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I shall start the review of the results concerning this theme with 
the summary of the theory of affine connection following book (7]. 

Affine Connections and Tensor Fields ,,. 

Consider affine connections on the N-dimensional manifold and 
attribute them to the basis da. = dxa. and the dual basis Ba. = a fox~· 
where xa. are the coordinates foiming the map z of manifold. We 
proceed in the same manner with tensor fields. 

The tensor field of type (A/B) is given by its components with 
upper indices ai, ... , aA and lower indices b1, .. ,bB, _ 

The affine connection r is introduced so that the covariant 
derivative v'T of any. tensor field of the type (A/ B) taken with 
its help be a tensor field of the type (A/ B + 1).' I~ is given by its 
components r~n . 

For the covector field it is assumed that . 

'v m.Tn = 8m.Tn - r~nTG . (1) ' 

Hence it follows that passing from the map z to the map x the 
connection components transform according to the rule 

fG - fG ____ --- -~ ( 8zP OXq {Jlx~ ) OXa 
mn - _pq 8xm 8xn: + 8£m{}£n 8x• . (2) 

In its turn, it follows from (2) that for any vector field the 
combinations 

'vm,'r' = 8m'r': + r~nT"' (3) 

compose a tensor field of the type (1/1) which is a covariant deriva
tive of the vector field . 

A covariant derivative of any tensor field is formed according 
to the rule of differentiation of the product: 'v(AB) = ('v A) B + 
A ('v B). · In particular, for the scalar field T the covariant derivative 
equals the partial derivative: 

'vm.T = 8mT, 

ll>Ul•i;tli:.~ '--~TJT I 
,, fi!~lil atr !!:!J,:tad 

ttOTEKA 
. ---------

(4) 



Torsion Tensor 

As it follows from (2), the difference 

s~n = r~n - r:m 
is a tensor field of the type (1/2). 

Tensor (5) is called the torsion tensor. 

Curvature Tensor 

Like the operator 
'v1s - 81s 

the opera.tor 

'ykl = 'v1c 'vi - 'vt 'v1c + stz 'y P 

as applied to the scalar field T gives zero 

'v1s1 T = 0. 

The same operator as applied to the covector field T,,_ gives 

'v kl Tn = - R'f«tn Ta , · 

whereas being appli~d to the vector field Ta it gives 

'v kl r - R'tcin r , 
where 

' (5) 
-,\ 

\, 

(6) 

(7) 

(8) 

(9) 

Riicn = -Ok fin - 81 r:,,. + r:a r;,,_ - ' rt ri,,. . ( 10) 
' 

It follows from (8) and (9) that the combination (10) is the ten-
sor of type (1/3). It is called the curvature tensor or the Riemann
Christoffel tensor. 
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It is obviosly that 

men + Ri1cn = 0 . (11) 

It is to he noted that if in the_.formula 
. 

('vk - 81c) T = 

for the tensor fie.Id T of any type {A/ B) the combination of letters 
f1c is changed by Rk1 , one gets.the formula 

'vkiT = ... 
These combinations should not be confused with contractions 

given below. 

Two Contractions of the Curvature Tensor 
and the Contracted Connection 

Owing to antisymmetry (11) of the Riemann-Christoffel tensor·, 
only two of its contractions are of interest. One of them, 

R':Jn = Rin, 

is called the Ricci tensor. The other, 

R'fcta = fl1c1 . 81c fc - 81 I'1c, 

. (12) 

(13) 

is called the curvature tensor of the contracted connection rm equal 
to 

rm= r~a· (14) 

According to (5) the second contraction of the connection differs 
from the· first oile by the torsion covector 

Sn= S!,,_. 

5 



According to (2), in passing from a map to a map the compo
nents of the contracted connection ( 14) are transformed according 
to the rule 

I'm = ( r P + a!P ) 
The la.st formula can be converted into 

8xP 
8xm. 

- 8xP ( a ) rm = {)£m r p + oxP In J 1 

where J is the Jacobian of the transformation 

J = 8(x 1 
••• xN) / 8(£1 ••• xN). 

(15) 

(16) 

(17) 

Pr~of. The differential of determinant A of ~ny matrix (A:) is 
equal to 

dA = Bq dAP 
p q' 

where B; is the cofactor of the element A: . Therefore, 

{):z:P {) }n J - 1 {)J 
8£m fJxP - J 8£m -

{)£q I) l):z:P 
----- axq a oxP I) l):z:P 
8xP 8zm l)£q 8xP l)fiq l)£m - 8xP l)£m 

and formula (16) is proved. 
Let us apply the operator V - {) to the tensor E of type (0/N). 

We have 

(Vm -8m)E1c, ... 1cN = -r~,.l Ea.1c1 ... lcN - ••• - r~,.NE1c, ... 1cN-10.• 

If the tensor Eis antisymmetric in any pair of indices k
1 

••• kN, the 
combination 

rbE -ra. E - -ra. E 
ma, lc1 ••• !en mlc1 alcl•••kn .. • mlcN lei .,.kn-1 a 

is antisymmetric in any pair of indices ak1 ... kN. Consequently, this 
combination equals zero and 

V m E,.J ... TcN = ( Om - rm) E,.l ... kN • 
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In the same way one can prove that 

V mn Ek1 ... kN - - Umn Ek1 •.. kN • 

Two Connections 

(19) 

Now let on the same manifold. be given two connections rand 
1" with the components I'~n and t"~n . As it follows from (2), the 
difference 

~n = r~n - r~n (20) 

is the tensor field of type (1/2). 
Tensor (20) is called the affine deformation tensor. 
Substituting into (lO) the expression for f'~n taken from (20) 

we get the la.w of changing the curvature tensor while passing from · 
the first connection to the second one 

flkln = Rtin + S;J ~n + V k J'in - V l J'tn + J't, Pr~ - Pi; pkn • 
(21) 

The contraction 

Pm = i"m - I'm = P'ma (22) 

is called the affine deformation covector. From (21) we get the law 
of changing the curvature tensor of the contracted connection 

!'21cc = 01cc + V1c Pi - Ve P1c + Sf:i Pm = 01cc + 81c Pi - or P1c. 
· (23) 

By interchanging the position of the connections r and t the 
affine deformation tensor, according to (20), changes its sign 

~ = -~n• mn (24) 

According to (21) the law of changing the tensor will ta.ke the form 

/lkln = Rkln + F,J ~n + v' 1c ~ - v' l f'tn - J't, Pi~ + .Ff. Pkn • 
(25) 

7 



Connection without Torsion 

H the torsion tensor (5) equals zero, 

ra. - ra. 
mn - nm· {26) 

This connection is called symmetric or connection without torsion. 
In this case, alongside with {11) the curvature tensor satisfies one 
more algebraic condition 

R'ic1n + ~Tel + R'tnTc 

and one more differential condition 

0 

· v'i Rkln + v'c RfTcn + v'Tc R~n = 0 • 

The latter is called the Bianchi - Pa.dova identity. 
Hence, as a result of contraction we get 

nki + RTci - RcTc = o ,-

vi nlcl + v'i nilc + v'Tc nzi = 0 · 

(27) 

{28) 

.(29) 

(30) 

For the connection without torsion it follows from (30) that 

Oi nkl + ot nilc + Ofc nri = 0 . 

For ea.ch point of the manifold one can determine such a system of 
coordinates in which values of all the components of the connection 
without torsion vanish at this point. 

Equiafflne Connection 

Symmetric connection is called the equia.ffine one· if there exists 
a tensor of the type ( 0 / N) antisymmetric in any pair of its indices 
whose covariant derivative (18) equals zero. In this case 

nkl = 0, RTcl = Rik . {31) 
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A Pair of Symmetric Connections 

For symmetric connections the affine deformation tensor (20) is 

also symmetric 
. ~n = P:m · (32) 

Like in ref. [8], in this case the curvature tensor is written in 

the following two forms: 

J'l~nb R~nb = v' m P:b - v' n pa.mb - ~nb , . 

J'lkln Rkln ~m~b ~n pa.mb + ~nb' 

where 
~nb- = P:nb P:n - p~b P:m • 

: Tensor (35) satisfies the conditions 

P:nn, = O, 

E:nb +. P:mb = 0, 

~nb + nmn + pa.nbm = 0, 

which result in the symmetry of the next tensor 

p mn = P:mn = pa.mb P!n - P, P:nn • 

The symmetry of tensor {39) can be verified immediately. 

Christoffel's Connection 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) -

(39) 

If the covariant derivative of the symmetric nondegenerate ten
sor field 9mn equals zero, the connection r~n equals the Christoffel 
brackets {~m} : · · 

r~n = {~n} ~ ga' (8m 9m + {)n 9,m - {), 9mn) , 

9 
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where ga1 is the tensor inverse to the tensor 9m so that 

aJ - ,:a g g,b - ub • (41) 

The equality V k 9mn results in the equality V Tc gmn so that 
the operation of lowering and raising tensor indices with the help 
of the tensors gmn and gmn is commutative with the operation V k 

of covariant differentiation with respect to Christoffel's connection 
(40). 

It is to be noted that Christoffel's connection is symmetric a_nd 
its contraction equals _ 

1 
I'm = {~a} = 2 gab 8m Bab 

1 
-8 2g mg' (42) 

where g is the determinant of the matrix gmn . Therefore, in formula 
( 18) we assume that 

E1 ... N = yfgT) (43) 

we will get zero in the right-hand side. Consequently, Christoffel's 
connection is equiaffine. 

Einstein's Tensor 

In the case of Christoffel's connection (40), besides the Ricci 
tensor (12) one also considers the curvature scalar 

a.nd Einstein's tensor 

. 
R gmn Rmn 

1 
Gab = Rab - - R 9ab . 

2 

(44) 

(45) 

Concerning Christoffel's connection the Einstein tensor satisfies the 
condition 

VJ Gab g'b = 0. (46) 
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To prove this, let us contract the Bianchi- Pad.ova. identity (28) 
with the tensor S! gin and get 

(V, R:Zn + Ve Rfan + Va. Rt,,,) g'n = 0. 

By definition (12) the first term in these brackets gives 

t"'7 Ra in _ • n R in · 
V i aln 9 - V i ln g • 

By property (11), definition (12) and definition (44) the second 
term in these brackets gives · 

t"'7 Ra in n Ra in t"7 D. in _ t"7 R 
· V C ian g = - V C ain 9 = - V l -''-in g - - V l • 

Running a. few steps forward we can say that the third term in these_ 
brackets gives the same as the :first term 

t"'7 Ra in - t"7 Rai - t"'7 R'" - t"'7 R' in. - t"7 R ""' v a lin g - v a. Ci - v a. il - v a. iln. g - v a ln g • 

Summing these results we get (46), but to prove the third result one 
has to know the properties o,f the curvature tensor to be discussed 
below. 

Algebraic Identities for the Curvature Tensor 
in the Case of Chistoffel 's Connection·· 

Having applied to the tensor field gab the operator (6) we obtain 

n gab _ Ra. 9,b + Rb g"' _ 0 
V Id - /cl, Tel, - • 

It is convenient to write this result down in a compact form 

R:f+Rti=O. (47) 

by denoting 
Rab - R" ,b 

Tel - Tel, g • {48) 

Taking into account ( 11) we get 

ab ab · R1cc + Rc1c = 0 . (49) 

11 



and, consequently, 
Rab _ Rba 

kl - Zk· (50} 

These data are sufficient to fulfil the proof of theorem (46) on Ein
stein's tensor which was undertaken earlier. 

The result, equivalent to ( 47), can be derived in a different way 
by applying the operator (6) to the tensor field gmn . We have 

t, Ra an Ra ma _ 0 
V kl gmn = - klm g - kin g - 1 

which is convenient to be written down in a compact form 

Rrdmn + Rklnm = 0 , 

by denoting 

Rklmn = - RkCm 9an = Rief 9a.m 9bn · 

It is evident that the result (51) is equivalent to (47). 
Taking account of ( 11) we get 

Rrdmn + Rckmn = 0 , 

and consequently 
Rkcmn = Ru.nm . 

(51) 

(52) 

(53) 

(54) 

The result (53) is equivalent to (49); and the result (54), to (50). 
Now let us prove that 

Rklmn = Rmnkl · 

According to (27) the tensor (52) satisfies the condition 

R1ccmn + Rm1ccn + Rimkn = 0 . 

Let us make in this identity all cyclic permutations of indices 

Rklmn + Rmrcln + RzmTcn = 0 • Rmnkl + Rkmnl + 14,,kml 

12 
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Rnklm + Rznkm + Rklrim = 0 • Rzmnk + Rnzmk + Rmnlk 0. 

Subtracting from the upper equations the lower ones w-e get 

R1crmn Rkl~m 

~nkl R_,.,.nlk 

(Rnkcm ·+ Rcnkm) 

( Rzmnk + ll.nzmk) 

( ilmkln + Rzmkn) • 

( Rkmnl + Rn1cm1) · 

Changing the second and the sixth columns according to (51) we 
obtain 

R1ccmn + Rklmn Rn1crm + Rrnkm - Rm1c1n + Rcmnk) · 

R_,.,.nkl + Rmnkl = .Rimnk + .llnlmk - Rkmnl + .lln1c1m . 

Hence, according to (54) we get (55). 

Primitive and Semiprimitiv:e Conne~tions 

The affine connection is called primitive if it is symmetric and its 
lliemann -Christoffel tensor equals zero. Thus, primitive connection 
satisfies the system of equations 

Sa . 0 
mn - " Rkln = 0 · (57) 

Connection satisfying a much weaker system of equations 

5a. = 0 mn ' R,.,.n + Rnm = 0 , (58) 

is called semiprimitive. Remember that connection sa.t.isfying the 
system of equations 

sa = 0 mn ' Rmn - Rnm = 0, 

is called equiaffine. Semiprimitive equiaffine connection satisfies the 
system of equations 

s~n 0, R,.,.n 0. (59) 

13 



Coordinate Connection 

The affine connection is called coordinate if there is a map y on 
the manifold such that a.II the component ofthe connection equal 
zero. At any map x connected with y the components of such 
connection equal 

&xa. &'ly5 ra = - --- (60) mn &y5 &xmiJxn 

More precisely, connection (60) is called the connection given by 
mapy. 

One can easily verify that connection (60) satisfies the system 
(57). Consequently, the coordinate connection is primitive. 

It can be proved that any solution of the system (57) can be rep
resented as a coordinate connection ( 60). In other words, primitive 
connection is the coordinate one. 

But the coordinate connection does not define the map y un
ambiguously: if one substitutes into (60) the affine transformation 

Y1 = A: Zr + Bs 1 (61) 

the solution of the system (57) will not change. On the contrary, 
if passing from the map y to the map z the solution of the system 
(57) does not change, this transition is affine. Thus, any coordinate 
connection defines the affine geometry. 

It is important to realize that affine geometry is not a metric 
one, because the connection (60) does not define any metric. As 
one can·· see> in formula (60) any metric is absent. 

Metric Admitted by the Coordinate ,Connection 

The coordinate connection ( 60) does not define any metric but 
admits it in the form 

~) m a n 

C uy y d a d b - C d m d n 
mn -n- & b X , X = mn Y Y , oxa x 

(62) 
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where about the matrix lCmn) we know only that it is symmetric, 
is not degenerate and is independent of the coordinates y . 

One can easily check up that Christoffel's brackets for such a 
metric equal (60). Indeed, in this case 

&ym oyn 
gab = Cmn axa 8xb ' 9

mn cab oxm oxn 
8ya. 8yb 

where (Cab) is the matrix inverse to (Cmn) . Consequently 

8 P £l2q 

{
a } - a1 C Y v Y 
mn - g 'pq OX 5 oxmlJxn 

O.Xa OX1 oyP {)2yq crt--c ---&yr /)yt pq &xs -&xm/)xn 

ax°' 82yq axa 82 y' crp_c --- = ----
&yr . pq axmaxn oy' &xmBxn . 

Changing the summation _index we get (60). 
Thus, the connection (60) does not contain any information 

a.bout the m~trix ( Cmn) . · 

A Pair of Primitive Connections 

Let us consider a pair of solutions r and f of the system of equations 
(57): one as the coordinate connection (60) and the other as the 
coordinate connection 

r~n axa a2z6 

l)zs &xmfJxn 

In this case, the affine deformation tensor (20) equals 

~n 

Indeed~ we have 

{):i;a /)yP {)yq 1)2 zs 

OZ8 IJxm {):i;n {)yP{)yq . 

8z1 

IJxn 
8z' oyq 
8yq axn. 

15 
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Consequently, 

and 

{)2 z' i)z' {}2yq {)yq {) oz' 
---.= - . + -----&m&n ~q&m&n &nfumi)~ 

~n 

axa. {) . {) z' 
oz' f}xm IJyq . 

This equality immediately results in (64). In its turn, it follows 
from ( 64) that a. non-affine transition from the map y to the map 
z changes the primitive ·connection. and gives a new solution of the 
system (57); on the contrary, the affine transition from y to z does 
not change this connection. 

The Number of Essential Components of the Curvature 
Tensor 

Let us count the number C of essential (i.e. linearly independent) 
components of the tensor satisfying tl1e conditions (11) and (12). 

It is obvious that C = NP where N is the manifold dimension, 
Pis the number of essential components of the tensor Pkln satisfying 
the conditions 

As the tensor 

(S) pkln + Pum . = 0 , 
Pkln · + Pnkl + Pink 0. (A) 

S1c1n = Pkln · + Pikn 

is symmetric in the first two indices, the number of linearly inde-
pendent conditions of the type ( S) equals 1 • 

S = N N(N + 1). 
2 

If the conditions (.5') are fulfilled, the tensor Pkcn is antisymmetric 
in the first two indices, and the tensor 

A1c1n = Pken + Pnke + Pink 

16 
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is antisymmetric in any pair of indices. Consequently, the number 
S is added by the number 

A = N(N - l)(N - 2) 
6 

of linearly independent condition~ of the type (A). Therefore, 

3 1 ( 2 ) P=N -S-A=-NN-1 
3 

and, consequently, 

C = ! N2 
( N 2 

- 1) . ( 65) 
. 3 

In particular, in the two-dimensional case C = 4 . The Ricci 
tensor has the same number of components. Therefore, in the two
dimensional case the following equality is possible and· is indeed 
fulfilled (see [7, p. 2911): 

Rkem = Dk Rem - De Rkm • (66) 

For the Christoffel connection, as is shown in [9, p. 201], the 
number of essential components of the curvature tensor (52) equals 

C = }_ N2 ( N2 - 1) . 
4 12 

(67) 

In the two-dimensional case ¥ = 1 , the Einstein tensor ( 45) 
is zero whereas the Riemann-Christoffel tensor equals 

1 
R1cemn = 2 R (gkm 9en - 9kn 9em) • (68) 

In the three-dimensional case ¥ = 6 . In this case, the Ricci 
tensor has the same number of components. Therefore, in the three
dimensional case the following equality is posssible and indeed ful
filled (see (10, ·p. 366]): 

Rkemn = L1cm 9en L1cn gem +. Len 9km - Lem 9Tcn. , · (69) 

17 



where 
1 

Lmn = Rmn - - R 9mn • 
4 

(70) 

Consequently, in the three-dimensional case, semiprimitive connec
tion given by the Christoffel bracket is primitive. 

By virtue of ( 47) and ( 49), the tensor R'f.f can be considered 
as a linear operator acting in the space of bi vectors X kl, i.e. anti
symmetric tensors of the. type (2/0), It seems to be interesting to 
examine the equation 

~ R';c? xkl = ,\ xab 
2 

for eigenvalues of this operator, as weU as the tensors 

>. (cSk of - ot oi) - R,S, 

,\ (9km 91n - 9kn Ytm) - Rklmn 

and a symmetric bilinear form 

X kl R ymn 
klmn • 

Gauss Curvature 

Inserting the definition (10) and formula ( 40) into (52), it is 
not. difficult to obtain the following expression for the Riemann
Christoffel tensor: 

Rklmn = 9pq (f!n rrm - rfn rtm) + 

l 2 2 ,,;i 2 ) + 2 ( Olm 9lm + Olm 9kn - . Ufn gkm - ?km g,n · (71) 

Specifically, at N = 2 in the Gauss notation we write 

911 = E, 912 = 921 = F , g22 = G, (72) 

g=EG-FF. 
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Hence, we get 

n G F 
g22 

E 
9

12 _ g21 ___ 
g = -, - - , 

g g g 
{73) 

If then we denote 
I' a,mn = 9a, r~n , (74) 

we obtain 

2 r 1,11 = 81 E , 2 r 2,11 = 2 81 F - 82 E, 
2 f 1,12 = 82 E, 2 r 2,12 = 81 G, (75) 
2 r 1,22 = 2 /J.i F - 81 G ) 2 r 2,22 = /J.i G . 

Making use of the equality 

9pq {f{n. flm - ffn. fZm) = g1''l {fp,kn. f q,lm - fp,ln f q,hm), (76) 

and utilizing {68), {71) and (75) we find 

where 

R1212 = K g = gpq (r p,12 r q,12 - r p,11 r q,22) -

l 
2 ~2 E + lPi2 F 

1 
K = -R 

2 

! lPi1 G' 
2 

(77) 

(78) 

is the Gauss curvature for which Gauss [11, p. 139] derived the 
following formula. 

4g g K E X + F Y + G Z - 2 g ( ~ 2 E - 2 8~2 F + 8~1 G) . 
(79) 

Here 

X = 82 E · 82 G - 2 81 F · 82 G· + 81 G · 81 G, 

Y = 81 E· c}zG - 82E· 81G

-2/J.iE· <hF + 481F • {J.iF - 2l)iF · {hG, 

Z = 81E· IJ1G- 281E· <hF + cJzE· /J.iE. 
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Distinguished Gauss Theorem 

Consider a two-dimensional manifold represented as a surface 

T = T(u,v) 

in the three-dimensional Euclidean space. In this case the compo
nents of the metric tensor are scalar products 

· 9mn = Tm Tn • (80) 

Consequently, the components (74) are also scalar products 

1 . 
I'a,mn = 2 (om 9an + on 9am - Ba 9mn) = ra rmn. (81) 

Then it follows that the scalar products 

ra (rmn - r:7m T,) 

vanish, and thus, 

Tmn = r:,m T, + Bmn p, (82) 

where P is a unit vector perpendicular to the surface at the point 
of application, the components Bmn are scalar products 

Bmn = P rmn. (83) 

Differentiating (81) we obtain the equality 
. . 

- 1 ( 2 n2 ·) 2 ) 
Tab Tmn + Ta Tbm.n ~ 2 Obm 9an + Ufm. 9am - f)ab 9mn · 

Rearranging here indices m and b we ·obtain another equality 

1(2 2 2 ) 
Tam rbn + ra rmbn = 2 f)mb 9an + f)mn 9ab - IJam 9bn · 
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Subtracting the second from the first equality results in the third 
equality 

] 
rab rmn - ram rbn = '.2 (o'f.n 9am + o;m gbn - o;b gmn - o';,m Yab) . 

Comparing the latter with equalit1 (71) we, on the one hand, find 

-- - R - (fP rq - fP rq ) rab rmn ram Tbn, - bman 9pq bn am mn ab ." 

On the other hand, according to (82), 

rab rrnn ~ Bab Brnn + 9pq r~·n r~b · 
From the two la.st equalities it follows that 

Rbman = Bab Brnn - Barn Bbn • 

Comparing this formula with (68) and (78) we obtain 

Bab Brnn - Barn Bbn = K (gab 9mn - Yam 9bn) · 

In particular, 

B11 B22 - B21 B12 = K (gu 922 - 921 912). 

{84) 

(85) 

(86) 

Gauss proceeded in the opposite way: having called as the mea
sure of curvature the ratio K of determinants of IBmnl to l9mnl, he 
deduced formula (79) for K [11, p. 139], that itself leads to the 
following distinguished theorem. The Gauss curvature is invariant 
under isometric transformations of surfaces [11, p. 140}. 

Integral Stokes Theorem 

In the theory of integration on manifolds (I ha.ve composed a. 
summary of this theory a.nd published in part in [121), especially 
distinguished are tensor fields without upper indices with compo
nents antisymmetric in all lower indices 

Qat ... aK • (87) 
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The tensor field with antisymmetric components (87) will be 
called the field of type [K]. When K < 2, the condition of anti
symmetry loses its meaning and is removed in this case, however, 
the concept of type [ K] is retained, and so 

[1] = (0/1) I [0] = (0/0) . 

In other words, a tensor field of the type [lJ is a covector field Ha, 
whereas a tensor field of the type [O] is a scalar field n. However, 
when K > N, all fields of the type [K] vanish, and therefore,_in 
the bracket [KJ, it makes sense to consider only integer K from 
the interval O ~ K ~ N. Within these limits, the dimension of 
region of integration changes, respectively. The number of linearly 
independent components (87) equals 

K N! 
C N = K! (N - K)! (88) 

Integral over the K-dimensional region of integration Dis taken 
of a tensor field of the type [K]. If this region is given in the form 

a a( 1 K) X = X tL 1 ... , tL 1 a= 1, ... ,N, (89) 

the integral of tensor field (87) of the type [K] over the region Dis 
equal to the K-multiple integral 

J I oxa1 axax 
H (D) :;::: ... Ha1.:.aK J)u.1 .:. 8u.K d u.

1 
... d UK . (90) 

The one-dimensional region L is a curve. If i~. is given in the form .. , 

xa'. xa(u), a= 1, ... ,N ,· (91) 

the integral of the covector field Ha equals 

J dxa. 
H ( L) = Ha du d u . (92) 
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The zero-dimensional region is point P. The integral of the scalar 
field n over this region equals the value of n (P) of that field a.t 
point P. 

Under the conditions formulated above one can guarantee that 
the integrals depend neither on the choice of coordinates x, nor on 
the choice of parameters u, but if an integral does depend on the · 
choice of coordinates, it occurs neither in the theory of manifolds, 
not in general relativity. 

A principal part in the theory of integration on manifolds be-:, 
longs to the Stokes theorem according to which an integral of the 
tensor field n of type (Kl along the boundary D', restricting a 
( J( + 1 )-.dimensional region D equals an integral over the region D 
of the external derivative ·n, of the field n, i.e. 

n(D') = n'(D). (93) 

The external derivative is defined as follows .. If the component 
(87) is antisymmetric in all K indices, then the combination 

H:a1 ... a.x = Ba fia1 ... GJC - Oa1 Oaa, ... ax -

- Ba'J. fiat aa3 ••• ax - •• • - Bax flat ... ax-1 a (94) 

of its partial derivatives is antisymmetric in all its ( K + 1) indices. 
If, besides, (87) is a. component of a. tensor field of the type [K], 
the combination (94) is a. component of a tensor field of the type 
[K + lJ. The tensor field fl' of type [K + lJ thus.obtained is called 
the external derivative of the initial field n of type [K] . At K = 0 
formula (94) loses its meaning and it should be supplemented with 
the definition n: = Ban·. 

Let us ina.ke the following highly important remark: Unlike the 
covariant derivative, the definition of the external derivative did 
not require the affine connection. 

Let us notice also that the second external derivative equals 
zero. 
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Integral Gauss Theorem 

If the manifold X is orientable, there exists a tensor field E of 
the type [N] such that everywhere 

- e = E1 ... N · > 0 . (95) 

We shall call it the measure of volume. Along with E, consider a 
vector field pa. and compose a tensor field {FE) of the type [N - l] 
with components being contractions 

(F E)a.1 ... <1.N-1 = pb Eba.1 ... <1.n-1 • (96) 

The external derivative (F E)' of the field (F E) is a tensor field of 
the type [N]. Therefore, it differs from the field E only by a scalar 
factor f: 

(FE)' = f E. (97) 

Substituting (96) into (94) we find this factor to be 

J = e-1 Ob ( e pb) . (98) 

The scalar field J is called the divergence of the vector field pb 
(with respect to the measure of volume E) .. 

The Stokes .theore~ as applied to the ,tensor field (96) of the 
type [N". 1] is called the Gauss theorem~ , 

· Integral· Gauss Theorem in the Riemann World 

Jn the 0Riemann world with the metric 

ds2 = gab dxa. dxb (99) 

the affine connection f~n is given by the Christoffel brackets ( 40). 
The volume element is defined as follows: 

dX = e dx 1 
... dxN , (100) 
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where the component e determined by formula (95) equals (43). 
The divergence ( 98) is then equal to 

f = e-1 Ob (e Fb) = 'i:,h pb. (101) 

The Gauss theorem in the Riemann world is written in the form 

r pa g°'b d r} = r ~h pb d X I 

JD, · JD 
(102) 

where dY:} is the vector of an area element on the boundary D' of 
the region D . Note that 

v7b fb = (~b - P:b) pb, (103) 

where P!n is the tensor of affine deformation (20). 
It is highly important to realize that the Gauss theorem is ap

plicable only to the vector field. A widely spread but incorrect 
conclusion that the energy of gravitational field is nonlocalizable 
results from application of the Gauss theorem to an object that is 
not a vector field. 

The expression "energy is nonlocalizable" means that the con
ception of local energy (i.e. energy belonging to the given place) is 
ambiguous. For instance, according to [13, p. 436]: 

"The energy of the gravitational field is nonlocalizable, i.e. no 
unambiguously definite density of energy exists." 

But we must imagine that we are speaking about the concept 
playing the central role in modern theoretical physics! Just with 
this statement the paper (13] opens: 

"The concept of energy plays the central role in modern theo
retical physics." 

It is obvious, that this assertions contradict one another. How 
do you find this pseudo-tensor dislocation? 

The introduction of the background conection gives the gravity 
theory a totally tensor nature and abolish incorrect conclusion that 
energy is nonlocalizable. 
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Equations of Geodesics 

The concept of affine connection can be obtained by considering 
the equations of geodesics in the form 

dxa 
dr = Pa 

dpa ra Pm Pn. __ = - mn 
dr 

(104) 

The right-hand sides of these equations will be considered to be 
components. 

Fa(x,p) = pa> pN+a.(x,p) = - f~n(x) pm pn . (J'05) 

of the vector field on the 2 N-dimensional manifold with coordinates 

1 N 
X 1 ••• , X , xN+1 = pl 

1 
••• 

1 
x2N = PN . (106) 

In accordance with this condition, passing to the new coordinates 

v" = Yk (x,p) 1 k=l, ... ,2N, (lp7) 

we transform Eqs. ( 104) to the form 

dyk - Hk - ayk a - ayk ra m n 
. dr - - axa P 8pa mn P P ' k = 1, ... 2N . 

. (108) 
In particular, for 

Ya = Ya (:r.) , 
aya 

(109) YN+a = qa = __ pm 
ox.m 

we obtain 

9a = fJya. pm 
axm ) 

9N+a. = ( fP·ya 
f)xmf)zn 

- • aya r:,m) pm pn ) 

ox& (110) 

so that in coordinates (109) Eqs. (104) retain their form: 

dya 

dr 
qa > 

dqa 

dr 
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_ 9a qm qn• 
mn , (111) 

where the components qa. are connected.with components pa by the 
vector rule 

aya. m 
a - -~p 

q - f):i;m (112) 

and the components H!n are connected with the components r~m 
by the rule 

( 

f)2ya aya ) ox' 8xj 
- n:,m = ox'8xi - 8x& r:j lJym lJyn , (113) 

equivalent to the rule (2) that defines the affine connection. 
Separation of transformations (109) among all coordinate trans

formations of 2N-dimensional manifold preserves its structure of 
the tangent bundle -P (X) of vectors of the initial manifold X. We 
have proved the theorem: if the functions (105) of x ,P constitute 
a vector field on P (X), the functions r~m of x compose a symmet
ric affine connection on X. It is not difficult to observe that the 
inverse theorem is also true: if the functions r~m of x constitute a · 
symmetric affine connection on X, the. functions ( 105) of x , p make· 
up a vector field on P (X). · .. 

It is interesting that P (X) is an orientable manifold since the 
Jacobian of transformati~n (109) is larger than z~ro. Indeed, as the 
derivatives 8yk / ap6 are zero if k :$ N and are equal to 8yk / 8x6 if 
k > N, this Jacobian equals 

a (y1, ... ) YN j ql, ... ) ~) = ( a (y1, ... ) YN) ) 2 . ( 4) 
a ( 1 N 1 N) l) ( 1 N) > O • lJ x, ... ,x ;p, ... ,p x, ... ,x. 

Since it is positive and independent of p, one can on the manifold 
P (X) define the measure of volume with the use of a tensor field 
of the type 2N whose principal component is independent of p: 

E1 ... N ... 2N = E = E(X 1 
••• , xN) >- 0. (115) 

The divergence of the vector field ( 105) with respect to that measure 
on P ( X) equals the scalar field 

f (x, p) = E-1 p4 (Ba E - 2 r:n E) . 
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If this divergence is zero> the connection f~n is equiaffine. In this 
case 

1 r a. = = r:m = 
2 

E Ba. E . (117) 

If the connection r~n equals the Christoffel bracket (40), then ac- -
cording to (42), E = I g I and the divergence (116) is zero. 

This approach to the concept of affine connection has been con
sidered in paper [14] on the ki~etic theory of gases in general rel
ativity. The statement that the divergence (116) in this theory 
is zero is analogous to the Liouville theorem known in statistical 
physics. · 

Fundamentals of the Tensor Theory of Gravitation 

We assume that there exist two symmetric tensor fields: ga.b 
and P!n. The condition of symmetry means that ga.b = la. and 
P!n = JJ:m · . , 

We also suppose that the_ tensor gab at .the point of its appli
cation defines a · tangent space of velocities endowing it with the 
Lobachevsky geometry [15]. Consequently, there exists an inverse 
field 9o.b and the metric (99) of a. normal hyperbolic type. 

-We introduce the Christoffel connection ( 40) and hac}cground 
connection 

i"~n = f~n + P::in . (118) 

We assume that the action of matter· is independent of the ten
sor P;:m and the action of the gravitational field is given by the 
contraction 

L = gab Pa.b , (119) 

where the tensor Pa.b is defined by (39). In view of the first condi
tion, the energy-momentum tensor of matter Mab. pefined according 
to Hilbert in the expounded theory is exactly th~ same as in the 
Einstein theory, and thus, 

Va go.n Mnb 0. (120) 

·2s 

By virtue of the second condition, the tensor Rab in the field grav
itational Einstein equation is replaced by the tensor 

. l 
sab = ~ - 2 (L + L> , (121) 

and the connection r~n in the Eins~ein pseudotensor is changed by 
the tensor ( - ~,J . As a result, we arrive at the gravitational 
equation · 

where 

1 
sab - - s 9ab 

2 

8 1r, Mab, 
c• 

$ = gmn Smn > 

and at the energy-momentum tensor 

. FJt = <)bn u::m - Pm <5:) - L 6't, 

where 

(122) 

(123) 

(124) 

<)bn = ({\ _ Pi,) gmn = 9mt1 P;i, + gnll P% _ 9m.n Pi, . (125) 

In deriving the field equation (122), we can replace the La
grangian L by S according to the Gauss theorem (102) since (33) 
reBults in the equality 

L S + Va (<)a pa) I 

where 
<)a = <)an = gm.n ~ n m.n > 

pa = gab P,, = gab~ . 

(126) 

(127) 

(128) 

In connection with the tensor {121), of ~terest are the following 
equalities: 

'1 a ga.n (2 Snb - S 9nb) = '1 a ga.n ( 14w + 14n) - 'fih gmn Ln = 

("(7 a - Pa) [ga.n (14w + ~)J - gmn "(7b Ln 
1 

(129) 
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ga.n (2 Snb - S gnb) - Et, (\In - Pn) [Utn + <l>a. o;;- <pna] 
b ' 

(130) 
where 

. 

u:n = gnJ ~ - gaJ ~ + ob (<I>n - P) - ob (<I>a. - P). (131) 

The vector <pa will be called the anharmonicity vector of the 
background connection (118) since in 'the Einstein theory of gravity 
the condition 

q>a = 0 (132) 

determines harmonic coordinates. Therefore, the tensor (125) will 
also be called the anharmonicity tensor of the background connec
tion. 

Provided that 

Va (Rnii -+ lt1,n) = o , 

· from (120), (122) and (129) it follows that 

(Rnb + /t1,n) <pn = 0. 

· Einstein-Rosen Theory as a Special Case 

· If the background connection ( 118) is semiprimitive, then 

Sab = Rab 

(133) 

(134) 

(135) 

and equation (122) coincides with the Einstein-Hilbert equation. 
However, the condition (135) is too weak for separating the part of 
the Einstein theory that is historically related to the pseudotensor 
subculture. The necessary and sufficient conclit.ion for this is the 
foJlowing condition 

kicln = 0 

of primitivity of the background connection (118). 
dition, there is such a coordinate map, in which 

ra = 0 rnn 
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(136) 

Under this con-

(137) 

throughout. The tensor (124) in this map coincides with the Ein
stein pseudotensor. 

In time, N.Rosen has put things in order in the pseudotensor 
part of the Einstein theory [16], by introducing, besides the field 
metric tensor gab, the background, tensor lia.b defining the metric of 
the Minkowski space-time 

d i 2 = gab d xa. d xb , (138) 

written in arbitrary coordinates. The Christoffel brackets for the 
metric (138) constitute the background connection f'~n obeying the 
condition (137). The met.hod developed by Rosen was called the 
two-metric formalism. . 

The background tensor itself does not enter into the final Rosen 
formulae, the latter contain only the Christoffel brackets. This can 
be verified, e.g., for the condition of harmonicity (132). However, 
we already know -that the metric ( 62) contains more information 
than the connection (60). This information, excessive as compared 
to the condition (136), has been taken into account in the Logunov 
relativistic theory of gravity [17]. · 

Logunov Theory 

The Logunov theory goes beyond the scope of the consideration 
made until now for the tensor theory of gravity because in the 
Logunov theory, the ac.tion of matter is added with the sum 

a.b 2 ( l ab rv:-=:; ) -g Pa.b + m 2 g 9ab - y g g-l - 1 , (139) 

rather than.with the contraction (119). In this case, equation (122) 
is replaced by the equation 

X 8 ?r'}' , 1 m2 

Rab - flab = -~ (Mab - 2 M 9a.b) + 2 (gab - 9a.b) • (140) 

In the given case, the background connection is the Christoffel 
brackets for the background metric, and consequently, 

flab = Abo. . (141) 
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H the background connection is semiprimitive, i.e. if in the given 
case 

.n.ab = 0 > (142) 
' 

equation {140) coincides with the Logunov equation of gravitation 
, that was originally written in (17, p. · 40]. In the Logunov theory, 
the condition (136), more strong than (l42);is fulfilled. The gravi
tational equation in another form is written in [17 p.28] and in our 
notation it looks 88 follows: 

G m
2 

( >1 1 ~ ,., ) 8 1r -y M 
ab + 2 9Gb + !iab - .2 lir. g 9Gb = ~ ab • {i43) 

The Logunov gravitational equation {143), in view of ( 46) .a_nd 
(120), results in the remarkable corollary 

2 't"7 (~ ,b 1 >I r, ,:b) _ 0 
fl Vb Ya.1 g - 2 Yr, 9 ua. - , (144) 

where 

v'b (ga., g'b - ½ 9r, gr' 6!) = 9a., q,' (145) 

with the vector of anharmonicity ~a. given by ( 127). Therefore, as in 
the Loguilov theory, m 'i: 0 and the tensor 9a., is nondegenerate, the· 
condition of harmonicity (132) is a conseque~ce of the field equation 
{143). However, when m = 0, the-condition of harmonicity (132) 
does not follow from equation ( 143) and the Logunov equation ( 143) 
coincides with the Einstein equation. 

Introduction of the background metric into the Lagrangian den
sity (139) is, in our opinion, the central point in the Logunov theory 

· of gravity; 
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