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1 Introduction 

In our previous paper [1] (below cited as paper II) we have considered 
constrained special-form theories with first- and second-class constraints 
( when the first-class primary constraints are the ideal of a quasi-algebra of 
all the first-class constraints) and have suggested the method of construct
ing the generator of local-symmetry transformations in both the phase 
and configuration space. It was proved that second-class constraints do 
not contribute to the transformation law of the local symmetry which 
entirely is stipulated by all the first-class constraints unlike the asser
tions appeared recently in the literature [2]-[4]. It was thereby shown · 
that degeneracy of special-form theories with the first- and se_cond-class 
constraints is due to their quasi-invariance under local-symmetry trans
formations. One must say the mentioned restriction on an algebra of 
constraints is fulfilled in most of the physically interesting theories, e.g., 
in electrodynamics, in the Yang - Mills theories, in the Chern - Simons 
theory, etc., and it has been used by us in previous works [5] in the 
case of dynamical systems only .with first-class constraints and also by 
other authors at obtaining gauge transformations on the basis of differ
ent approaches [6]-[8], [9, 10]. However, in the existing literature there 
are examples of Lagrangians 1Vhere this condition on constraints does not 
hold, e.g., Polyakov's string [11] and other model Lagrangians [10], [12]
[21]. Then it was natural to ask: Can the local-symmetry transformations 
be obtained in these theories? What is a role of second-class constraints 
under these transformations and, generally, what is the nature of the La
grangian degeneracy in this case? For example, in ref.[19] it is stated 
that in the mentioned example the gauge transformation generators do 
not exist for the Hamiltonian formalism though for the Lagrangian one 
the gauge transformations may be constructed. In refs.[20, 21] in the case 
of theories only with first-class constraints we have shown that one can 
always pass to equivalent sets of constraints, for which the indicated con
dition holds valid, and, therefore, gauge transformations do exist both in 
the Hamiltonian and Lagrangian formalism. Therefore, the degenerac·y 
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of theories with the first-class constraints is due to their invariance under 
gauge transformations without restrictions on the algebra of constraints. 
. In the present paper it will be shown that, as in the presence only 

of first-class constraints, in the general case of systems with first- and 
second-class constraints, when the mentioned condition on constraints is 
not fulfilled, there always exist equivalent sets of constraints, for which 
the indicated condition holds valid. Therefore, the conclusions made in 
the former case about the existence of local-symmetry transformations in 
both the Hamiltonian and Lagrangian formalism and about the nature 
of degeneracy of theories hold valid also in the general case. Also the 
conclusion of paper II about the no influence of second-class constraints· 
on local-symmetry transformations and. the conclusion of ref.[22] about 
the mechanism of appearance of higher derivatives of coordinates and of 
group parameters in these transformations are valid in the general case. 

One can see that in the case, when higher ( than first order) derivatives 
of coordinates enter into the Noether transformation law in the configura
tion space, the generator of local-symmetry transformations in the phase· 
space depends on derivatives of coordinates and momenta. Therefore, the 
Poisson brackets are na't determined in this case, and there arises a ques
tion about the canonicity of the obtained transformations. Here we shall 
show that the difficulty with the Poisson brackets is surmounted through 
the extension by Ostrogradsky of phase space and the proof of canonicity 
of local-symmetry transformations in this phase space, which had been . 
furnished by us earlier for theories only with first-class constraints [22], 
hold true also in the presence of second-class constraints in theory. 

This paper is organized as follows. In section 2, for the general case 
of systems with first- and second-class constraints (without restriction 
on the algebra of first-class constraints) we derive the local-symmetry 
transformations from the requirement for them to map the solutions of 
the Hamiltonian equations of motion into the solutions of the same equa
tions. The derivation of a generator from this requirement (unlike the 
one from quasi-invariance of the action functional in paper II) is made to 
establish a ratio of the groups of local-symmetry transformations under 
which the equations of motion and the action functional are invariant ( as 
it is known, generally, the action functional is invariant under a more slen
der group of symmetry transformations than the corresponding equations 
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of motion do). As in paper II, these derivations are based substantially 
on results of our previous paper [23] (paper I) on the separation of con
straints into the first- and second-class ones and on properties of the 
canonical set of constraints. In section 3, we consider the local-symmetry 
transformations in the extended (by_ Ostrogradsky) phase space. In the 
4th section the method is illustrated by an example. In Appendix A, we 
describe the way of passing to an equivalent constraint set when all the 
primary constraints of the first class are momentum variables. 

2 Local-Symmetry Tr,ansformations in General Case 
of Systems with First- and Second-Class Constraints 

As in the special case (paper II; below we shall refer to formulas of papers 
I and II as (I.···) and (II.···)), we shall consider a dynamical system 
with the canonical set ( <P: 0

, w::>) of first- and second-class constraints, 
respectively (a = 1, · · ·, F, ma = 1, · · ·, M 0 ; a; = 1, ···,A;, ma; = 
1, • • • , Ma;, i = 1, · · · , n), properties of which are expressed by the Poisson 
brackets among them and the Hamiltonian by the formulas (II.9)-(II.12): 

{<Pma H} = mam/J <Pmp 
°' ' g°' /3 /3 ' 

m13=l,··•,m0 +l, 
n 

{wm•; H} = _ma;ma <Pma + ~ hma;mbk \limb, 
a, , ga, °' a L...,; a; b; b; , mbn =ma;+ 1, 

k=l 

{<Pma <Pmp} = ;mampm-, <Pm-, 
°' ' /3 Jo, /3 "f "f ' 

n 

{
wm•; \limb,}= ?'1•;mb,m-y <P'n-, ~ kma;mb.mc, \lime,+ Dma;rnb. 

a, , b1 J a; b1 "f "f + L...,; a; bk c, ct a; bk 
l=l 

(1) 

(2) 

(3) 

(4) 

with general properties of the structure functions given by the formulas 

(II.13)-(II.16) 

{ 

_ma;ma _ 
ga; a - 0, 

hmaifflbk -
a; h -0, 

mam/3 _ 0 
g°' /3 - ' if m 0 + 2 ~mp, 

if m 0 ~ ma; , 

if ma, + 2 ~ mb, or if ai = bk, ma; = }vfa;, 

mb. ~ 1\f a;, 

1 1 mpm-, O " 
Ja /3 r = 1or mr ~ 2, 
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(5) 

(6) 

(7) 



FM.;-/ l+l = (-1)' Fl M1; 
ai bi ai bi ' l = 0, 1, ···,Ma; - 1, 

'k 
F1i b; = 0, if j + k # Ma; + 1, 

(8) 

Fma;mbk = 0 
a; ht ' if a;, bk refer to different chains ( or doubled 

h . ) f d l . (Dm •. m1k E Fm •. m1k) c a1ns o secon -c ass constraints a; ' bk = a; 'bk 

and with 
n 

H =He+ L(K1 k)~\k {w!k, Hc}wt (9) 
k=l 

being a first-class function [24]; He is the canonical Hamiltonian. 
Passing to this set from the initial one is always possible in an arbitrary 
case by the method developed in paper I. Here we shall consider the 
general case (when first-class primary constraints are not the ideal of 
quasi-algebra of all the first-class constraints, i.e. the restriction (II.25) 
is not fulfilled) and derive local-symmetry transformations. 

A group of phase-space coordinate transformations that maps each 
solution of the Hamiltonian equations of motion into the solution of the 
same equations will be called the symmetry transformation. 

Consider the Hamiltonian equations of motion in the following form: 

{ 

q; ~ {q;,Hr}, p; ~ {p;,Hr}, i = 1, · · · ,N, 
l E1 ( ) W ak ~ 0, Uk= 1, · · ·, Ak k = 1, · · ·, n , 
l E1 <I>0 ~o, a=l,···,F, 

(10) 

where 
Hr= H + u 0 <I>~, (11) 

u 0 are undetermined Lagrange multipliers; the symbol ~ means weak 
equality on the primary-constraints surface E1. 

Consider also the infinitesimal transformations of the phase-space co
ordinates 

{
. q: = Qi+ c5qi, 
P: = Pi + c5p;, 

c5q; = {q;, G}, 
c5p; = {p;' G} 

with the generator G sought in the form (II.4) 

G = cmaq,ma + T/m.i w"'.•; a a a, a, • 
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(12) 

(13) 

, l 
To recognize a role of the second-class constraints in the local-symmetry 
transformations in this general case, we consider them on the same basis 

as the first-class constraints. 
Like in refs.[8, 9, 19, 21], we will require the transformed quantities 

q:( t) and p~( t) defined by (12) to be solutions of the Hamiltonian equations 
of motion (10) provided that the initial q;(t) and Pi(t) do this, i.e. 

•/ ~ 8H~(, ') 
Q; ~ a q ,P ' 

Pi 

., E1 8H~( I ') Pi ~--a q,p, 
qi 

i = 1,··•,N, 

w~k(q',p') fuo, ak=l,···,Ak(k=l,··•,n), 

<I>~(q' ,p') ~ 0, a= 1, ... , F, 

(14) 

where 
H; =Hr+ 8u0 (t)<I>~(q,p) = H + u~(t)<I>~(q,p). (15) 

Replacements in (15) of Hr by H and of u0 (t) by u~(t) are stipulated 
by that, generally speaking, different solutions that should be related 
with each other through the local-symmetry transformations correspond 
to different choices of the functions ua(t) (the transformed quantities 
are denoted by the same letters with the prime). In equations (14) it 
is taken into consideration that the transformations (12) must conserve 
the primary-constraints surface E1 (see the argument after formul~ (6) in 

paper II). 
Equations (14) can be rewritten with taking account of (1?) and (10) 

in the following form: 

:t{q;,G} fu {{q;,H;},G}, 

:t{p;,G} ~ {{pi,H~},G}, i=l,··•,N, 

{ 
1 } E1 wak,G ~o, ak=l,···,Ak(k=l,···,n), 

{ 
1 } E1 <I>
0
,G ~o, a=l,···,F. 

(16) 

(17) 

(18) 

(19) 

We shall analyze consequences of the obtained equation system start
ing from the conditions of the primary-constraints surface conservation 
(18) and (19). As in the special case of paper II (the consideration is 
completely identical), from (18) we obtain that in expression (13) the co
efficients of those.i-ary constraints, which are the final stage of each chain 
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of second-class constraints, and of those second-class primary constraints, 
which do not generate the secondary constraints, disappear: 

,,,i = 0 for i = 1 • • · n 
·,ai ' ' ' (20) 

As to the condition (19), we rewrite it in the form: 

{<I>l G} = (fl mp 1 <I>l +fl mp my <I>my)cmp + {<I>l wm•; }nm•; ~ 0 (2l) 0
, 0 /3 "f "Y O /3 "Y -y /3 0 , a, • ,a, , 

a, /3, 1 = 1, · · •, F; mp = 1, •·•,Mp; mr = 2, •••,Mr. 

The last term in (21) vanish for the canonical set of constraints (<I>, '11); 
therefore, the equality (21) were satisfied if f~ PP ,,my = 0 for mr 2 2 (i.e. 
the first-class primary constraints were the ideal of quasi-algebra of all 
the first-class constraints). This case is considered in paper II. Here we 
consider the general case of a constraint algebra when 

f~ pfi "fmy # 0 for m-y ~ 2. (22) 

For systems only with first-class constraints, the case (22) was investi
gated by us earlier [20, 21]. For systems with first- and second-class 
constraints, when (22) is the case, one can act in the same way as in 
the presence only of first-class constraints, i.e. using arbitrariness that 
is inherent in the generalized Hamiltonian formalism by Dirac, we shall 
pass to an equivalent set of constraints by the transformation that affects 
only first-class constraints: 

~m{i = cmpma<I>ma 
/3 /Jo:°'' det llc;{i;a IIE =fa 0. (23) 

It is sufficient to consider a particular case of the transformation (23) 
when primary constraints remain unchanged, i.e. 

cJ :1" = 6130: for any mo. 

It is not difficult to see that taking account of (3) we obtain 

{<l>l ~mfi} = [{<I>l Cmfim-,}+fl m5myCmpm5]<I>my 
°'' f3 °'' f3 -y . o: 6 r /3 6 r 

+ J; ;'5 /c;p:5<I>1, m13, m6, m-y 2 2. (24) 

From the expression (24) it is clear that if we could choose C;;'fi';7 so that 
the coefficients of secondary constraints vanish 

{<l>l Cm/Jm-,} + fl m5m-,Cmilm5 = Q 
°'' /3 r o: 6 r /3 6 , 
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(25) 

_., 

for a new set of constraints ~? we were obtained J~ ;ii rm., = 0 (for 
mr 2 2) and 

{ ~1 ~mil}= f-1 m5 1 ~1 
°'' /3 0: /3 "Y "Y' 

(26) 

i.e. that is needed for the realization of (21). Thus, for c;/J;-, we have 
derived the system of linear inhomogeneous equations in the first-order 
partial derivatives (25). This system can be shown to be fully integrable. 
The condition of integrability for systems of the type (25) looks as follows 
[25] 

{ <I>~, { <I>~, c;/J;..,}} - { <I>~, { <I>~, c;{i;..,}} = o. (27) 

Using eq.(25), properties of the Poisson brackets and making some trans
formations we rewrite the relation (27) in the form 

[{ <I>l fl m5rn-y} _ fl m5mr J,1 mrm-, _ {<I>l fl m5m-,} 
Ql U 6 '"f 0: 6 T U T '"f Ul 0: 6 '"f 

+fl m5mrfl mrm-,] Cm/Jm5 0 > 2 
u 6 r a r -y f3 6 = , mp, m6, mr _ • (28) 

Utilizing the Jacobi identity 

{ <I>~, { <I>~, <I>r;J/J}} + { <I>p/J' { <I>~, <I>~}} + {<I>~, { <I>;/J' <I>~}} = 0, mp~ 2 

and the relation (3) we obtain 

[{ <I>l fl m5m-,} _ fl m 5mrfl mrm-, _ {<I>l fl m5m-,} · 
Ql U 6 '"f 0: 0 T U T '"f Ul 0: 0 "f 

+fl m5mrJ,l mrm-,] <I>m-, = { {<I>l <I>l} <I>m5} (29) 
U O T 0: T "f '"f O:l U l O l 

mp~ 2, m-y,mo,mr ~ 1. 

Note that every primary constraint of first class contains at least one 
momentum variable, therefore, there always exist canonical transforma
tions transforming the primary constraints into new momentum variables 
(see Appendix A). We shall regard such transformation to be carried out, 
therefore, the Poisson brackets between primary constraints may be con
sidered to- be strictly zero in the whole phase space. From here, the 
expressions in the square brackets 1n front of the constraints <I>;n, on the 
left-hand side of the identity (29) being coefficients of the functionally 
independent quantities disappear each separately. As the condition (28) 
contains the same coefficients of C;;'l'~5

, it is satisfied identically, which 
proves the system of equations (25) to be fully integrable. Therefore, 
there always exists a set of constraints ~: 0 equivalent to the initial set 
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for which the condition (26) (and, therefore, (19)) holds valid. We shall 
below omit the mark " - ". 

Now, using the equality 

d BA 8B 
dt {A, B} = {-at,B} + {A, at}+ { { A,B},Hr} (30) 

(valid for arbitrary functions A(q,p, t) and B(q,p, t) given in the whole 
phase space) and the Jacobi identities for the quantities (qi, G, H}) and 
(Pi, G, H}), we represent equations (16) and (17) as 

{ BG {. I}} Ei qi, at+ G, Hr ~ 0, (31) 

. { 8G { I}} Ei Pi, at+ G, Hr ~ 0, (32) 

respectively. By virtue of an arbitrariness of the multipliers ua(t), in 
what follows the prime will be omitted. If these equalities were the case 
in the whole phase space, it would follow from them that 

8G(q,p,t) { ( ) ( )} () Bt + G q,p,t ,Hr q,p,t =ft, 

where f(t) is an arbitrary function of time. However, since eqs.(31) and 
(32) are-the case only on the surface E1, we obtain that 

BG(:~P, t) + { G(q,p, t), Hr(q,p, t)} = f(t) + J(q,p, t), (33) 

where 

J = ca(q,p, t)'P~(q,p) + dai(q,p, t)w!/q,p), 

a= 1, · · ·, F, ai = l, ···,Ai, i = 1, · · ·, n. 

However, both f(t) and J(q,p, t) are identity generators on the primary 
constraint surface, and can be ignored in subsequent discussions [9]. Note 
that equation (33) (with f(t) ignored) is a necessary condition of that G is 
the generating function of infinitesimal transformations of local symmetry 
(12), and, furthermore, this is sufficient for a quasi-invariance (within a 
surface term) of the action functional 

1
t2 

S = dt (p<j - Hr), 
ti 

(34) 
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..-

under these transformations. To see the latter, consider the variation of 
action, induced by the transformations (12), 

1t2 d 8G 8G . 8G . 
8S = dt [..c.-(pi- - -qi - -pi+ { G, Hr}] 

ti dt Bpi 8qi 8pi 

which, with taking into account the relation 

dG 8G 8G. BG. 
Tt = Ft+ aqi qi+ apti, 

can be rewritten as 

1t2 d 8G . 8G ] 
8S = dt [d/Pi~ - G) +at+ {G, Hr} 

ti p, 
(35) 

giving the desired result if eq.(33) is fulfilled. 
Now, inserting the required form of the generator G (13) into (33), we 

obtain the equality (11.17) which must be satisfied by a proper inspection 
of the coefficients c:;'" and ,,,i;;:•;. Further consideration repeats entirely 
the one of paper II resulting in that the second-class constraints do not 
contribute to the generator of local-symmetry transformations that is a 
linear combination of all the first-class constraints (and only of them) 

G _ Bm,.mp ,1..m,. (M,.-mp) 
- a p 'l'a Ep , mp = ma, · · ·, Ma. . (36) 

with the coefficients 

Bmam(J (M,.-mp) 
a p €p ( 

/M,.-mp) = dM,.-mp 
p - dtM,.-mp cp( t), cp(t) = cf/J ) 

determined from the system of equations 

im,. + mp mpma _ O a Ep 9p a - , mp= ma -1, ···,Ma, (37) 

with the help of the procedure of reparametrization described in paper II. 
The local-symmetry transformations of q and p determined by formulas 
(12) are also the quasi-invariance transformations of the action functional 
(34). 

The corresponding transformations of local symmetry in the Lagrangian 
formalism are determined in the following way: 

8qi(t) = {qi(t),G}I , 
p=* 

8q(t) = :/q(t). (38) 
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So, one can state that in the general case of theories with first- and 
second-class constraints (without restrictions on the constraint algebra) 
the representation of a certain quantity G as a linear combination of 
all the first-class constraints (and only of them) with the coefficients 
determined by the system of equations (37) is the necessary and sufficient 
condition for G to be the local-symmetry transformation generator. In 
addition, these are the necessary and sufficient conditions for (12) to be 
the quasi-invariance transformation of the functional of action in both 

I 

the phase and (q, q) space. 

3 Local-Symmetry Transformations in the Extended 
Phase Space 

One can see that in the case, when higher ( than first order) derivatives of 
coordinates enter into the transformation law in the configuration spase 
and into the surface term in the action variation, the coefficients B',;0 ;/J 
in expression (36) for G depend on the derivatives of q and p. It is clear, 
in this case there arises a question about "explicit" canonicity of the ob
tained transformations outside of the constraints surface. Therefore, it is 
clear that in the general case one should consider not only the violation 
of the condition (26) (the manner of the deed in this case is w9rked out 
in the previous section) but also that structure of constraints when there 
arise higher derivatives of coordinates in the law of local-symmetry trans
formations. Here we shall show how to construct these transformations 
in the l~tter case and prove the canonicity of gauge transformations in 
the extended (by Ostrogradsky) phase space, which has been shown by 
us earlier for theories with first-class constraints [22], to hold true also in 
the presence of second-class constraints in a theory~ 

Let us consider the singular Lagrangian L(q, q), and let the higher 
( than first) derivatives of coordinates contribute to the corresponding 
law of local-symmetry transformations. Under these transformations we 
have 

I ") d F( . .. . ) L =L(q,q + dt. q,q,q,···,E,E,··· (39) 

where c(t) arc the group parameters. Adding to Lagrangian L(q, <j) the 
total time derivative of function which depends also on higher derivatives 
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does not change the Lagrangian equations of motion. As it is seen from 
(39), the theory with Lagrangian L' must be considered as the one with 
higher derivatives. Both Lagrangian and Hamiltonian formulations of 
the theories with L and L' are equivalent [27]. The Hamiltonian formu
lation of the theory with L' is built _in the extended (by Ostrogradsky) 
phase space. An equivalence of Hamiltonian formulations of the theo
ries with L and L' means that the Hamiltonian equations of motion of 
these both theories are related among themselves by canonical transfor
mations. Therefore, the Hamiltonian formulation of the theory with the 
Lagrangian L must be built in the same extended phase space as it is the 
case for L'. Thus, the theory with L will be considered from the very 
beginning as the one with.higher derivatives of the same order that they 
have in L'. 

From the above reasoning it is clear that to require a canonicity of the 
local-simmetry transformations has the meaning only in the indicated 
extended phase space. 

Let us construct the extended phase space using the formalism of the
ories with higher derivatives [26, 27, 28), We shall determine the coordi
nates as follows 

ds-1 
q1;=q;, qs;=dt

8
_ 1 q;, s=2,···,I<, i=l,··•,N (40) 

where I< equals the highest order of derivatives of q and p. The conjugate 
momenta defined by the formula [26, 27, 28) 

I( dl-r oL 
Pr j = 2)-l)l-rdtl-r-f}--. 

l=r qr+l 1 

are 

Pl i = Pi, Ps ; = 0 for s = 2, • • •, K. ( 41) 

The generalized momenta for s ~ 2 are extra primary constraints of the 
first class. 

In the extended phase space the total Hamiltonian is written down as 

Hr= Hr(q1 ;,PI ;) + >.s i Ps ;, s ~ 2, (42) 

where Hr is of the same form as in the initial phase space (11) and >.,. ; 
are arbitrary functions of time. 
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Now the Poisson brackets are determined in the following way 

{ A, B} = 8A aB _ aA aB . 
8qr j 8pr j 8pr j 8qr j 

From ( 42) we may conclude that there do not appear additional sec
ondary constraints corresponding to Ps i for s 2'.: 2. The set of constraints 
in the extended phase space remains the same as in the initial phase 
space, obeys the same algebra (1)-(4), and does not depend on the new 
coordinates and momenta as also Hr does. 

We shall seek a generator Gin the extended phase space in the form, 
analogous to the one in the initial phase space (13). Then from the 
requirements of quasi~invariance of the action 

1
t2 

S = dt[Pr i qr+l i +PK i <iK ;- Hr], 
t1 

r = l,•··,K-1 ( 43) 

and of conservation of the primary constraint surface :E1 under the trans
formations generated by G, we shall obtain the same relations (37) for 
determining c;;'" (with the help of the iterative procedure described in 
detail in paper II) and the same conclusion about no influence of second
class constraints on the local symmetries of a system. 

Before to implement the above-mentioned iterative procedure that 
gives the result (36), we notice that the coefficients B';";P would de
pend only on q1 i and Pl i and on their derivatives. Now, carrying out 
the iterative procedure we shall exchange derivatives of q1 i according 
to formula ( 40), and for derivatives of Pl i we shall make the following 
replacements: 

Pl i 
8L . 

- -
8 

= hii(q1 k, q2 k), i, k = 1, ... , N, 
q2 i 

Pl i 
8hb 8hb ; = -a q2 n + -a q3 n = h1(q1 k,q2 k,q3 k), 
ql n q2 n 

\ 

(M0 -2) _ hi ( ) 
P1 i - Mo-2 q1 k, q2 k,. "., qMo-1 k · 

As a result, we shall obtain the expression for G: 

G _ Bm"mp..T-..mo (Mo-mp)+ . . 
- 0 /3 '±'er Ep E:s iPs" 
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(44) 

(45) 

i' 

j 
\ 
< 

11 
: I{ 

mp = m 0 , • • ·, M0 , s = 2, · · ·, K, 

where B';0 ;P(q1 ;,···,qM
0
-1 ;;p1 ;), being just in the same forms as in 

the initial phase space, are written, however, with taking account of the 
above-indicated replacements; Es i are the supplementary group param
eters in the amount equal to the number of the supplementary primary 
constraints of first class Ps ;. Note that the obtained generator ( 45) sat
isfies the group property 

{G1,G2} = G3, (46) 

where the transformation G3 ( 45) is realized by carrying ~mt two succes
sive transformations G1 and G2 ( 45). Now the local-symmetry transfor
mations of the coordinates ·of the initial phase space in the extended one 
are of the form 

{ 

O _ (Mo-mp){ Bmomll( . ),1-.m ( )} . q1 k - Ep ql k, 0 /3 qi;,· ··,qMo-1 i,Pl i 'f'cr 0 ql i,Pl i , 

(47) 
O _ (Mo-mp){ Bmomp( . ),1-.m ( )} Pl k - Ep Pl k, 0 /3 q1 i, · · ·, qMo-1 i,Pl i '+'er" ql i,Pl i · 

One can verify that to within quadratic terms in 8q; k and Opj. n 

{q; k + Oq; k,Pj n + Opj n} = O;jOkn, 

i.e. the obtained infinitesimal transformations of local symmetry are 
canonical in the extended (by Ostrogradsky) phase space . 

The local-symmetry transformations in the configuration space may 
be obtained if after calculating the Poisson brackets in the first formula 
(47) one takes account of the definitions (40) and of the generalized mo
menta p; and make use of formula (38) for oq. They are the Noether 
transformations. (Note that, as it is seen from ( 4 7), to reduce calcula
tions in obtaining these transformations one may use formulas (12) in the 
initial phase space provided one applies the following "rule": derivatives 
of q and p are simply put outside the Poisson brackets.) In this case, if 
the coefficients B';";/J depend explicitly on qs ;, wheres 2'.: 2, then higher 

derivatives of coordinates q}8
\ s 2'.: 2) are present in the transformation 

law in the configuration space. The functions g:~r;.iT, arising in formula 
(1), signal to the appearance of that dependence. Moreover, the order 
~f the highest derivative of coordinates may be established already at 
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the beginning, when obtaining the explicit form of y;;'ar_:.'•. To this end, 
one ought to consider the systems of relations (1) and (??). One can 
see that if any of the coefficients l;!a-l ta and l;!a fa in front of the 
constraints of the last stage M 0 depends on q1 i and Pl i, the coefficients 
B'[;a;/J will depend on q8 i( s = 2, · · ·, M 0 - 1 ), and the generator G will 
contain q8 i (s = 2, · · · ,K), as it is seen from(??). Then, taking account 
of ( 40), the order of the highest possible derivative of coordinates in the 
law of the Noether transformations in the configuration space is equal to 
K = max0 (M0 - 1). If these coefficients are constants and any of coeffi-
. t M -2 M -1 M -1 M -1 d M M -1 · f t f th · f c1en S Ya a /3 a . , Ya a /3 a an Ya a /3 a Ill ron O e constraints 0 

the antecedent stage ¢fa-I depends on q1 i and Pl i, then in the Noether · 
transformations law the order of the highest possible derivative will be 
smaller by one: maXo_(M0 - 2). And generally, in an arbitrary case, when 
any of coefficients in front of the constraints of k-th stage </>i in the Dirac 
procedure of breeding the constraints depends on q1 i and Pl i and all the 
coefficients in front of the constraints ¢~+i( i = 1, • • •, M0 - k) are c~n
stants, the order of the highest possible derivative of coordinates in the 
Noether transformations la:w is M 0 - k. 

The order of the highest derivative of c0 (t) contained in the Noether 
transformations law is equal always to M 0 - 1. Note that the amount 
of group parameters Ea and Es i are equal to the number of primary 
constraints of first class. 

4 Example 

We consider the Lagrangian with constraints of first and second class 
when the first-class constraints make up a quasi-algebra of the general 
form (the restric_tion (26) is not fulfilled). Examples of that sort for sys
tems only with first-class constraints are described in our previous works 

· [20]-[21] including also the cases when the transformation law in the con
figuration space contains higher (than the first order) derivatives of co
ordinates and, therefore, for a canonicity of the local-symmetry transfor
mations one must extend (by Ostrogradsky) the initial phase space. 

So, consider the Lagrangian 

L l .2 1 .2 1 .2 1 2 ( ) = 2ql + 2(q4 + qs) q2 + 2q3 + 2 q2 + q3 q4 - q5 . (48) 
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Then passing to the Hamiltonian formalism we obtain the generalized 
momenta 

Pl = qi, q2 • 0 0 P2 = + , p3 = q3, P4 = , P5 = 
q4 q5 

and, thus, two primary constraints 

</>~ = p4, 

and the total Hamiltonian 

<t>i = p5 (49) 

12 1 2 12 12 1 1 
Hr= 

2
P1 + 

2
(q4 + q5)P2 + 

2
P3 -

2
q2 - q3(q4 - q5) + u1</>1 + u2</>2- (50) 

From the self-consistency conditions of theory we obtain two secondary 
constraints 

2 1 2 
<P1 = - 2P2 + q3, 

two tertiary constraints 

</>f = -q2p2 + p3, 

and two quaternary constraints 

• 2 1 2 . 
<P2 = -

2
P2 - q3, 

</>~ = -q2p2 - p3 

<Pi= -(q4 + q5)p~ - q~ + q4 - q5, </>~ = -(q4 + q5)p~ - q~ - q4 + q5. 

There do no longer arise constraints, because the conditions of the time 
conservation of constraints <Pi and </>~ determine one of the Lagrangian 
multipliers. Further one can see for oneself that rank II{ </>~'a, <1>;/J} II = 
4; therefore, four constraints are of second class. Now implementing 
our procedure of the constraint separation into first and second class, 
we obtain the following set of independent constraints: the first-class 
constraints 

<I>~ = ~(p4 + p5),_ 
1 2 

,T,2 - --pc,, 
'l.'1 - 2 ~ <I>f = -q2p2, <I>1 = -(q4 + q5)p~ - q~ 

and the three-linked chain of second-class constraints 

1 1( ) 2 ~3 '1i1 = 2 p4 - p5 ' '1i1 = q3, '1'1 = p3, wf = q4 - q5. 

One can see that the first-class constraint <I>1 violates the condition (26), 
namely, 

{ <liL <1>1} = -2<1>r ( 51) 

15 



Therefore we shall pass to an equivalent set of constraints by the trans
formation {23): 

<I>i"' = cm1m~<l>~~, (52) 

where the matrix C is the solution of the equation {25). Since from the 
quantities f~ : 1

~., in {25) the only non-vanishing one is ff { f = -2, the 
matrix 

( 

1 0 0 

c = 0 1 0 
0 0 1 
0 C 0 ~), 

where c is the solution of the equation { <I>i, c} - 2 = 0, e.g. 

C = -2(q5 + q5), 

(53) 

(54) 

can be taken as the particular solution of eq.(25). Thus we obtain 
the desired canonical set of constraints when the condition (26) holds 
valid { { <I>L <I>i"1

} = 0, m1 = 2, 3, 4): 

~m1 
. m' I ~ 4 2 cpl I = cpl I (ml = 1, 2, 3), cpl = -q2• 

This provide the fulfilment of the second condition (19) of the conser
vation of the primary-constraint surface E1 under the transformations 
(12). 

Further we seek the generator Gin the form (13): 

G - ,i1 wk1 + cml <f>m1 
- '/l 1 cl 1 , k1 = 1, · · ·, 4, m1 = 1, · · ·, 4. (55) 

Since in eq.(2) the only non-vanishing structure functions are hf 1 = 
hr f = hf I= 1, the system of equations (??) has the form 

{ 

•4 3 0 T/1 + T/1 = , 
· ·3 2 

T/1 + T/1 = 0, 
·2 1 0 

T/1 + T/1 = · 
(56) 

Then, taking into account that the first condition (18) of the E1 conser
vation under transformations (12) gives r,f = 0, we verify on the basis 
of (56) that all r,f1 = 0, i.e. the second-class constraints of system do not 
contribute to the generator G. 
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As g4 4 _ g3 3 _ g4 2 _ g2 2 _ 0 g3 4 _ g2 3 _ gl 2 _ 1 and g4 3 _ 
11- 11- 11- 11-, 11- 11- 11- 11-

gf i = 2{q4 + q5) in eq.(1), the system of equations (37) for determining 
1:i"1 becomes 

{ 

·4 3 0 
E1 + E1 = ' 
if+ 2(q4 + q5)1:1 + Ei = 0, 
tr+ 2(q4 + q5)1:f + d = o. 

Denoting cf= E, we obtain 

(57) 

Et= -i, EI= €-2(q4+q5)i, E~ = :t [t-2(q4+q5)i] +2(i14+q5)t: (58) 

We see that the quantity Gin (55) depends on q4 and q5; therefore, for a 
canonicity of the desired local-symmetry transformations it is necessary 
to extend the phase space according to section 3. It is sufficient to carry 
out the following extension: Define the coordinares 'li ( i = 1, • • · , 7): 

'li = qi (i = 1, · · ·, 5), '16 = q4, ij7 = q5, (59) 

and their conjugate mqmenta calculated in accordance with ( 41) 

Pi= Pi (i = 1, · · ·, 5), P6 = P7 = 0. {60) 

The generalized momenta P6 and fi1 are extra primary constraints of the 
first class. · 

In the extended phase space, one should carry out the procedure of 
reparametrization of the system of equations (57), although formally, to 
obtain the definite form, it is sufficient to express Gin the coordinates of 
this extended space according to (59),(60) and ( 44): 

G = [-{ + (ij4 + ij5)t + (ij4 + ij5 + '16 + ii1) i] (p4 + p5) 

+ [-~ + (ij4 + ij5)t] p~ + ii2(fi2i + ii21:). (61) 

It can be seen that the local-symmetry transformations generated by this 
G (61) are already canonical. 

In the (q, q)-space the local-symmetry transformations established with 
the help of formulas (38) have the form 

bq1 = bq3 =. 0, bq2 = - q2 
f + (2q2 + q2)i, 

q4 + q5 

bqs = bq5 = -{ + (q4 + q5) f + (q4 + qs + q4 + <is) i, bq; = :t bq;; 
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It is easy to verify that under these .transformations 

I:£ 1 d { q~ [ .. 2( ) ·] 2 } 
u = 2 dt - (q4 + q5)2 c - q4 + q5 c + q2c ' 

i.e. the action is quasi-invariant. 

5 Conclusion 

In the framework of the generalized Hamiltonian formalism for dynamical 
systems with first- and second-class constraints, we have suggested the. 
method of constructing the generator of local-symmetry transformations 
for arbitrary degenerate Lagrangians both in the phase and configuration 
space. The general case is considered including both the violation of 
the condition (26) (i.e. without restrictions on the algebra of first-class 
constraints) and the possibility of the presence of higher derivatives of 
coordinates in the local-symmetry transformation law; and the arising 
problem of canonicity of transformations in the latter case is solved. 

The generator of local-symmetry transformations is derived from the 
requirement for them to map the solutions of the Hamiltonian equations 
of motion into the solutions of the same equations which must be sup
plemented by the demand on the primary-constraint surface E 1 to be 
conserved under these transformations. As it is discussed in paper II, the 
condition of the E1 conservation actually is not an additional restriction 
on the properties of the local-symmetry transformation generator that 
naturally follows from the definition of the symmetry group of the action 
functional. 

We have proved in the general case that the Dirac hypothesis (24] that 
all first-class constraints generate the local-symmetry transformations 
holds true also in the presence of second-class constraints and second-class 
constraints do not contribute to the law of these transformations and do 
not generate global transformations in lack of first-class constraints. 

The generator of local-symmetry transformations is obtained for de
generate theories of general form, without restrictions on the algebra of 
constraints. We have shown that in this case (these are, e.g., Polyakov's 
string [11] and other model Lagrangians (10], [12]-[21]) one can always 
pass to an equivalent set of constraints, the algebra of which satisfies the 
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condition (26), and, therefore, now the method of constructing the gen
erator developed for singular theories of special form in paper II can be 
applied. In Appendix A, the method of passing to one of the indicated 
equivalent sets when all the first-class primary constraints are momentum 
variables is given. 

The · corresponding transformations of local symmetry in the ( q, q )
space are determined with the help of formulae (38). 

When deriving the local-symmetry transformation generator the em
ployment of obtained equation system (37) is important, the solution of 
which manifests a mechanism of appearance of higher derivatives of coor
dinates and group parameters in the Noether transformation law in the 
configuration space, the highest possible order of coordinate derivatives 
being determined by the structure of the first-class constraint algebra, and 
the order of the highest derivative of group parameters in the transfor
mation law being by unity smaller than the number of stages in deriving 
secondary constraints of first class by the Dirac procedure. 

We have shown the obtained local-symmetry transformations to be 
canonical in the extended (by Ostrogradsky) phase space where the time 
derivatives of coordinates (which have emerged in the transformation 
law) are taken as complementary coordinates and the conjugate momenta 
(defined by the formula of theories with higher derivatives (26, 27, 28]) 
are the initial momenta plus the extra first-class primary constraints ( the 
number of the latter equals the number of complementary coordinates). 
In addition, the dynamics of a system remains to be fixed in the sector 
of the initial phase-space variables. 

Obtained generator (45) ((36)) satisfies the group property (46). The 
amount of group parameters which determine the rank of quasigroup of 
these transformations equals the number of primary constraints of first 
class. 

So, we can state in the general case of theories with first- and second
class constraints (without restrictions on the constraint algebra) that the 
necessary and sufficient condition for a certain quantity G to be the local
symmetry transformation generator is the representation of G as a lin
ear combination of all the first-class constraints ( and only of them) of 
the equivalent set of the special form ( when the first-class primary con
straints are the ideal of algebra of all the first-class constraints) with the 
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coefficients determined by the system of equations (37). Passing to the 
indicated equivalent set of constraints is always possible, and the method 
is presented in this work. In addition, these are the necessary and suf
ficient conditions for (12) to be the quasi-invariance transformation of 
the functional of action in both the phase and (q, q) space. It is thereby 
shown in the general case that the functional of action and the corre
sponding Hamiltonian equations of motion are invariant under the same 
quasigroup of local-symmetry transformations. 

As it is known, gauge-invariant theories belong to the class of degener
ate theories. In this paper, we have shown that the degeneracy of theories 
with the first- and second-class constraints in the general case is due to 
their quasi-invariance under local-symmetry transformations. 
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Appendix A 

Here we shall describe the way of passing to, at least, one separated set 
of equivalent constraints ¢':0 when all the primary constraints o_f the first 
class are momentum variables. We shall consider that the initial set of 
first- and second-class constraints are canonical, i.e. the complete separa
tion of constraints into first- and second-class ones is already carried out. 
Then, the formulated problem can be solved by the iteration procedure 
provided that we take into account the first-class primary constraints to 
make a subalgebra of quasi-algebra of all the first-class constraints (7): 

{ <I?~, <I?}}= J!) ~<I?t, a, {3 = 1, · · ·, F. 

This relation follows from the stationarity condition for <I?~ and from 
from the properties of the canonical set of constraints. The iteration 
procedure can be first developed for first-class constraints, and second
class constraints can be taken into account at last stage. There always 
exist canonical transformations of the form [27, 29) 

A= <I?l(q,p), - {Qi, A}= 1, {Qu, Fr}= bur, 
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{A,l\} = {Q1,PT} = {A,QT} = {Qi,QT} = 0, (62) 

a,r = 2,··•,N. 

(The bar over a letter means the first stage of the iteration procedure.) 
All the remaining primary constraints qf first class assume the form 

IP~(Q, P) = <I?~(q(Q, P),p(Q, P)) IA=o' a=2,···,F. 

In view of the transformation being canonical, we can write 

{p. 1} 81P~ fB 1 1 1 
I, 1Pa = - aQ- = 1 a ,IP,, 

. 1 
a, 'Y ~ 2,. 

with IP~ having the structure [27] 

1 jj;l 1 -1 1Pa = a ,IP,, detEI!: -/= 0, (63) 

and obeying the conditions 

a-1 a-1 IP, IP, O ---=---=' 
8Q1 8P1 

'Y ~ 2. 

As all the constraints <p~ do not depend upon Q1 and A, we perform an 
analogous procedure for the constraint 'P½ in the 2N - 2-diniensional sub
space (Qu, Pu)(a = 2, · · ·, N), i.e. without affecting Q1 and A. Then the 
constraints ip~(a = 3, · · ·, F) arising in a formula analogous "to formula 
(63) are independent of Qi, A and Q2, P2. Next, making this procedure 
step by step (F - 2) times, we finally obtain the first-class primary con
straints to be momenta, and therefore they commute with each other 
(final momenta and coordinates will be denoted by Qa and Pa, respec
tively, a= 1, · · ·, F). 

All secondary constraints of first class will then assume the form 

1P';:0 (Q, P) = IP'::a (q(Q, P),p(Q, P)) I _ , a= 1, · · ·, F; ma = 2, ···,Ma. 
Pa-0 

As the transformations are canonical, we can write 

a mp 

{ P, mp} _ _ ..Y:_p_ _ fl mpm-y m-, 
a, IPp - 8Qa - a /3 r IP, , 
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with cp'; 0 having the structure [27] 

1/lma _ A mamp --171fJ 
re, - Ct f3 'Pp , detAIE =/- 0, (64) 

and obeying the conditions 

a(pr;:0 a(pr;:0 

8Qp = 8Pp = O, a, (3 = 1, · • •, F, m 0 2': 2. 

And, finally, all second-class constraints will be expressed as 

1/J;;:"'(Q,P) = w:•; (q(Q,P),p(Q,P)) I _, a= 1, • • • ,F; 
Pa-0 

i = 1, · · ·, n, a; = 1, ···,A;, ma; = 1, ···,Ma; 

with all (previously-established in paper I) features of the canonical set 
of constraints remaining valid. 

The set of constraints thus constructed (primary constraints being 
momenta and secondary (p7:0

) satisfies the condition (26) with vanishing 
right-hand side, i.e. we have derived the searched set of constraints. Note 
that (A-1);0 ;/J in (64) is a solution to the system of equations (25). 

References 

[1] N.P. Chitaia, S.A. Gogilidze and Yu.S. Surovtsev, "Second-Class 
Constraints and Local Symmetries," Communication of Joint Insti
tute for Nuclear Research E2-96-234, Dubna, 1996. 

[2] R. Sugano and T. Kimura, Phys. Rev. D 41 (1990), 1247. 

[3] A. Cabo and P. Louis-Martinez, Phys. Rev. D 42 (1990), 2726. 

[4] L. Lusanna, Riv. Nuovo Cimento 14 (1991), 1. 

[5] S.A. Gogilidze, V.V. Sanadze, Yu.S. Surovtsev and F.G. Tkebuchava, 
"The Theories with Higher Derivatives and Gauge-Transformation 
Construction," Preprint of Joint Institute for Nuclear Research E2-
87-390, Dubna, 1987; Int. J. Mod. Phys. A 47 (1989), 4165. 

[6] J.L. Anderson and P.G. Bergmann, Phys. Rev. 83 (1951), 1018. P.G. 
Bergmann and J. Goldberg, Phys. Rev. 98 (1955), 531. 

22 

[7] M. Henneaux, C. Teitelboim and J. Zanelli, Nucl. Phys. B 332 
(1990), 169. 

[8] A. Cabo and P. Louis-Martinez, Phys. Rev. D 42 {1990), 2726. 

[9] L. Castellani, Ann. Phys. (N. Y.) 143 (1982) 357. 

[10] R. Cawley, Phys. Rev. Lett. 42 {1979), 413; Phys. Rev. D 21 (1980), 
2988. 

[11] A.M. Polyakov, Phys. Lett. B 103 {1981), 207. 

[12] A. Frenkel, Phys. Rev. D 21 {1980), 2986. . 

[13] R. .Sugano and T. Kimura, Prog. Theor. Phys. 69 {1983), 1241. 

[14] M.J. Gotay, J. Phys. A.: Math: Gen. 16 {1983), L-141. 

[15] M.J. Gotay and J.M. Nester, J. Phys. A.: Math. Gen. 17 (1984), 
3063. 

[16] R. Di Stefano, Phys. Rev. D 27 {1983), 1758. 

[17] V.V. Nesterenko and A.M. Chervyakov, "Singular Lagrangians. Clas
sical Dynamics and Quantization," Preprint of Joint Institute for 
Nuclear Research P2-86-323, Dubna, 1986. 

,, 

[18] C. Batlle, J. Gomis, X. Gracia and J.M. Pons, J. Math. Phys. 30 
{1989), 1345. 

[19] X. Gracia and J.M. Pons, J. Phys. A: Math. Gen. 25 {1992), 6357. 

[20] S.A. Gogilidze, V.V. Sanadze, Yu.S. Surovtsev and F.G. Tkebuchava, 
Theor. Math. Phys. l02 {1995), 66. 

[21) S.A. Gogilidze, V.V. Sanadze, Yu.S. Surovtsev and F.G. Tkebuchava, 
. J.Phys. A: Math. Gen. 27 {1994), 6509. 

[22) S.A.. Gogilidze, V.V. Sanadze, Yu.S. Surovtsev and F.G. Tkebuchava, 
Theor. Math. Phys. 102 {1995), 56. 

[23] N.P. Chitaia, S.A. Gogilidze and Yu.S. Surovtsev, "Constrained Dy-· 
namical Systems: Separation of Constraints into First and Second 
Classes," Preprint of Joint Institute for Nuclear Research E2-96-227, 
Dubna, 1996. 

23 



[24] P.A.M. Dirac, Canad. J. Math. 2 (1950), 129. "Lectures on Quantum 
Mechanics," Belfer Graduate School of Science, Monographs Series, 
Yeshiva University, New York, 1964. 

[25] V.I. Smirnov, "Course of Higher Mathematics," Vol.4, Part 2, Nauka, 

Moscow, 1981 (in Russian). 

[26] M.V. Ostrogradsky, Mem. de l'Acad. Imper. des Sci. de St-

[27] 

Petersbourg 4 (1850), 385. 

D.M. Gitman and I.V. Tyutin, "Canonical quantization 
strained fields," Nauka, Moscow, 1986 (in Russian). 

of con-

[28] V.V. Nesterenko, J.Phys. A: Math. Gen. 22 (1989), 1673. 

[29] L.P. Eisenhart, "Continuous Groups of Transformation," Princeton, 
N.J., Dover, New York, 1961. 

Received by Publishing Department 
on July 5, 1996. 

24 

-- •': 

.'1 
•I 

I ., 
t.' 
ti . 
i' 

' ,· 

lJHTaJI H.n., fonlJIH)lJe·c.A., Cyposues IO.C. · E2-96-244 
Ksa:111rpynna npeo6p_a30Ballllii JJOKallbllOH CIIMMerp11"11 B re~opllllX co CBll3l!MH : 

, . ~ 06~6we1i";IOM faMIIJlbTOl!OB~~; cpopMa~ll3Me Jb;paKa HCCJJe)l)'IOTCll ·Jl~K~%1ible CIIMMerpm; ~IICTCM 
co CBll3llMH neps~ro. 11 . sroporo po)la. s o6weM. CJJ)"'lae 6e:i otpairn'lelmii Ha _a,rc6py cmne_ii.. Mcro:t . 

· Ko11crpy11pona11m1 rei1eparopa npeo6pa3osam1ii· J10KaJJh11oij d1i,~1crp1111 no;iy<JcH m rpc6osamrn. ''lro6b1 
01111 oro6paJKallll pewellflll raMIIJJbTOIIOBblX ypas11e1111ii )lBlllKClflfll B pewelllfll Tell· )KC. ypas11em1ii. 
iloKaJaJm, 'lTO CBll3;1· sropo'ro pcma IIC )la·10T· BK~a;ia B JaKOII npeo6pa30Ba!lllii .1-0Ka%110ii Cflm1crp1111 .. 
iorophlii. no.n11ocrLJO. oripelle.nllercll scc~m CBlllllMi1 ncpsoro po/la (11 • T0,1bKO mm). 111 11eKoroporo 
3KBl!BallellTHOro 11a6opa, nepeXO)l _K KOTOpOMy OT ,'nepBOHa'lallbHOro Ha6opa CBHJeii BCCrJ(a BOJMOJKCII . 
11 .np~llCTa.~eH. 3)lCCb. BblllCtti:'u MexaHIIJM nOllBHCllflll _BbfCWIIX ·npOIIJBO)lffblX ·or Koopmmar II rpy,inOBbl)I' 
napa-Merpon B JaKOHC. npe_o6pa30Bailllii. cum1erp1111_so sropoij rcqpeMe Hcrep: B noc.1e)llleM C.1}"lac 

. noKaJa110, ·'l~O nony<Jellilble npeo6pa1omi1111,11 CIIMMerp1111 ll~1llJOTCll Ka11mi11'leCKIIMII. B pac'w11pe11110~1 
(no Ocrporpa/lCK01-1y) cpa;iosoM npocrpm_1crse. B o6weM cnY<Jac n0Ka1a110·; 'lro BblpOlK.l1c1111ocrb reop11ii 
CO.CBll3llMil i1epsoro II aroporo p01la·o6yc.10B.1eua IIX IIJ1Bap11a11mocri,,o ornoc'1iTCJ1hllO npco6pa1osa1111ii 
JIOKMbHOii ci1MM~TPHfl. n0Ka1a110 TaKJKe, 4TO 4iy11KUIIOJ1a;i JteiiCTBffll 1'1 COOTileTCTB)'IOll{ffe ra\llllhTOIIOBbl 
ypam1el1Hll )lBIIJKeflflll HHBapuaHTllhf OTIIOCIITCJlhllO O)UIOii ff. roii )Ke . KBU311fP}11flLI . npeo6pa10sai1i1i'i 

. JIOKMbHOii CIIMMerp1111.' • . •.·. .· . 
' . ·. . . / ' \ 

·Pa6oi-a Bblil6.ni1e1,1~"s Jla6opanipmi rcopem•1ccKor, cji11111K1·1 mi.H.H .. Goro.1·,060Ba 0115111'.', ' 
/ ' ' ' . • ' ,.- . . <". 

. \ -. 
·, Coo6~ellf!e 06-be)li11ie1111o'ro HIICTfflyra ll/lepHblX ~ICCJJ_eJ;OB~llfl!i. Jly611a, 1996 

. I 

Chii~ia N.P., Gogilid~e S.A., Surbvtsev Yu.S. 
Quasig'roup of Local-Syfii1nctry'Tr~~fo-rn1ations in Constrained Theories' 

' In th/frrurie~ork 6~ the gener~ized Hamiltoni~f1: fonnali~m, by Dfra~. the local symmetries 
~f dyriamicaJ.'sy~terri~ witffirst~ and. ~ec'ond-class constraints are investlgaied in the, general case 
.without restrictions on the aJg·ebia,' o(constraiiits. The method of co11strw;tihg the geiie'rator of l9Cal- . 
symmetry t~~nsformations is . obtained from the requirement for theni io/map· the· solutions 
of the Hamiltonian equations of motion into the soluJions of:the ·same equations. It is prov~d that · 
second-cla~s. constraints_ do not. contribute tci the. transformation· 1aw of the local symmetry. entirely 
stipulaied by ·all the first:class constraints (and only by them) of ail equivalent sci pa~~ing to which 
from the initial' constraint sei is always possible and is· presented. A mechanis,~ of occurrence of higher 
derivatives. of coordinates and group 'pariu~elers in the synunetry transfon11ation law in the 'Nocthcr 
second theorem _is elucidated. In the latier case it is shown that the obtained t{ansformations of synunctry 
are canonic~) in the extended (by Ostrogradsky) phase spac1;. It is.tlicreby skown in thd;cncral case that 
the ,degeneracy of theories with the first- and second-class constraints is due 10 their' invaria,icc 
under lo~J-symm~try transformations. It is, also shown in :,he general case· ihat the action functional. 
and :the. correspo?ding Hamiltonian ·c·quations .Qf 1J1otion arc invariant· under _the same ql!asigroup 

· of local-symmetry transfommtions, 

, _,. . ' . . ' . . . ., ' , . , ' .' . , ·~ . ~'. -
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