


1 Introduction

In our previous paper [1] (below cited as paper II) we have considered

constrained special-form theories with first- and second-class constraints

(when the first-class primary constraints are the ideal of a quasi-algebra of
all the first-class constraints) and have suggested the method of construct-

ing the generator of local-symmetry transformations in hoth the phase

and configuration space. It was proved that second-class constraints do

not contribute to the transformation law of the local symmetry which

entirely is stipulated by all the first-class constraints unlike the asser-

tions appeared recently in the literature [2]-[4]. It was thereby shown
that degeneracy of special-form theories with the first- and second-class

constraints is due to their quasi-invariance under local-symmetry trans-

formations. One must say the mentioned restriction on an algebra of -
constraints is fulfilled in most of the physically interesting theories, e.g.,
in electrodynamics, in the Yang — Mills theories, in the Chern — Simons
theory, etc., and it has been used by us in previous works [5] in the
case of dynamical systems only with first-class constraints and also by
other authors at obtaining gauge transformations on the basis of differ-
ent approaches [6]-[8], [9, 10]. However, in the existing literature there
are examples of Lagrangians where this condition on constraints does not
hold, e.g., Polyakov’s string [11] and other model Lagrangians [10], [12]-
[21]. Then it was natural to ask: Can the local-symmetry transformations
be obtained in these theories? What is a role of second-class constraints
under these transformations and, generally, what is the nature of the La-
grangian degeneracy in this case? For example, in ref.[19] it is stated
that in the mentioned example the gauge transformation generators do
not exist for the Hamiltonian formalism though for the Lagrangian one
the gauge transformations may be constructed. In refs.[20, 21] in the case
of theories only with first-class constraints we have shown that one can
always pass to equivalent sets of constraints, for which the indicated con-
dition holds valid, and, therefore, gauge transformations do exist both in
the Hamiltonian and La.grangian formalism. Therefore, the degeneracy
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of theories with the first-class constraints is due to their invariance under =

gauge transformations without restrictions on the algebra of constraints.
~ In the present paper it will be shown that, as in the presence only
of first-class constraints, in the general case of systems with first- and
second-class constraints, when the mentioned condition on constraints is
not fulfilled, there always exist equivalent sets of constraints, for which

the indicated condition holds valid. Therefore, the conclusions made in

the former case about the existence of local-symmetry transformations in

both the Hamiltonian and Lagrangian formalism and about the nature
of degeneracy of theories hold valid also in the general case. Also the
conclusion of paper II about the no influence of second-class constraints .-
on local-symmetry transformations and. the conclusion of ref.[22] about
the mechanism of appearance of higher derivatives of coordinates and of -

group parameters in these transformations are valid in the general case.

One can see that in the case, when higher (than first order) derivatives =

of coordinates enter into the Noether transformation law in the configura-

tion space, the generator of local-symmetry transformations in the phase

space depends on derivatives of coordinates and momenta. Therefore, the

Poisson brackets are not determined in this case, and there arises a ques- .

tion about the canonicity of the obtained transformations. Here we shall
show that the difficulty with the Poisson brackets is surmounted through
the extension by Ostrogradsky of phase space and the proof of canonicity

of local-symmetry transformations in this phase space,. which had been

furnished by us earlier for theories only with first-class constraints [22],
hold true also in the presence of second-class constraints in theory.

This ‘paper is organized as follows. In section 2, for the general case
of systems with first- and second-class constraints (without restriction’
on the algebra of first-class constraints) we derive the local-symmetry
transformations from the requirement for them to map the solutions of
the Hamiltonian equations of motion into the solutions of the same equa-
tions. The derivation of a generator from this requirement (unlike the:
one from quasi-invariance of the action functional in paper II) is made to
establish a ratio of the groups of local-symmetry transformations under
which the equations of motion and the action functional are invariant (as
it is known, generally, the action functional is invariant under a more slen-

der group of symmetry transformations than the corresponding equations
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of motion do). As in paper 11, these derivations are based substantially
on results of our previous paper [23] (paper I) on the separation of con-
straints into the first- and second-class ones and on properties of the
canonical set of constraints. In section 3, we consider the local-symmetry
transformations in the extended (by. Ostrogradsky) phase space. In the
4th section the method is illustrated by an example. In Appendix A, we
describe the way of passing to an equivalent constraint set when all the
primary constraints of the first class are momentum variables.

2 Local-Symmetry Transformations in General Case
of Systems with First- and Second-Class Constraints

As in the special case (paper II; below we shall refer to formulas of papers
I and II as (L.---) and (IL.-- )), we shall consider a dynamical system
with the canonical set (@7« ¥g.) of first- and second-class constraints,
respectively (@ = 1,-++, F, mg = 1,---,Mo; @i = 1,--, 4;; m,, =
1,--+,M,, i =1,---,n), properties of which are expressed by the Poisson
brackéts among them and the Hamiltonian by the formulas (I1.9)-(I1.12):

(o7, H} = 9275 @5,

(0, B = g A YRR O e =m0

mg=1"' ma + 1, (1)

(o957} = 177 08 | o
{‘I/a, : ’"bk} = fa.- ;:bk;n—, (I)m_y_*_zkma,:z»krzﬂ, ‘Ijmc, +D 'a,m,,k (4)

with general properties of the structure functions given by the formulas
(I1.13)-(11.16)

gre =0, ifma+2<myg, (5)
Goias =0, if mg>2mg,,
RIS =0, i mg, +2 <y, orif o= by, ma = M, ©
my, > M., '
fi ";3"";' =0 for m, 2> 2, (7)
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( Fat'la.-—lblj-l — (_1)1 Fl Mbiq, | = 0, 1, Ve 7Ma; _ 1,

a;b.-
Fif =0, if j+k#M,+1,

F :' "",:: * =0, if a;, b refer to different chains (or doubled

. ) . Mg, M X . mgm
chains) of second-class constraints (D, ;" = F, *, ")
a; bg a; bg

\

and with

n
H=H.+ Z(Kl k)ﬁlak{‘l’ﬁ,‘,Hc}‘I’L (9)
k=1
being a first-class function [24]; H, is the canonical Hamiltonian.
Passing to this set from the initial one is always possible in an arbitrary
case by the method developed in paper I. Here we shall consider the
general case (when first-class primary constraints are not the ideal of
quasi-algebra of all the first-class constraints, i.e. the restriction (II.25)
is not fulfilled) and derive local-symmetry transformations.

A group of phase-space coordinate transformations that maps each
solution of the Hamiltonian equations of motion into the solution of the
same equations will be called the symmetry transformation.

Consider the Hamiltonian equations of motion in the following form:

G R {g,Hr}, # R {p,Hr}, i=1,--,N, A
UloR0, ap=1,--, 4 (k=1,---,n), (10)
8l B0, a=1,---,F,

where

Hr = H + u,®, (1)

. T z
u, are undetermined Lagrange multipliers; the symbol & means weak
equality on the primary-constraints surface 3.

Consider also the infinitesimal transformations of the phase-space co-
ordinates

{. q:' =qi+ 6(],’, 5(],‘ = {qi, G}a (12)
pi=pi+bp;, bpi={pi,G} |
with the generator G sought in the form (II.4)

Mg,

G = emeae + . (13)
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To recognize a role of the second-class constraints in the 1oca.l-symrnetr'y
transformations in this general case, we consider them on the same basis
as the first-class constraints. N

Like in refs.[8, 9, 19, 21], we will require the transformfed qua.ntl'tles
q\(t) and p/(t) defined by (12) to be solutions of the Hamlltonlfm fzquatlons
of motion (10) provided that the initial gi(t) and pi(t) do this, i.e.

(]
g = a——HIZ(q',p’), i %-%(q',p'), i=1,---,N,
op; - 0di (
\I»"lu(q’,pl) g(), ak=1,"',Ak(k=1,"',n), (14) -

z
dl(¢,p) =0, a=1,---,F,

where :

HTII‘ = HT + 6ua(t)<1>§,(q,p) =H+ ula(t)éclr(q,p)' (15)
Replacements in (15) of Hr by H and of uu(t) by ul(t) are stipulated
by that, generally speaking, different solutions that sh(.)uld be related
with each other through the local-symmetry transformations correSponq
to different choices of the functions uq(t) (the transformed quantiti(?s
are denoted by the same letters with the prime). In equations (14) it
is taken into consideration that the transformations (12) must conserve
the primary-constraints surface 2 (see the argument after formula (6) in .

aper II).

d Il)ilquazions (14) can be rewritten with taking account of (12) and (10)
in the following form: ‘

146} & (o H1}, G, (16)
456} B {{p BphG) i=1o N, (1)
(UL,G} RO, qp=1,--, 4 (k=1,--,n), (18)
(8,6} R0, a=1,---,F. | o (9)

We shall analyze consequences of the obta.ine(% equation system sta:rt-
ing from the conditions of the primary-constraints surface c?nser\fatlo.n
(18) and (19). As in the special case of paper II (the c'on81derat10n is
completely identical), from (18) we obtain that in expression (13) the co-
efficients of those i-ary constraints, which are the final stage of each chain
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of second-class constraints, and of those second-class primary constraints
R b
whlch do not generate the secondary constraints, disappear:

7):;',=0 fori=1,.-- n, (20)

As to the condition (19), we rewrite it in the form:

1 1mg1 m m mg, mg, 1
{(I)a’G}= (fa ﬂﬂ 7(I>,17+f; ﬂp'rmy (I)‘rrn')eﬂp'i"{@clv‘llaia'}naia' %0, (21)
a’ﬂ17=17"',F; mﬂzla""Mﬂ; m7=2"",M7-

The last term in (21) vanish for the canonical set of constraints (@, ¥);

therefore, the equality (21) were satisfied if fall Z"’ 7 =0 for m, > 2 (ie.-

the first-class primary constraints were the ideal of quasi-algebra of all
the first—class constraints). This case is considered in paper 11. Here we
consider the general case of a constraint algebra when

1
fa Z"’.,m' #0 for m, >2. (22)

For systems only with first-class constraints, the case (22) was investi-
gated by us earlier [20, 21]. For systems with first- and second-class
constraints, when (22) is the case, one can act in the same way as in
the presence only of first-class constraints, i.e. using arbitrariness that
is inherent in the generalized Hamiltonian formalism by Dirac, we shall

pass to an equivalent set of constraints by the transformation that affects
only first-class constraints: » -

J#0. (23)

It is sufficient to consider a particular case of the transformation (23)
when primary constraints remain unchanged, i.e.

41

¥ =Crrar, et

1 o
Cs 2" =6pa for any m,.
It is not difficult to see that taking account of (3) we obtain

1 &m Mam., m m ]
{2, 25"} = {84, C7"}+ 12 P opmiam

1
ta 8 C R ma,memy 22 (24)

From the efxpression (24) it is clear that if we could choose cy? ',;L' so that
the coefficients of secondary constraints vanish

1 mgm., 1 msym, ~mgmy
{(I)a’Cﬂﬂ-y }+fa 667 Cﬂpé =0, (25)

6

for a new set of constraints @Z"’ we were obtained f; Z"’ ,;n" =0 (for
my > 2) and o ) 5
{20,95°} = fa 5%y (26)

i.e. that is needed for the realization of (21). Thus, for CZ"’ ;"’ we have
derived the system of linear inhomogeneous equations in the first-order
partial derivatives (25). This system can be shown to be fully integrable.
The condition of integrability for systems of the type (25) looks as follow
[25] |

{25:{2a: G577} } = {20 {2, G577 }} =0 (27)
Using eq.(25), properties of the Poisson brackets and making some trans-
formations we rewrite the relation (27) in the form

b ss P} =12 P e - (e gl )

+fy T TG =0, mp,ms,m, > 2. (28)

a T v

Utilizing the Jacobi identity
{20 {20, 25"} + {257 {26, Bo3} + {0, {2, Be}} =0, my 22
and the relation (3) we obtain

{eh sy &7~ fo 0700 T —{%0 S 7T}

o & e TR = {20, 20}, 97, (29)

c § 1 Ja T 7
mg 22, My My Mr > L

Note that every primary constraint of first class contains at least one
momentum variable, therefore, there always exist canonical transforma-
tions transforming the primary constraints into new momentum variables
(see Appendix A). We shall regard such transformation to be carried out,
therefore, the Poisson brackets between primary constraints may be con-
sidered to be strictly zero in the whole phase space. From here, the
expressions in the square brackets in front of the constraints @, on the
left-hand side of the identity (29) being coefficients of the functionally
independent quantities disappear each separately. As the condition (28)
contains the same coefficients of C[',"ﬂ?’, it is satisfied identically, which
proves the system of equations (25) to be fully integrable. Therefore,
there always exists a set of constraints ® equivalent to the initial set

7



for which the condition (26) (and, therefore, (19)) holds valid. We shall
below omit the mark “~”.
Now, using the equality

d 0A
GAB =SB+ (A + {({ABYH) ()

(valid for arbitrary functions A(g, p, t) and B(g,p,t) given in the whole
phase space) and the Jacobi identities for the quantities (¢i, G, H}) and
(pi, G, HY.), we represent equations (16) and (17) as

aG ) I
oG I %
{Pi, 5’{' =+ {Ga HT}} ~ 0) (32)

respectively. By virtue of an arbitrariness of the multipliers u,(t), in
what follows the prime will be omitted. If these equalities were the case
in the whole phase space, it would follow from them that

oG
_gg’tL,t) + {G(q>p’ t)aHT(q,p,t)} = f(t),

where f(t) is an arbitrary function of time. However, since egs.(31) and
(32) are-the case only on the surface £;, we obtain that

aG(g,tp‘—’t) +{G(@,p. 1), Hr(a,p, 1)} = f(t) + J(g,p, 1), (33)

where

J= cﬂ(q7p’ t)@i(qd)) + da,-(q,p, t)‘I’;,-(q’pL
a=1,-'-,F, a;:l,-'-,A,-, i=1,---;n.

However, both f(t) and J(g,p,t) are identity generators on the primary
constraint surface, and can be ignored in subsequent discussions [9]. Note
that equation (33) (with f(t) ignored) is a necessary condition of that G is
the generating function of infinitesimal transformations of local symmetry
(12), and, furthermore, this is sufficient for a quasi-invariance (within a
surface term) of the action functional

S= /t * dt (pi — Hy), (34)

1

8

under these transformations. To see the latter, consider the variation of
action, induced by the transformations (12),

& d, G 9G. oG, |

which, with taking into account the relation

dt ot T agE T gph

can be rewritten as
2 rd OG - 0G .
6S = dt|—(pim— — — +{G,H
5= [ |Gz -6+ 5 +16.1m)] (35)
giving the desired result if eq.(33) is fulfilled.

Now, inserting the required form of the generator G (13) into (33), we
obtain the equality (II.17) which must be satisfied by a proper inspection
of the coefficients €' and 7. Further consideration repeats entirely
the one of paper II resulting in that the second-class constraints do not

contribute to the generator of local-symmetry transformations that is a
linear combination of all the first-class constraints (and only of them)

G = B;n"mﬂ(b;n“é‘(ﬂM"_mﬂ),_ mg = Mg, - - .’Mq- - (36)
with the coefficients

Mo—~m : .
Mmams _(Mg—mg) My—mg) __ d¥emme — M
BIpeellem) () = Zoes(t), es(t) = 5" )

determined from the system of equations
£Ma 4 Ezwg;’nﬂ:a =0, mg=mg—1,-++, My, (37)

with the help of the procedure of reparametrization described in paper II.
The local-symmetry transformations of g and p determined by formulas
(12) are also the quasi-invariance transformations of the action functional
(34). :

The corresponding transformations of local symmetry in the Lagrarnigian
formalism are determined in the following way:

b)) = (), G}, &(t) = 5400 (38)

p=%k

Py
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So, one can state that in the general case of theories with first- and
second-class constraints (without restrictions on the constraint algebra)
the representation of a certain quantity G' as a linear combination of
all the first-class constraints (and orly of them) with the coefficients
determined by the system of equations (37) is the necessary and sufficient
condition for G to be the local-symmetry transformation generator. In
addition, these are the necessary and sufficient conditions for (12) to be
the quasi-invariance transformation of the functional of action in both
the phase and (g, ¢) space.

3 Local-Symmetry Transformations in the Extended
Phase Space

One can see that in the case, when higher (than first order) derivatives of
coordinates enter into the transformation law in the configuration spase
and into the surface term in the action variation, the coefficients B, "
in expression (36) for G depend on the derivatives of ¢ and p. It is clear,
in this case there arises a question about “explicit” canonicity of the ob-
tained transformations outside of the constraints surface. Therefore, it is
clear that in the general case one should consider not only the violation
of the condition (26) (the manner of the deed in this case is worked out
in the previous section) but also that structure of constraints when there
arise higher derivatives of coordinates in the law of local-symmetry trans-
formations. Here we shall show how to construct these transformations
in the latter case and prove the canonicity of gauge transformations in
the extended (by Ostrogradsky) phase space, which has been shown by
us earlier for theories with first-class constraints [22}, to hold true also in
the presence of second-class constraints in a theory.

Let us consider the singular Lagrangian L(g,q), and let the higher
(than first) derivatives of coordinates contribute to the corresponding
law of local-symmetry transformations. Under these transformations we

have

' ) d - .
Ll=L(q7q)+EF(qaq7q7"'a5765"') (39)

“where £(t) are the group parameters. Adding to Lagrangian L(g,¢) the
total time derivative of function which depends also on higher derivatives
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does not change the Lagrangian equations of motion. As it is seen from
(39), the theory with Lagrangian L' must be considered as the one with
higher derivatives. Both Lagrangian and Hamiltonian formulations of
the theories with L and L' are equivalent [27]. The Hamiltonian formu-
lation of the theory with L' is built in the extended (by Ostrogradsky)
phase space. An equivalence of Hamiltonian formulations of the theo-
ries with L and L' means that the Hamiltonian equations of motion of
these both theories are related among themselves by canonical transfor-
mations. Therefore, the Hamiltonian formulation of the theory with the
Lagrangian L must be built in the same extended phase space as it is the
case for L'. Thus, the theory with L will be considered from the very

_beginning as the one with higher derivatives of the same order that they

have in L'.

From the above reasoning it is clear that to require a canonicity of the
local-simmetry transformations has the meaning only in the indicated
extended phase space.

Let us construct the extended phase space using the formalism of the-
ories with higher derivatives [26, 27, 28], We shall determine the coordi-
nates as follows

ds—l R
q1 i =g, qsi:a—{s—:l-qh S:2a"'71{’ 7’=17“"N (40)

where K equals the highest order of derivatives of ¢ and p. The conjugate
momenta defined by the formula [26, 27, 28]

K
d-" 9L
Jp— __1 {—r
P g( ) dt'=" 0gry1
are
p1i = pi, psi=0 for s=2,--. K. (41)
The generalized momenta for s > 2 are extra primary constraints of the

first class.
In the extended phase space the total Hamiltonian is written down as

Hr=Hr(qi 1)+ As i psiy s> 2, (42)

where Hr is of the same form as in the initial phase space (11) and A, ;
are arbitrary functions of time.
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Now the Poisson brackets are determined in the following way

0A OB J0A OB
B .
{A } 3(1;- i apr i apr iaqr i

From (42) we may conclude that there do not appear additional sec-
ondary constraints corresponding to p, ; for s > 2. The set of constraints
in the extended phase space remains the same as in the initial phase
space, obeys the same algebra (1)-(4), and does not depend on the new
coordinates and momenta as also Hy does.

We shall seek a generator G in the extended phase space in the form,
analogous to the one in the initial phase space (13). Then from the
requirements of quasi-invariance of the action

t2
_S_:: ’ dt[priqr—i-li‘"pl{iq'l{i_ET], T‘=1,"',K—-1 (43)
1
and of conservation of the primary constraint surface ¥, under the trans-
formations generated by G, we shall obtain the same relations (37) for
determining €7’ (with the help of the iterative procedure described in
detail in paper II) and the same conclusion about no influence of second-
class constraints on the local symmetries of a system.

Before to implement the above-mentioned iterative procedure that

gives the result (36), we notice that the coefficients B[ * " would de-
pend only on q; ; and p;; and on their derivatives. Now carrying out
the iterative procedure we shall exchange derivatives of g, ; according
to formula (40), and for derivatives of p; ; we shall make the following
replacements:

oL . _
pri = 5q—_z'::h'O(qlk’q2k)7 2,k=1,--~,N,
. Oh Oh .
i = n n= hi ) ’ 3
p1 o0 n(12 + Er nQa {01 692 6,93 1) (44)
Y = Bary—2(Q1 k> G2 ks * QM1 &)-

As a result, we shall obtain the expression for G:
G =B or-c""™) e, p, (45)

12
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mﬂ=mav"',Ma7 3=27"')K3

where B2 (q1 i, *,qM.—1 i; P1 i), being just in the same forms as in
the initial phase space, are written, however, with taking account of the
above-indicated replacements; &, ; are the supplementary group param-
eters in the amount equal to the number of the supplementary primary
constraints of first class p, ;. Note that the obtained generator (45) sat—
isfies the group property

{G1,Gs} = Gs, : (46)

where the transformation Gj (45) is realized by carrying out two succes-
sive transformations G; and Gy (45). Now the local-symmetry transfor-
mations of the coordinates of the initial phase space in the extended one
are of the form

bq k= EE,M"*""’){ql by Bl (@1 iyt Qa1 5P1 5)O0(q1 6yP1 1) },
(47)

My— My
Op1 & = EE; mﬂ){Pl kB (q1 iy e+, OMam1 3 D1 i) (q1 i, 1)}

One can verify that to within quadratic terms in ég;  and ép; ,

{@i & + 64i k,pj n + Op; n} = ‘Sij‘sk"’

i.e. the obtained infinitesimal transformations of local symmetry are
canonical in the extended (by Ostrogradsky) phase space.

The local-symmetry transformations in the configuration space may
be obtained if after calculating the Poisson brackets in the first formula
(47) one takes account of the definitions (40) and of the generalized mo-
menta p; and make use of formula (38) for 6¢. They are the Noether
transformations. (Note that, as it is seen from (47), to reduce calcula-
tions in obtaining these transformations one may use formulas (12) in the
initial phase space provided one applies the following “rule”: derivatives
of ¢ and p are simply put outside the Poisson brackets.) In this case, if
the coefficients B] °* depend explicitly on g, ;, where s > 2, then higher

derivatives of coordinates qgs)(s > 2) are present in the transformation
law in the configuration space. The functions g7, arising in formula
(1), signal to the appearance of that dependence. Moreover, the order

of the highest derivative of coordinates may be established already at
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the beginning, when obtaining the explicit form of gJ**7. To this end,
one ought to consider the systems of relations (1) and (??). One can
see that if any of the coefficients g -1 M” and gM Mo in front of the
constraints of the last stage M, depends on ¢; ; and p1 i, the coefficients
BZ‘“;‘" will depend on ¢, ;(s = 2,---, M, — 1), and the generator G will
contain g, ; (s =2,---,K), as it is seen from (??). Then, taking account
of (40), the order of the highest possible derivative of coordinates in the
law of the Noether transformations in the configuration space is equal to
K = max,(M, — 1) If these coeﬂ"lcients are constants and any of coeffi-

cients gM -2 ﬂM”_l, 9,° -1 M” ! and giw” 24”_1 in front of the constraints of

the antecedent stage ¢?f” 1 depends on ¢ ; and p; ;, then in the Noether

transformations law the order of the highest possible derivative will be
smaller by one: max,(M, —2). And generally, in an arbitrary case, when
any of coefficients in front of the constraints of k-th stage ¢§ in the Dirac
procedure of breeding the constraints depends on q; ; and p; ; and all the
coeflicients in front of the constraints ¢§+i(i =1,---,M, — k) are con-
stants, the order of the highest possible derivative of coordinates in the
Noether transformations law is M, — k. _

The order of the highest derivative of £,(¢) contained in the Noether
transformations law is equal always to M, — 1. Note that the amount
of group parameters €, and €, ; are equal to the number of primary
constraints of first class.

4 Example

We consider the Lagrangian with constraints of first and second class
when the first-class constraints make up a quasi-algebra of the general
form (the restriction (26) is not fulfilled). Examples of that sort for sys-
tems only with first-class constraints are described in our previous works
" [20}-[21] including also the cases when the transformation law in the con-
figuration space contains higher (than the first order) derivatives of co-
ordinates and, therefore, for a canonicity of the local-symmetry transfor-
mations one must extend (by Ostrogradsky) the initial phase space.
So, consider the Lagrangian

1.,

1, 1,
L= §q1 g+ q3 + 2q2 + g3(gs — g5)- (48)

2(g4 + g5)

14
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=

Then passing to the Hamiltonian formalism we obtain the generalized
momenta

=g , = y =g , = 0, =0
»Mm=4q, P2 PR pP3=4q3, P4 Ps
and, thus, two primary constraints
¢$=ps,  G3=ps (49)
and the total Hamiltonian
1 1 1 1
Hr = EP% + 5(‘14 + ¢5)p5 + §P§ - qu — g3(g4 — g5) + 10} + ugy. (50)

From the self-consistency conditions of theory we obtain two secondary

constraints ) 1 _
1= —5p + a5, b5 = ~5P3 — 3,

two tertiary constraints

¢t = —qop2 + p3, b3 = —qapa —

and two quaternary constraints

¢l=—(u+as)ps—B+au—g, 63=-(q+0q5)P;—a} — qu+gs.

There do no longer arise constraints, because the conditions of the time
conservation of constraints ¢} and ¢4 determine one of the Lagrangian
multipliers. Further one can see for oneself that rank|{{¢p=, ¢5"}| =
4; therefore, four constraints are of second class. Now implementing
our procedure of the constraint separation into first and second class,
we obtain the following set of independent constraints: the first-class
constraints

1,

1 ' l
= 51 +ps), Ol =-5p} ®i=-@p, ¥=-(G+a)p -4

and the three-linked chain of second-class constraints

1 _
U] = §(P4 —-ps), VYi=q ¥Ui=p; VUi=q—gs.

One can see that the first-class constraint ®} violates the condition (26),

namely,
{21, @1} = —20. (51)
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Therefore we shall pass to an equivalent set of constraints by the trans-
formation (23):

o™ = Cmm T, (52)
where the matnx C is the solution of the equation (25). Since from the
quantities fa m’m’ in (25) the only non-vanishing one is f} { # = -2, the
matrix

1000
0100

C= 0010}’ (53)
0coO01

where c is the solution of the equation {<I>{, c} —2=0, eg.

c= ‘;2((15 + g6), (54)

can be taken as the particular solution of eq.(25). Thus we obtain
“the desired canonical set of constraints when the condition (26) holds
valid ({®},®["} =0, m; =2,3,4):

3™ =™ (m) =1,2,3), ¥t=-¢.

This provide the fulfilment of the second condition (19) of the conser-
vation of the primary-constraint surface ¥; under the transformations

(12).

Further we seek the generator G in the form (13):
G=nr ¥h 4 eMm o™,  k=1,---,4, m=1,---,4 (55)

Since in eq.(2) the only non-vanishing structure functions are R}t =
h? 3 = h? 2 =1, the system of equations (??) has the form

i+ =0,
n+ni=0, (56)
72+ n} = 0.

Then, taking into account that the first condition (18) of the ¥; conser-
vation under transformations (12) gives 5} = 0, we verify on the basis
of (56) that all 7 = 0, i.e. the second-class constraints of system do not
contribute to the generator G.
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1=0,gll=gll=gll=1and g} =

he system of equations (37) for determining

ASQ11—911_911:
91 i =2(gs+gs) in eq. (1)
1! becomes
E‘{ + 6:11 =‘0,
&3+ 2(qs + gs)et +
€} + 2(qa + g5)e3 +

Denoting €% =¢, we obtain

e} =0, (57)
e} =0.

3

el = ~¢, e =E-2Aqu+g), = —[5 2(q4+g5)é] +2(qa+gs)é- (58).

We see that the quantity G in (55) depends on ¢4 and gs; therefore, for a
canonicity of the desired local-symmetry transformations it is necessary
to extend the phase space according to section 3. It is sufficient to carry

out the following extension: Define the coordinares ¢; (i =1,---,7):
gi = q; (Z=1,,5), g6 = 4da, q1=Gs, (59)
and their conjugate momenta calculated in accordance with (41)
Di = pi (7'=11a5)a ﬁ6=ﬁ7=0 (60)

The generalized momenta pg and p; are extra primary constraints of the
first class." '

In the extended phase space, one should carry out the procedure of
reparametrization of the system of equations (57), although formally, to
obtain the definite form, it is sufficient to express G in the coordinates of
this extended space according to (59),(60) and (44):

€ e . T -
G = [—§+((J4+(J5)E+((J4+(J5+(J6+(J7)6](p4+p5)

-
+ [—5 + (s + qs)E] P3 + Ga(Pag + Gag). (61)
It can be seen that the local-symmetry transformations generated by this
G (61) are already canonical.

In the (g, ¢)-space the local-symmetry transformations established with
the help of formulas (38) have the form

g1 =6g3 =0, &gy=——2 — &+ Q0+ a),

6q5=6q6=—§+(q4+(J5)€+((J4+(J5+(J4+qs) €, 6¢i=— bqi

dt
17



It is easy to verify that under these transformations

_1d

-2

qs . 2
6L = ——<3 ——=2-— & —2(qq + q5)e| + ¢3¢ ¢,
2dt{ (q4+q5)2[ (‘I4 Q5) ] q }

i.e. the action is quasi-invariant.

5 Conclusion

In the framework of the generalized Hamiltonian formalism for dynamical
systems with first- and second-class constraints, we have suggested the.
method of constructing the generator of local-symmetry transformations
for arbitrary degenerate Lagrangians both in the phase and configuration
space. The general case is considered including both the violation of
the condition (26) (i.e. without restrictions on the algebra of first-class
constraints) and the possibility of the presence of higher derivatives of
coordinates in the local-symmetry transformation law; and the arising
problem of canonicity of transformations in the latter case is solved.

The generator of local-symmetry transformations is derived from the
requirement for them to map the solutions of the Hamiltonian equations
of motion into the solutions of the same equations which must be sup-
plemented by the demand on the primary-constraint surface ¥; to be
conserved under these transformations. As it is discussed in paper I, the
condition of the ¥; conservation actually is not an additional restriction
on the properties of the local-symmetry transformation generator that
naturally follows from the definition of the symmetry group of the action
functional.

We have proved in the general case that the Dirac hypothesis [24] that
all first-class constraints generate the local-symmetry transformations
holds true also in the presence of second-class constraints and second-class
constraints do not contribute to the law of these transformations and do
not generate global transformations in lack of first-class constraints.

The generator of local-symmetry transformations is obtained for de-
generate theories of general form, without restrictions on the algebra of
constraints. We have shown that in this case (these are, e.g., Polyakov’s

string [11] and other model Lagrangians [10], [12]-[21]) one can always

pass to an equivalent set of constraints, the algebra of which satisfies the
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condition (26), and, therefore, now the method of constructing the gen-
erator developed for singular theories of special form in paper II can be
applied. In Appendix A, the method of passing to one of the indicated
equivalent sets when all the first-class primary constraints are momentum
variables is given.

The corresponding transformations of local symmetry in the (g,q)-
space are determined with the help of formulae (38).

When deriving the local-symmetry transformation generator the em-
ployment of obtained equation system (37) is important, the solution of
which manifests a mechanism of appearance of higher derivatives of coor-
dinates and group parameters in the Noether transformation law in the
configuration space, the highest possible order of coordinate derivatives
being determined by the structure of the first-class constraint algebra, and
the order of the highest derivative of group parameters in the transfor-
mation law being by unity smaller than the number of stages in deriving
secondary constraints of first class by the Dirac procedure.

We have shown the obtained local-symmetry transformations to be
canonical in the extended (by Ostrogradsky) phase space where the time
derivatives of coordinates (which have emerged in the transformation
law) are taken as complementary coordinates and the conjugate momenta
(defined by the formula of theories with higher derivatives (26, 27, 28))
are the initial momenta plus the extra first-class primary constraints (the
number of the latter equals the number of complementary coordinates).
In addition, the dynamics of a system remains to be fixed in the sector
of the initial phase-space variables.

Obtained generator (45) ((36)) satisfies the group property (46). The
amount of group parameters which determine the rank of quasigroup of
these transformations equals the number of primary constraints of first
class.

So, we can state in the general case of theories with first- and second-
class constraints (without restrictions on the constraint algebra) that the
necessary and sufficient condition for a certain quantity G to be the local-
symmetry transformation generator is the representation of G as a lin-
ear combination of all the first-class constraints (and only of them) of
the equivalent set of the special form (when the first-class primary con-
straints are the ideal of algebra of all the first-class constraints) with the

19



coefficients determined by the system of equations (37). Passing to the
indicated equivalent set of constraints is always possible, and the method
is presented in this work. In addition, these are the necessary and suf-
ficient conditions for (12) to be the quasi-invariance transformation of
the functional of action in both the phase and (g,4¢) space. It is thereby
shown in the general case that the functional of action and the corre-
sponding Hamiltonian equations of motion are invariant under the same
quasigroup of local-symmetry transformations.

As it is known, gauge-invariant theories belong to the class of degener-
ate theories. In this paper, we have shown that the degeneracy of theories
with the first- and second-class constraints in the general case is due to
their quasi-invariance under local-symmetry transformations.
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Appendix A

Here we shall describe the way of passing to, at least, one separated set
of equivalent constraints ¢™= when all the primary constraints of the first
class are momentum variables. We shall consider that the initial set of
first- and second-class constraints are canonical, i.e. the complete separa-
tion of constraints into first- and second-class ones is already carried out.
Then, the formulated problem can be solved by the iteration procedure
provided that we take into account the first-class primary constraints to
make a subalgebra of quasi-algebra of all the first-class constraints (7):

(o}, @5} =fr 4@, af=1--,F
This relation follows from the stationarity condition for ®; and from
from the properties of the canonical set of constraints. The iteration
procedure can be first developed for first-class constraints, and second-

class constraints can be taken into account at last stage. There always
exist canonical transformations of the form [27, 29]

Pl = @}(q,p), {thl} =1, {QU’P‘T} = 6o,
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{PI’PT} = {Q_hpr} = {PI,QT} = {Q17QT} = 0’ (62)
o,7=2,---,N.

(The bar over a letter means the first stage of the iteration procedure.)
All the remaining primary constraints of first class assume the form

PM@,P) = 2.(a(Q.P),p(@Q. P)|, _,

P=0

a=2,---,F

In view of the transformation being canonical, we can write

— a(pl
{Pga}=—25" = fi a 23

5Q: %722
with ¢! having the structure [27]
A=Eilg,  detE| £ 63)
and obeying the conditions
6(,5}, ¢l

—_—:——_—7=0, 722.

As all the constraints 4,5}r do not depend upon Q; and P;, we perform an
ana.logolls p_rocedure for the constraint @} in the 2N — 2-dimensional sub-
space (Qq, Py)(0 = 2,--+,N), i.e. without affecting Q, and P,. Then the
constraints L(a = 3,-- +, F') arising in a formula analogous to formula
(63) are independent of @1, P, and Q,, P;. Next, making this procedure
step by step (¥ — 2) times, we finally obtain the first-class primary con-
straints to be momenta, and therefore they commute with each other
(final momenta and coordinates will be denoted by @, and F,, respec-
tively, a = 1,---, F).
All secondary constraints of first class will then assume the form

#7(Q, P) = ¢ (4(@, P),p(Q, P))

P.=0’
As the transformations are canonical, we can write

mp

| m a(pﬂ 1 m
{Pa,wﬂ”}=—TQ0=f,, gy PRy

21
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with (™ having the structure [27]

MmaMmg ~M,
o = AR

o 8 P s detA - #0, (64)
and obeying the conditions
oz _ o
0Qg B 0P

And, finally, all second-class. constraints will be expressed as

QP = (4@ PLp@P)|, , a=1-F

=0, af=1,-,F me>2

z=1,---,n, a,'=1,"',Ai, ma.-zla"'aMai

with all (previously-established in paper I) features of the canonical set
of constraints remaining valid.

The set of constraints thus constructed (primary constraints being
momenta and secondary @7*) satisfies the condition (26) with vanishing
right-hand side, i.e. we have derived the searched set of constraints. Note
that (A‘l);"“’;" in (64) is a solution to the system of equations (25).
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