk}l2d
3
k, 

coincides .with the photon number N. However, the space den~ity 

p'(i) = 8~h[(/~(z))2 + (/~(~))2] 

is not localizable for l(k) defined by Eq.(3.2) although Pi contains both positive and negative 
frequencies. The typical behavior of/ is shown in ~ower earts of figs. 4,5. A detailed analysis 
shows that it is impossible to localize E,. ii and /B, In (and, therefore,p') simultaneously. 
The initial condition (3.1) correspo~ds to the localization of E and ii at the moment t = O. 
The initial conditions may be chosen so as to localize/~ and/~. Yet, in this case E and ii 
will be distributed over the whole space and, therefore,, nonlocalizable. Due to the greater 
physical· meaning of ,E and ii we have preferred the· first possibility. \ 
We turn now to the.Sipe paper [13]. The wave function used there.was chosen to be the 
positive definite part of E, i.e., 

j,(k) = ./w [(k), ;f,(r) = /d3kexp(iki)t$,(f). 
21r 

(5.14) 

The value of /, at· the moment t is related to its initial value by the expression similar to 
(5.7) ' . 

.,f,(i, t);,, (
2

~)3 j exp[ik(i- i') - iwt].,f,(.r, o)d3kd
3
z'. (5.15) 

It,follows from this that /,(ii, t) differs from zero everywhere even if the initial value differs 
from zero only inside the space region S. For example, we choose /,(ii, t = 0) = a0(R- r) 
(a is a constant vector, 0 is a step function) and evaluate the initial derivative of/: 

IJ -· _ _ ic 1 ~ + R 2 
IJt ,t,,(z, t)li=o = -a21r2/i ln(r _ R) - 4>(r, R)], 

where 4>(r,R) = 1r/2 for r > R, = 1r/4, for r =Rand = 0 for r < R. ,This derivative 
differs from zero e.verywhere. Then, turning to (5.6) we conclude that ,t,,(r, t) will be different 

_ from ·zero everywhere·for t > 0. Obviously, this conclusion may be obtained without any 
calculations by applying ihe Hegerfeldt.theorem to the Sipe wave function (5.14). 

On the transformations of photon tlenaitiei.' 
Consider the definition of l{i) given by (2.8): 

[(i) = I i&z i(k)d3k. 

Let f(k) be transformed like a ten~r. Then, [(i) .is not a tensor as d3k is not an invariant 
volume. For [(lz) and /(k) having the s~e tensor properties, the transformation law should 
be as follows: , • 3 - J - --dk /(i) = exp(i(ki - wt)]/(k)T. (6.16) 
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The densities in z and k spaces used in section 2 were related by the condition 

(2!)3 j l/ti}l2d3z = j li(f}l2d31:. (6.17) 

Now, if lf(k)l2 in the RHS is a scalar, the LHS is not still a scalar (due to the same non­
invariance of d3k). For t,he scalar product in 1: space being invariant, it should have the 
form • 

/ 111•>1:":1:. (5.18) 

We extract /(k) from (5.16) 

[(k) = ~ exp(iwt) j /li)exp(:-iki)d3z 

and insert it into (6.18): 

/
--ld

3
1: J 3 1/(k)I k = PreI(i)d Z, (6.19) 

Here 

p,J = /li)F0 (i), F 0 (i) = j G(i-i')/"(i')d3z', G(i-i') = (2~)6 j kd31:exp[-ik(i-i')]. 

(6.20) 
Although the integral in (5.19) is a positive definite quantity, the relativistic density p,.z(i) 
may take negative values. This invalidates its physical meaning. The numerical investigations 
of these densities have been reported in ref. [27]. 
Despite the fact that [(z) in (6.17) does not behave properly under the Lorentz transfor­
mation, the. integral in the RHS of (5.17) is a Lorentz invariant quantity. To prove this, 
we consider the complex tensor F,.,,(z) satisfying Maxwell equations. e and 1{, forming this 
tensor may be taken as positive frequency parts of E(z) and ii(z) (the J)(?Bitive and negative 
frequency parts of a tensor are again tensors). F,.,,(z) can be expressed as an integral over 
the plane waves 

F,..,(z) = jFiw(k/k w' 
F/W(.l:) = a(k)(eµk., - e.,1:11)ei(U-..t). 

Here e
11 

is the polarization vector of the plane wave satisfy~g the conditions 

(1:e) = ke - 1:0eo = 0,, ee• = el° - eoe~ = 1, 

a(.l:) is the Lorentz scalar. The explicit form of Fiw is 

l(k) =: a(k)(ew - keo), il(k) = a(k)e X k. 

(5.21) 

(5.22), 

It then follows that under the Lorentz transformation F,..,(k), f(k) and 1f.(1:) are transformed 
like Fiw(z),f(z) and 1f.(z), resp. As Eqs.(6.21),(6.22) are invariant WRT the gauge trans­
formation e

11 
-+ e

11 
+ ak

11
, it is possible to put eo = 0 in them (the consideration following 

below does not depend on this fact). Elementary calculations show }hat 

lf(.l:)1
2 

= 11f.(!W = l~(kW, 
w2 w 

(5.23) 

i.e., f(k)/w2 and 1f.(k)/wl are the Lorentz scalars. It follows from Eqs. (2.2),(2.3) and 
(2.9) that under the Lorentz boosts ihe quantities w* i,.e""' and w*i,.e""1 are transformed 
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like l(z) and 1i(z) and, therefore, like l(k) and 1i(k) (as, being m~ltiplied by d
3
k1w and 

integrated they coincide with the pOBilive frequency parts of E(z) and .H(z)). It folio~ 
from (5.23) tha.t wlhl2 a.nd wlffr.12 a.re the Lorentz scala.rs. Thus, the qusptities J lhl2wc1:; = 
J lh.12d3k and7 lo1,l2wc1:1o = J li1,l2d3k are the relativistic invariants. This completes the proof. - I 

The mora.l of these considerations is that the seemin~ noncovariant form of the integrand 
does not necessary mean the noncovariance of tlie i;tegral itself. • · · 
Ca.Hliti anti poaitit1e definiteneaa of the _pr~6a6ility denaity. . -~ · 
The following considerations point' to close rel~ionship between the causality arid ·positive 
definiteness of the probability density. 'Tlie idea was put forward by Wigner [22]i Let at the 
initia.l moment t = 0 the particle be localized inside the sphere S of the radius R.o (fjg.10). 
We surroiind S by two spheres of radii R1 and R2, (~ < R1 < R2)- Let flphere S1 expand 
with the light velocity cup to the radius R~ = R1 +ct, while sphere S2 contracts to the radius 
R!.z = R, - ct, .n;_ < R!.z. Consider the 4-volume V surrounded by the 3-surfaces: 

Due to the Gauss Theorem 
,,..,. 

t = 0, R1 < r < R2, 

t = t', R;_ < r < ll!.z, 
o < t < t', r = R1 + ct, 

0 < t < t', r = R, - ct 
\ 

!!!:tr~=: I Jµd<Tµ 

J 

(5:24). 

the flux of the 4-current through the closed hypersurface equals zero if the, continuity equation 
IJJµ/IJzµ = 0 is fulfilled. Being applied to hypersurface (5,24) tliis gives: 

~ ~ . . . 
j(p- J,)11:.(,-R,)fedV + f p(r,t')dV + j(p+ J,)lt=(Ri-r)fedV- f p(r,O)dV = O. (5.25) 

R, RI ~ R, 

The last integral equals zero as at the initial moment t = 0 the probability density-equals 
zero for R

1 
< r < R,. Thus, the sum of the remaining three-integrals is zero. The positivity 

of the integrands in (5.25)1 leads to the disappearance of each integral and iniegran<l entering 
this equation. In particular, this gives p(t) = 0 for r > R1 +ct. This means thai the causality 
!8 not violated for the conserved 4-current '11-itb positive definite density. · ' 
We prove now that for spin 1/2 the c;ausality is not violated for rather general interactions. 

Consider the Dirac equation · 
{} 

h"o + Q)I) = o, 
I' 

(5.26) 

where Q is the op~rator independent of coordinates with the property that the wave function 

'If = 1)• 'Y• satisfies the equation 
{) 

w('Y" 8 - Q) = o. 
I' 

U follows from these equations that the continuity equation is fulfilled: 

_IJIJ i(ili'-y"IP') =IJ IJJ" = o. 
Zµ , Zµ 

' 
1 From the positive definiteness of p and the time liken~ of J,. it folloWI immedia.tely tha.t p :':, ljl, 
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(5.27) 

For the plane wave 
W(z) = exp(i(pz - d))u, (5.28) 

one gets 
(-q. +in+ Q)u = 0, u(-f'Yf +in+ Q) = 0. 

Differentiate the first oC these equatio~s with respect to p: 

- ·-· . . ' ·- fJu 
(-v-y• + 1-y)u + (-q4 +WY+ Q)

8
_ = 0. . • p 

'\, 
,,,. (5.29) 

Multiplying (5.29) by u pne gets 

__ ·,-- ) _ i(u"yu) J 
-vu-y•u + 1 _u-yu = 0 or v = ~ = ,;· 

Due to the pOBitive definiteness of p and time likeness of J" the velocity of Iii! is always sme.ller 
than c. 
Another example is th~ motion of a· neutral particle with spin 1/2 and anomalous magnetic 
moment (e.g., neutron) in a constant electromagnetic field. The corresponding Dirac equation 
(h = c = µ = 1) is . 

t) 1 
(1'"- .-' -Fiwu,.,, + m)W = O. 

{)z" · 2 

For the plane wave (5.28) this gives 

(iPi,'Yi,..:. ~Fiwu,.,, + m)u = 0. 

The corresponding dispersion equation 

det[iPi,'Y,. - ½Fiwuiw +ml]= 0 

defines the energy as a function of the momentum (E = i(i)) and this in tum allows one to 
obtain · the group velocity 

_ 8t ( ) 
V = 

8
_. 5.30 

, p ' 
The analysis of (5.30) shows [28] that Iii! is always smaller than c. For the magnetic field 
equal to zero and p directed along Ethe indeterminacy of the form 0/0 arises. Being resolved 
it again gives liil < c. This case is equivalent to the conical refraction in optics predicted by 
Hamilton [29]. · 

6 The electromagnetic waves versus _Photons 

Consider the complex form of Maxwell equations: 

j f)f 1 -~ --- = curl'i'i, 
C t)t 

divf1 = o. 

Here i1 = E + iI1. Consider the positive- ~requency plane wave 

lirf(z, t) = i(k)e'<~~1>. 
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Substituting (6.2) into (6.1) one gets 

w - "(k- _., -e = 1 X e1, 
C· 

ik= 0. (6.3) 

Let vector f = (0, 0, ~). Then, it follows from (6.3) the.t e= (1, i,'0)/../2 and 

ER= escos(kz -wt)-e,sin(kz -wt), Hn = e'ssin(kz -wt)+ e,cos(kz-wt). (6.4) 

It turns out that ER e.nd HR are rotated in th~ clockwise direction for an observer looking 
along _the f direction. Thus, the plane we.ve (6.2) is e. right-:polarized one. The negative-
frequency solution of (6.1) · 
'-'-·· . ff= e(k)e-•<'1~11 (6.5) 

(the vectqr e(k) is the same as in (6.2)) describes the left-polarized electromagnetic wave. In 
general, the superposition of (6.2) and (6.5) 

fcz,t) = i(k)[CRe•(il-wl) + CLe-4l-wl)l (6.6) 

corresponds to the cl11BBical elliptically polarized wave. Particular cases CR= 0 (or CL = 0) 
and ICRI = IC£! correspond to the circular and linear polarizations, resp. 
Now· we interpret (6.1) as equation describing photons.· In quantum field theory only the 
positive-frequency solutions are admissible. This means that Eq.(6.1) describes the photons 
with right-hand polarization. To describe the photons with left-hand polarization, consider 
the function f 2 = E - iH which satisfies the equation 

i IN!2 = curlf 2-
-~ l)t (6.7) 

This equation e.lso has positive-- BJJd negative--· frequency solutions corresponding to the left­
hand and right-hand polarizations, resp. The positive-frequency solution of (6.7) 

EL = es cos{kz - wt)+ e.,, sin(kz - wt), ilL = es sin(kz - wt) - e, cos(kz - wt) (6.8) 

,corresponds to the left-hand- polarized photon, while the negative-frequency solution de­
scribes the right-hand polarized entity (not a photon, as it corresponds to the positive=­
frequency solution). The negative-frequency solution of Eqs.(6.7) and (6.1) e.re complex 
conjugated to the positive-frequency solution of (6.1) and (6.7),resp. As negative-frequency 
solutions are discarded, the positive-frequency solutions of (6.1) -~~t(6,7}_ar~ 11<>.ll.1?.l:~5.om­
~lex conjugated. We refer to them as to f K and iii L• We conclude: positive-frequency 
solutions corresponding to the right-hand-(f R) and left-hand-(iif d polarized photons satisfy 
ihe following equations: 

j_ of R = curlfi R, di6fi R = o, 
C 8t 

-i 8~ L _ curlf L, 
~{h - divf L = 0 (6.9) 

The pay for discarding the negative-frequency solutions and the necessity to have right- and · 
left- polarized photons is the _do_ubling C>f the number of equatiC>ns . This doubling is not 
needed for the classical electromagnetic ~ave as both positive aid negative frequencies are 
e.l.!,qwable for its d~nptioiCUnder'"tbii Lorentz tr~sfoimation Eii and Hn,L defined by 
Eqs.(6.4) and (6.8) beha~; as usual field strengths E and H. 
Now the following dramatic situation arises: 
1) Single ·photons as positive-frequency solutions of Maxwell equations are not localizable. 
This fact is confirmed by numerous experiments [30). · 
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2) Cl11BBice.l electromagnetic waves are localizable. Mention ,e.g., clystrons, waveguides, laser 
beams propagating in vacuum without spreading, etc. 
3) It is generally believed that the electromagnetic wave consists of photons. Experiments 
seem to confirm this viewpoint ( for example, a photomultiplier being placed into the elec­
tromagnetic wave detects particular photons). 
The appearance of negative frequencies in the clllBBice.l electromagnetic field may be under­
stood in the framework of quantum electrodynamics. In it, the quantized EMF is described 
by equations of the same form as the clllBBice.l ones (6.1) in which the function i should be 
changed by the operator. In quantum mechanics the time derivative of the operator i is 
expressed through the commute.tor of f with the Hamilton operator if.: 

....... ihf = [W, if.J. - (6.10,) 

It is suggested that if. has the same form as its classical counte~ 1f.: . 

if_= 8~ f q}+jdlz. (6.11) 

Equations (6.10) and (6.11) are reconciled if °i satisfy the_f.ollowing commutation relations 

(f ..,.(z, t), °i!(i', t)) = 8idim..z 
8
8 

S(ii - i') 
z1 

(6.12) 

( other commute.tors are zero). These commutation relations are satisfied if we take the UBue.l 
second-quantized expression for the 4-vector potential Aw Then , evaluating E, jJ and 
W = E + iH we arrive at commutation relations (6.12). The expressions for Aµ, E, , jJ 
and W operaiors contain the terms with positive and negative frequencies {of the creation 
and annihilation operators). According to the prescription of quantum electrodynamics the 
classical electromagnetic field is obtained by averaging the quantum operators E, jJ over 
the so- called coherent states. As a result, terms with positive and negative frequencies arise 
on the SMD:e footing. The obtained Ec1Ga and Hc1Ga are reduced to the sum of plane waves with 
positive and negative frequencies. Summing is performed over all possible wave vectors and· 
polarizations. Changing the sum over k by the integration {(1/V) E1s = (211'}-3 J d3k) and 
averaging over the polarizations one obtains for Ec1G, and Hc1G1 expressions exactly coinciding 
with (2.2) and (2.9) in which l/1cl'2 and lo1cl2 mean the average number of photons with the 
wave vector k. Thus, representations (2.2) and (2.9) arise in a nature.I way. They, in fact, are 
the consequence of averaging over the coherent states. This procedure is justified by the fact 
that photon states generated by the clBSBice.l current coincide with the coherent ones [11,31). 
Obviously, the photon states are not exhausted by the coherent ones. As an example, mention 
the black body radiation and other states used in quantum optics ([31,321). · 

The main result of this section is the fact that the classical electromagnetic wave contains 
both positive-- and negative- frequency solutions of the Maxwell equations, while only positive 

; frequency solutions ( if we do not abandon the st,.,1dard interpretation of particle in quantum 
i field theory ) are permissible for the description ... of photons. The. availability of positive and 

negative frequencies makes the localization of the electromagnetic wave to be poosible. On the 
other hand, in the interpretation by Kim et e.l [16] both the electromagnetic waves and photons 
are superpositions of positive- frequency solutions. The sole difference between them is that 
photons require the covariant description, while electromagnetic waves do not 1. According to 
ihe Hegerleldt theorem the photon and electromagnetic wave thus defined cannot be localized 

1We have seen in aect.5 that the illuaive noncowrla.nce oi the integn.nd doe1 not mean, in general, the 
noncowrla.nce of the integral itaelf. 
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in the sense to be confined within a finiie volume V. However, the positive- frequency phot.ons 
cannot be localized in a Newton-Wigner sense either (as particles with mB.88 zero can be 
loc~~ only_fO_!_!jpin·s_OJ!.n_~_!/ .. ~J~L): As far 88 we can~understand;-Kimet af(i6Jtri~o 
achieve approximale localization of the photon wave £unction in the Newtion-Wigner sense. 

. The photon wave function localized in the Newton-Wigner sense differs from zero everywhere. 
As claims of ref.(15] aiid of th~ present consideration are referred to different definitions of 
localizability, there is no contradiction between them. 

' . ·-

7 Discussion 

The main question to be answered is whether the functions / and g introduced in sect.2 
have a physical meaning. Consider one particular phot.on. Its wave function, density and 
energy_density are distribu_ted over._the whole space and cannolbe localized. We have seen 
that major parts of the photon density and energy density are confin~ to a small region of 
space with_ small tails outside it. Let the detector D (e.g., photomultiplier) be placed int.o the 
photon field. How much should the photon or energy density be overlapped with detector 
in order t.o be regisiered? The same question concerns the electromagnetic wave in whi~h 
E and .iJ equal zero outside a finite volume V but the photon density p = l/12 + lol2 differs 
from zero everywhere. Can this density produce any physical effect? In the momentum space 
there is only one vector function /lk)~defining thEtev~iution of EMF. For the choi~e (3.2) 
the electromagnetic field initially confined .to the sphere of radius a expands radially with 
the light velocity c. · Can the initial conditions be chosen so, that the subsequent motion of 
the EMF bunch would be in one particular direction (e.g., along the z axis)? Consider the 
impenetrable sphere S with a small hole in it. Letthe emitter of electromagnetic waves (e.g., 
oscillating el~tric dipole) be placed at the center of S. Then, outside Sa thin nondivergent 
electromagnetic ·wave beam will be observed. Now let inside S (instead of the afore-mentioned 
electromagnetic wave emitter) the source of phot.ons (e.g.,radioactive, at.om) is imbedded. 
Sometimes the particular photon will p888 through-the hole· in S and the isolated photons 
should be observed outside S. As photons cannot be localized, their ~ensity differs Crom 
zero everywhere and, this can, in principle, be observed. It is tempting to &BBociate the 

_ afore-mentioned tails of photon and energy densities with th~13_e>:called einpty waves (14]. 
Their existence was predicted by the;founders of quantum mechanics (Gespensterfelder (or 
ghost fields) according to Einstein, virtual waves according to Bohr, etc.). According to the 
modem viewpoint on empty waves they are needed for the correct evaluation of quantum 
probabilities as well as for the preparation of a quantum system to the subsequent &rrival of 
\heE°MF wave. We quote iwo citations from book [14]: 

"How can one ever hope to reveal the presence of a wave which does not carry energy 
· or momentum? This probl~m can have an answer if i1 is noticed that one does· not only 
measure energy changing proc~es but probabilities as well: the wave could therefore reveal 
its presence by modifying decay probabilities for an unstable system"(p.137). 
And further: · 

" ... the associated _wave packet, thoughh.ie'void of energy and momentum, has a chance to 
reveal its existence by generating a zero-energy transfc.r simulated emimion" (p.138). 

The authors of the present consideration although.being not the adherents of the empty 
wave existen~e, should make emph88is on the following properties of the functions l ang g 
(see set.2 and 3) resembling the empty-wave onE:9: 

i) For th_c! electromagnetic wave the photon densities differ from zero everywhere and, in 
pai_ticula.r, in those space regi~ns where E = .iJ = 0. This takes place at each instMt of time 
including the initial one. Such a space distribution of densities is needed to obtain the· correct 
value of the photon number N. 
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ii) There ~re the energy0 like carrying densities P! and p: (sec sects. 2 and 3) distributed 
over the whole space ( contrary to the electromagnetic energy density). Under the term 
'energy carrying densities' we mean that the space integral frgm. them coincides with the 
electromagnetic energy. Among the followers of the empty wave concept there is no overall 
agreement whether empty waves carry the energy an_d momentum or not ( for example, de _,.,. 
Broglie suggested that an empty wave carries a tiny part of them). The present consideration 
shows that the photon wave carries the entity that strongly resembles the energy. Yet, it is 
not known how this entity affects ·a charged matter. . 
Among the three densities Pf, Po and p introcfuced in sect.2 the most promising seems to 
be p as it satisfies th~ local differe~tial conservation law (2.16). 
A few words should be added on the phot.on localization. It is not localizable in the ordinary 
meaning ( photon confinement within a finite region of space) ifby the photon wave function 
one understands the positive-frequency functions f and g or positive-frequency parts ·or E 
andiJ . According to the Hegerfeldt theorem all of them~are distributed over the whole 
space. On the other hand, the electromagnetic wav~ can be localized in the same sense as· 
it contains both positive and negative frequencies. So far we have identified photons with 
positive-frequency solutions of the free Maxwell equations. The situation changes for the 
photon placed into the cavity with absolutely refledive boundaries. As a result of reflections . 
the standing photonic wave arises inside the cavity and.this makes the photon localization to 
be possible. 
Another drawback of this cons_ideration is that we have not conc"retized the process of creation 
and, detection of photons. The importance of this effect was demonstrated by Sipe [13], 
Shirokov (33] and Kaloyerou (34]. 

To the end, we see that photon has a number of intriguing features. The appearance of 
the first volume ofthe book 'The Enigmatic Photon' (35) is also an argument confirming the 
inexhaustibility of photon properties. 
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Acpauaches r.H. 11 Jlp. 
0 nJIOTHOCrnX cpoTOIIOB, TeopeMe. XerepcpeJib)lTa· H npo'leM 

E2-96-278 

Bbmon11ellbl lJHCJieHHbie 11ccne)lOBa11m1 pa3JlH'lllbIX sap11a11TOB ·nnoTIIOCTeii 
cj:JoTOIIOB II COOTBeTCTBYIOIUHX HM 3aKQIIOB . coxpa11emu1. npoa11arun'11poaai1bl 
u '!acTH'IIIO c1rnThI ao3pa:lKenm1 ,nayn11•3pe11¢ecTa nponrn 11cnonhJOllanm1 no)lo67 
llblX nnoTHOCTeii. noKaJallO, no'leMy uenoKarJHJyeMOCTb .OT)leJl~HOro cporn1rn 
He nponrnope'IHT 803~0:lKIIOCTII noKaJJH3aUHII KJJaCCll'leCKOH ::ineKTpm.iarttHTHOii 
BOflHbl. 

Pa6oTa Bbinomie11a 8 Jla6oparnp1111 Teopern'!eCKOii cp11311Kll IIM.H.H.Eoron1060-
Ba QIUJJ1. 

' ,, ' ·. - . , . ' 

npenpmiT 06beu1111eHHOfO IIIICTHTyra SlllCpHblX IICCfle)lOBallllii. Jly611a, 1996 

Afanasiev G,N; et aL .E2-96-278 
On· the Photon J?ensities, Hegerfeldi Theorem ~nd All That 

· Numerical investigations of different photon densities and corresponding 
to them conservation laws are presented. The Ehrenfest~Pauli objections against 
the. using of such densities are analyzed and partly. rem.oved. It is shown how 
the nonlocalizability of the single photon can be reconciled with the localizability 
of the classical electromagnetic wave. 

The investigation has been performed at the Bogoliubov Laboratory 
of. Theoretical Physics, JINR. • · 
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