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1 Introduction 

The purpose of this paper is to study the quantum mechanical motion of a particle in the 
three-dimensional axially symmetric potential 

!V ( 2 2 2) P l Q l V= - x +y +z +--+----
2 2 z2 2 x2 + y2 ' 

(1) 

where n, P, and Q are constants with n > 0, P > -¼, and Q ?:: 0. In the last decade, 
this potential (including the case P = 0) has been the object of numerous studies [1-12]. 
The Schrodinger and Hamilton-Jacobi equations for this generalized oscillator potential 
are separable in spherical, cylindrical, and spheroidal (prolate and oblate) coordinates. 
In the case when P = 0 we get the well-known ring-shape oscillator potential which was 
investigated in many articles [l, 3, 4, 7, 8] in recent years as a companion of the Hartmann 
potential [4, 6, 8, 13-17]. If P = Q = 0 we have the ordinary isotropic harmonic oscillator 
in three dimensions. 

The plan of this article is as follows. We solve the Schrodinger equation 

HiI!=EiI!, (2) 

with 

(3) 

in spherical coordinates (in the second section) and in cylindrical coordinates (in the 
third section). (The constant 1i, and the reduced mass are taken to be equal to 1. In 
the whole paper, we use iJ! to denote the total wavefunction whatsoever the coordinate 
system is; the wavefunctions iJ! in spherical, cylindrical, and spheroidal coordinates are 
then distinguished by the corresponding quantum numbers. Note also that we use s to 
denote the fraction ½ in the following.) In the fourth section, we determine the inter basis 
expansion coefficients between the cylindrical and the spherical bases. The fifth and 
sixth sections deal with the generalized oscillator system in spheroidal coordinates. In 
particular, the prolate and oblate spheroidal bases are expanded in terms of both the 
spherical basis and the cylindrical basis. Two appendices close this article. The first one 
is devoted to the bi-orthogonality of the radial wavefunctions (in spherical coordinates) for 
the generalized oscillator system. The second appendix concerns a connection between the 
Smorodinsky-Winternitz system (that is a basic component for the generalized oscillator 
system) and the Morse system. 

The generalized oscillator system constitutes a pending part to the generalized Kepler
Coulomb system studied in Ref. [11, 12, 18]. The latter two nonrelativistic systems 
generalize two important paradigms in quantum mechanics, namely, the oscillator system 
and the Kepler-Coulomb system. The main results of this work and the one in Ref. [18] 
concern the separability in spheroidal coodinates as well as the SU(2) approach and the 
three-term recursion relations for the interbasis expansion coefficients. 

The authors are very pleased to· contribute to this memorial volume in honour of 
Jean-Louis Calais. Professor Jean-Louis Calais achieved, among other important works, 
an original job [19] on the derivation of the SU(2) Clebsch-Gordan coefficients by the 
(L.owdin) projection operator method. We are glad to present here a work where an 
analytic continuation of SU(2) Clebsch-Gordan coefficients plays an important role in the 
analysis of interbasis expansions. 



The use of spheroidal coordinates is now well established in quantum chemistry [20]. 
There exist now powerful techniques [21] for evaluating (angular and radial) prolate 
spheroidal wavefunctions from differential equations. It is hoped that this paper will 
shed some new light on expansions of spheroidal wavefunctions. 

2- Spherical Basis 

The Schrodinger equation (2) in spherical coordinates (r, 0, <p) for the potential (1), i.e., 

V = 0\2 + P 1 + 9_ __ 1_' 
2 . 2 r 2 cos2 0 2 r 2 sin2 0 

may be solved by seeking a wavefunction 11! of the form 

eim<p 

ll!(r,0,<p) = R(r)0(0)-v"[;, (4) 

with m E Z. This amounts to find the eigenfunctions of the set { H, Lz, M} of commuting 
operators, where the constant of motion M reads 

2 p Q 
M = L + ~0 + ~0 cos sm 

(5) 

(L2 is the square of the angular momentum and Lz its z-component). We are thus left 
with the system of coupled differ~ntial equations: 

(M -A)0 

[:2 dr(r2dr) + 2E - 0 2r 2 
- ~] R 

where A is a (spherical) separation constant. 

o, 

o, 

(6) 

(7) 

Let us consider the angular equation (6). By putting 0(0) = J(0)/~, we can 
rewrite Eg. (6) in the Poschl-Teller form: 

( 
1 b2 - ! c2 - !) 

doe + A+ - - --4 
- --

4 f = 0 
4 cos2 0 sin2 0 ' 

b= JP+~' c= JQ+m 2
• 

(8) 

In the case where b > s, the angular potential is repulsive for 0 = f. In this case, the 
0 domain is separated in two regions (0 E ]O, f [ and 0 E ]f, -ir[) and the "motion" takes 
place in one or another region. Furthermore, in this case Eq. (8) corresponds to a genuine 
Poschl-Teller potential. In th~ case where O < b < s, we can call the angular potential 
an attractive Poschl-Teller potential. When b = s, i.e., P = 0, we get the well-known 
ring-shape oscillator potential [l, 3, 4, 7, 8]. The solution 0(0) = 0g{0; c, ±b) of Eq. (6) 
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(for both O < b < s and b > s ), with the conditions 0(0) = 0( fl = 0, is easily found to 
be(cf.,[22,23]) ' 

0(0) = Nq{c, ±b)(sin 0t(cos 0)'±b Pjc.±b)( cos 20), (9) 

with q E N, where pJa,/3) denotes a Jacobi polynomial. Then, the constant A is quantized 
as 

Aq(c,±b) = (2q + c± b+ s)(2q :+- c ± b+ 3s). . . 

The normalization constant Nq(c, ±b) in (9) is given (up to a phase factor) by 

This leads to 

Nq(c,±b) = 

ii 1 
0q,0q sin 0d0 = -Oq•q· 

0 2 

(2q + c± b+ l)q!r(q + c± b+ 1) 
f(q+c+ l)r(q± b+ 1) 

(10) 

(11) 

(12) 

Note that only the positive sign in front of b has to be taken when b > 8 while both the 
positive and negative signs have to be considered for O < b < .s. 

Let us go to the radial equation (7). The introduction of ( 10) into ( 7) yields an equation 
that is very reminiscent of the radial equation for the three-dimensional isotropic oscillator 
except that the orbital quantum number l is replaced by 2q + c ± b + .5. The solution 
R( r) = Rn,q(r; c, ±b) of the obtained equation, in terms of Laguerre polynomials L~, is 

R(r) = Nn,q{c, ±b)( v'nr)2q+c±b+•e-snr2 L!;+c±b+1 (Or2), ( 13) 

with nr E N. In Eq. (13), the radial wavefunctions Rn,q satisfy the orthogonality relation 

1= Rn~qRn,qr2dr = on~n, 

[cf., Eq. (71 )] so that the normalization factor Nn,q(c, ±b) is 

Nn,q(c,±b) = 203 'nr! 

f(nr + 2q + c ± b + 2)° 

(M) 

(15) 

The normalized total wavefun-~tion ll!(r,0,<p) = Wn,qm(r,0,<p;c,±b) is then given by 
Eqs. ( 4), (9), (12), (13), and (15). The energies E corresponding to nr + q fixed are 

En(c, ±b) = 0 (2n + c ± b + 2), (16) 

with n = nr + q. Equation (16) shows that, for each quantum number n, W<' have two 
levels (for +band -b) in the O < b < s region and one level (for +b) in the' b > s r<'gion. 
Note that this spectrum was obtained through a path integral approach in [2, Ci] for th<' 
b > s case and in [12] for the general case (see also Refs. [10, 11]). 

In the O < b < s region, for the limiting situation where b = s-, i.e., P = o-, we have 
for the separation constant A: 

Aq(c,+s) = (2q + c+ 1)(2q + c+ 2), Aq(c,-,5) = (2q + c)(2q + c + 1). (17) 
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Then, by using the connecting formulas [24] 

c>- ( ) = (A)n+l X p(>.-s,+•)(2 2 - 1) 2n+J X ( ) n X , 
S n+J 

c;n(x) = ~~~: P!>.-s,-•>(2x2 
- 1), 

between the Jacobi polynomial pJoJJ) and the Gegenbauer polynomial C;., we have the 
following odd and even angular solutions ( with respect to cos O 1-+ - cos 0) 

0q(O;c,+s) = 

0q(O;c,-s) = 

(4q + 2c + 3)(2q + 1)! 2cr(c + s)(sin0)°C~1~
1
(cos0), 

21rf(2q + 2c+ 2) 

( 4q + 2c + 1)(2q )! 2cr(c + s )(sin O)°C~;'( cos 0). 
21rf(2q + 2c + 1) -

(18) 

(19) 

Let us introduce (a new orbital quantum number) land (a new principial quantum num
ber) N through 

l - lml = { 2q + 1 for the + s!gn} 
2q for the - sign ' 

N _ lml = { 2n + 1 for the + s!gn}. 
2n for the - sign · 

(20) 

Note that N = 2nr + l both for the + and - signs. Then, the separation constant 
[Eq. (17)] and the energy [Eq. (16)] can be expressed as 

Aq(c,±s) = A1(8) = (l + 8)(1 + 8 + 1), En(c,±s) = EN(8) = n (N + 8 + 3s), (21) 

respectively, where 

8 = JQ + m2 
- lml. 

Thus, the two parts of the energy spectrum for the signs ± correspond now to odd 
(for +) and even (for -) values of N - 1ml, In terms of N, l, and 8, the functions 
Rnrq(r;c,±s) = RNl(r;8) [cf., Eq. (13)] and 0q{0;c,±s) = 01m(0;8) [cf., Eqs. (18) and 
(19)] can be rewritten as 

RNl(r; 8) = 
2n3•( ll=1 )! 

f( ¥ +; + 3s) ( v'nr)l+se-snr2 LIJ~T'(nr2), 
2 

(22) 

01m(0; 8) = 2lml+5f(lml + 8 + s) 
(21 + 28 + l)(l- lml)!(. o)lmlHclml+<l+•ccosO). (23) ~.:,_---,----f-'--='-~ Sill 1-lml 
21rf(l + 1ml + 28 + 1) 

Equations (22) and (23 compare with the corresponding results for the ring-shape oscil
lator in [l, 3]. Note that (23) was given in terms of Legendre functions in Refs. [l) and 
[3] and was studied in details in Ref. [9]. 
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In the b > s region, for the limiting situation where b = s+, i.e., P = o+, we have only 
odd solutions. In other words when P --> o+, the eigenvalues and eigenfunctions of the 
generalized oscillator do not restrict to the eigenvalues and eigenfunctions, respectively, of 
the ring-shape oscillator. This fact may be explained in the following manner. To make 
P = 0 in the wavefunction 'Vnrqm(r, 0, ip; c, +b) amounts to changing the Hamiltonian 
into a Hamiltonian corresponding to P = 0 and to introducing an unpenetrable barrier. 
( Another way to describe this phenomenon is to _say that for very small P, the potential 
Vis infinite in the O =~plan and equal to the ring-shape potential only for P = 0.) This 
phenomenon is known as the Klauder phenomenon [25]. 

A further limit can be obtained in the case when 8 = 0, i.e., Q = 0. It is enough to 
use the connecting formula [24) 

pz'm 1(x) = (-:t1
r(lml + s)(l -x2 )•1mlcJ:'i':j(x) 

between the Gegenbauer polynomial C;. and the Legendre polynomial Pz'ml_ In fact for 
Q = 0, Eq. (23) can be reduced 'to 

0 (0· 0) = (-l)lml / 2/ + 1 (l - lml)! plml( 0) 
Im , \ 2 (I+ lml)! 1 cos , 

so that 0 1m(0;O)eim<P/.,j"i; coincides with the usual spherical harmonic Yim(0,ip) (up to 
a phase factor, e.g., see [26]). The wavefunctions 0q{0; c, ±b)eim<P /.,j"i; may thus be 
considered as a generalisation of the spherical harmonics. 

3 Cylindrical Basis 

In the cylindrical coordinates (p, ip, z ), the potential V reads 

. n2 ( 2 2) P 1 Q 1 
V = - p + z + -- + --. 

2 2 z2 2 p2 

Equation (2), with.this potential, admits a solution IV of the form 

eimr.p 

lli(p,ip,z) = R(p)Z(z) .,j"i;' (24) 

where m E Z. In other words, we look for the eigenfunctions of the set { H, L., N} of 
commuting operators, where the constant of motion N is 

D,. being the zz component of 

p 
N = D •• +2, 

z 

D.,., = -8 ••• , + n2 
z;Zj, 

5 

(25) 



the so-called Demkov tensor [27) for the isotropic harmonic oscillator in R3 . It is sufficient 
to solve the two coupled equations 

(N - 2E.)Z 0, 

[~dp(pdp) + 2E _ n2p2 _ Q + m
2
] P p -~- R = 0 p2 ' 

(26) 

(27) 

where the two cylindrical separation constants EP and E. obey Ep+E. = E. The solutions 
'1i(p, cp, z) = '1inppm(P, cp, z; c, ±b) of (26-27) lead to the normalized wavefunction 

eimcp 

'1i(p, 'P, z) = Rnp(p; c)Zp(z; ±b) ../iir' (28) 

where 

Rnp(p; c) = 
20n I 

r(np + :~ 1) e-•flp
2 

( vOp)° L~,(Op2) 

and 

Zp(z;±b) = (-l)P 
O•p! 

f(p ± b + 1) e-sf2z2 ( ✓nz)•±b L;b(nz2), (29) 

with nP EN and p EN. The normalization of the wavefunction (28) is ensured by 

roo r 1 lo Rn~RnPpdp = Dn~np, lo Zp,Zpdz = 2op'p• 

Furthermore, the constants Ep and E2 in (26-27) become 

Ep(np, c) = n (2np + ~ + 1), E,(p, ±b) = 0 (2p ± b + 1). (30) 

Therefore, the quantized values of the energy E are given by (16) where now the quantum 
number n _is n = nP + p. As in the second section, the sign in front of bin Eqs. (28)-(39) 
may be only positive when b > s. When O < b < s, both the signs+ and - are admissible. 

In the O < b < s region, in the limiting case where b = s-, due to the connecting 
formulas [24) 

1-l2n+1(x) = (-lf22n+in!xL!'(x2), 1-l2n(x) = (-lf22nn!L;;-'(x2), 

between the odd 1-l2n+1 and even 1-l2n Hermite polynomials and the Laguerre polynomials 
L;', we immediately have 

Zp(z;+s) 

Zp(z;-s) 

( 

1 
~ • e-sf2z2 

7r) 1 ✓22P+1(2p + 1/t2p+1(v'nz), 

(~r ~1-l2p(vOz). 

6 

Introducing (a new quantum number) n3 such that n3 = 2p+ 1 for the+ sign and n3 = 2p 
for the - sign, we obtain 

I fl 2 

(n) i ~ 1-ln, ( v'nz ). Zp(z; ±s) = ; J2n3 n3! 

The energy is then given by (21) where N = 2np + n3 + 1ml. Note that the spectrum in 
the case b = s-, which corresponds to the ring-shape oscillator system, was obtained in 
Refs. [1-3). 

In the b > s region, in the limiting situation where b = s+, we get only the odd solution 
of the ring-shape oscillator system. 

\ 

4 Connecting the Cylindrical and Spherical Bases 

According to first principles, any cylindrical wavefunction (2,1) corresponding to a given 
value of E can be developed in terms of the spherical wavefunctions ( 4) associated to the 
eigenvalue E (see also Ref. [11)). Thus, we have 

n 

Wnppm = L WJp(c, ±b)wnrqm, (31) 
q=O 

where np + p = n, + q = n. In Eq. (31), it is understood I.hat the wavefundions in t lw 
left- and right-hand sides are written i'n spherical coordinates ( 1·, 0, cp) owing to p = r sin 0 
and z = r cos 0. The dependence on eim,p can be eliminated in both sides of Eq. (JI). 
Furthermore, by using the formula L~(x) ~ (-1 txn /n!, valid for x arbitrarily large. (:II) 
yields an equation that depends only on the variable 0. Thus, by using thc orthonormalit.y 
relation (11 ), for the'quantum numbers q, we can derive the following exprcssion for the 
interbasis expansion coefficients 

WJP(c, ±b) = (-l)q-p B!P(c, ±b) E~p(c, ±b), (:!2) 

where 

B~p(c,±b) = 
(2q + c ± b + l)(n - q)!q!r(q + c ± b + I )r(n + q + c ±I,+ 2) 

(n-p)!p!f(q+c+l)f(q±b+l)r(n-p+c+ l)l'(p±b+ I) 

(:!:!) 

E!p(c, ±b) ·== 21'!, (sin 0)2
n-

2P+2c(cos 0)2P+ 1±2
b Pt±b\ cos 20) sin 0d0. 

By making the change of variable x = cos 20 and by using the Hoclriguc's formula for t la• 
Jacobi polynomial [24] 

c 1r d'· p(o,fll(x) = -=._(1 - xt0 (l + x)-fl-[(1 - x)"+n(l + ,rjl1+"] 
n 2nn! dx" ' 

7 



Eqs. (32)-(33) lead to the integral expression 

(-l)P 11 dq wq (c ±b) = ----'---'- (1 - xr-P(l + x)P-[(1 - x)q+c(l + x)q±b]dx np , 2n+q+c±b+l -1 dxq 

X 
(2q + c ± b + l)(n - q)!f(q + c ± b + l)r(n + q + c ± b + 2) 

p!q!(n - p)!r(q + c + l)r(q ± b + l)r(n - p + c + l)f(p ± b + 1) 
(34) 

for the coefficient W~p( c, ±b ). Equation (34) can be compared with the integral represen
tation [26] 

( aba,Blc,) = Do+(3,-y 
(2c + l)(J + l)!(J - 2c)!(c + ,)! 

(J - 2a)!(J - 2b)!(a - a)!(a + a)!(b- ,B)!(b +.B)!(c - ,)! 

( l)a-c+(J 11 dc--y · 
X - (1 - xia- 0 (1 + xt-(3--[(1 - x)1-2a(l + x)1-2b]dx 

2JH -1 dxc--y 

( with J = a+b+c) for the Clebsch-Gordan coefficients C'::,;b(3 = (aba,Blc,) of the compact 
Lie group SU(2). This yields 

WJp( c, ±b) = (-1r-q (aoboa.Blco, (l' + ,8), 

_ n±b n+c c±b 
a0 = -

2
-, bo = -

2
-, Co= q + -

2
-, (35) 

n=fb n+c 
(l' = p - --, ,B = -- - p. 

2 2 

Since the quantum numbers in Eq. (35) are not necessarily integers or half of odd integers, 
the coefficients for the expansion of the cylindrical basis in terms of the spherical basis 
may be considered as analytical continuation, for real values of their arguments, of the 
SU(2) Clebsch-Gordan coefficients. The inverse of Eq. (31), namely 

n 

'¥n,qm = E W!q(c,±b)IJ!nppm (36) 
p=O 

follows from the orthonormality property of the SU(2) Clebsch-Gordan coefficients. The 
expansion coefficients in (36) are thus 

Wiq(c, ±b) = WJp(c, ±b). 

Note that in order to compute the coefficients W~p(c,±b) through (35), we can use the 

3F2 ( a, b, c; d, e; 1) representation [26] of the SU(2) Clebsch-Gordan coefficients. 
We close this section with some considerations concerning the limiting cases (P = 0, 

Q # 0) and (P = 0, Q = 0). It is to be observed that the passage from (P # 0, Q # 0) 
to (P = 0, Q # 0) needs some caution. Indeed for b = s-, Eq. (35)-can be rewritten in 
terms of the quantum numbers N, l, and n3 as 

N-1 

WJp(c,±s) = (-1)-, (aoboa.Biea,a + ,8), 

8 

N-lml-s±s b _ N + 1ml - s =f s §_ _ 2/ - 1 §_ 
o- 4 +2, Co- 4 +2, ao = 4 

2n3 - N + 1ml - s ± s 
a= 

4 
,B = -2n3 + N + 1ml + s ± s + §_ 

4 2· 

By using the ordinary symmetry property [26] 

(aba,Blc,) = (-1r+b-c(ab,-a, -,Blc,-,) 

and the Regge symmetry [26] 

( 
b al ) = (a+ b +, a+ b - , a - b + a - ,B a - b - a+ ,BI _ b) 

a °'I-' c, 2 ' 2 ' 2 ' 2 c, a 

in Eq. (37) with the sign + and by using the ordinary symmetry property [26] 

(aba,Blc,) = (-1r+b-c(ba,Balc,) 

in Eq. (37) with the sign -, we get 

WJP(c, ±s) '=! W~mn,(5) = ( aoboa.Biea, a+ ,8), 

_ N + 1ml §_ b _ N - 1ml - 1 c _ 21 - 1 §_ 
ao - 4 + 2' 0 - 4 ' 0 - 4 + 2' 

_ N + 1ml - 2n3 5 a_ 2n3 - N + 1ml - 1 
(l' - 4 + 2' I-' - 4 . 

As a conclusion, when b = s- we have an expansion of the type [3] 

(37) 

(38) 

'¥Nmn,(p,cp,z;5) = E w~mn,(5)'¥Nlm(r,0,cp;5), (39) 
/ 

where the summation on l goes, by steps of 2, from 1ml or 1ml + 1 to N according to 
whether as N - 1ml is even or odd (because N - l is always even). Equations (38)-(39) 
were obtained in Ref. [3] for the ring-shape oscillator system. Finally, the case P = Q = 0 
can be easily deduced from (38)-(39) by taking 5 = 0: we thus recover the result obtained 
in Refs. [28, 29] for the isotropic harmonic oscillator in three dimensions. Note that in the 
case P = Q = 0, the expansion coefficients in Eq. (39) become Clebsch-Gordan coefficients 
for the noncompact Lie group SU(l,l) (cf., Ref. [30]). 

5 Prolate and Oblate Spheroidal Bases 

5.1 Separation in Prolate Spheroidal Coordinates 

The prolate spheroidal coordinates ( e, 7J, cp) are defined via 

R 
x = 2✓(e2 -1)(1 - 7J2

) coscp, 

y 

z 

~v'(e2 - l)(l - 7)~)sincp, 

R 
2l7J, 

9 



(with 1 :::; e < oo, -1 :::; T/ :=:; 1, and 0 :::; cp < 2ir ), where R is the interfocus distance. As is 
well-known [31], in the limits where R-+ 0 and R-+ oo, the prolate spheroidal coordinates 
reduce to the spherical coordinates and the cylindrical coordinates, respectively. In prolate 
spheroidal coordinates, the potential V reads 

f!2W 2 [P Q ] 
V=-8-(e2+112-l)+R2 e2112+{e2-l)(l-712). (40) 

By looking for a solution Ill of Eq. (2), with the potential (40), in the form 

eimr.p 

w(e,11,cp) = 1P1(01P2(11) ,/'Er' ( 41) 

with m E Z, we obtain the two ordinary differential equations 

[ 
Q + m 2 ER2 !V R4 P] 

d{(e - 1)d( - e _ 
1 

+ -
2
-e -16ew - 1) + e 1/)1 = +>-.(R)1P1, (42) 

d (1 - 712)d - -- - -712 
- --712(1 - 712) - - 1P2 = ->-.(R)ip2 [ 

Q+m2 ER2 f!2R4 P] 
~ ~ 1 - 712 2 16 712 ' (43) 

where >-.(R) is a separation constant in prolate spheroidal coordinates. The combination 
of Eqs. ( 42) and ( 43), leads to the operator 

A=-~ [1128{{e - 1)8{ + e28~(1 - 71 2)8~] 
\, -11 

e2 + T/2 - 1 n,2 R4 2 2 e2 + T/2 

+ (e -1)(1 -112) (Q- a,,,,,,)+ 16e T/ + P~ 

after eliminating the energy E. The eigenvalues of the operator A" are >-.(R) while its 
eigenfunctions are given by (41). The significance of the (self-adjoint) operator A is to be 
found in the connecting formula 

R2 
A=M+ 4 N, (44) 

where M and N are the constants of motion (5) and (25). The operator A is of pivotal 
importance for the derivation of the interbasis expansion coefficients from the spherical 
basis or the cylindrical basis to the prolate spheroidal basis. In particular, it allows us 
to derive the latter coefficients without knowing the wavefunctions in prolate spheroidal 
basis. (In this respect, credit should be put on the work by Coulson and Joseph [32] 
who considered an operator similar to A for the hydrogen atom.) Therefore, we shall 
not derive the prolate spheroidal wavefunctions ip1 and ip2 which could be obtained by 
solving Eqs. ( 42) and ( 43). It is more economical to proceed in the following way that 
presents the advantage of giving, at the same time, the global wavefunction w(e,11,cp) = 
Ill ( e, T/, cp; R, c, ±b) and the inte~basis expansion coefficients. 

10 

5.2 Interbasis Expansions for the Prolate Spheroidal Wave
functions 

The three constants of motion M, N, and A, which occur in Eq. (44), can be seen to 

satisfy the following eigenequations 

and 

Mwn,qm 

NWnppm 

Aq(c,±b)wn,qm, 

2E,.(p, ±b)Wnppm, 

Awnkm = >-.k(R)wnkm 

( 45) 

(46) 

(47) 

for the spherical, cylindrical, and prolate spheroidal bases, respectively. [In Eq. (47), the 
index k labels the eigenvalues of the operator A and varies in the range O :=:; k :=:; n.] The 
spherical, cylindrical, and prolate spheroidal bases arc indeed cigenbases for the three 
sets of commuting operators {Jl,L,,M}, {H,L,,N}, and {H,L,,A}, respectively. \Ve 
are now in a position to deal with the interbasis expansions 

n 

Wnkm = L u;k(R; c, ±b)Wnppm ( 48) 

p=O 

n 
Wnkm = LT~k(R; c, ±b)Wn,qm (49) 

q=O 

for the prolate spheroidal basis in terms of the cylindrical and spherical ba~es, · 
First, we consider Eq. ( 48). Let the operator A act on both sides of ( 48). Then, by 

using Eqs. (44), (46), and (47) along with the orthonormality property of the cylindrical 

basis, we find that 

~ [ >-.k(R) - ~
2 

E,(p, ±b)] u~k(R; c, ±b) = ~ u;~(Il; c, ±b)l\.t;;,), ( 50) 

where 

10012"100 M;;,) = O O O \[J~ppmA!Wnpp'mPdpdcpd::. (51) 

The calculation of the matrix element M;;,l can be done by expanding the cylindrical 
wavefunctions in (51) in terms of spherical wavefunctions [see Eq. (31 )] and by making 
use of the eigenvalue equation for M [see Eq. (45)]. This leads lo 

1 n M;;,> = 2 L Aq(c, ±b)W~P(c, ±b)W~P,(c, ±b). (52) 
q=O 

To calculate the sum in Eq. (52), we need some recursion relation for tlw rncllicient 
WJp(c, ±b) involving p - 1, p, and p + l. Owing to Eq. (35), this amounts to us<' th<' 

following recursion relations [33]: 

[-a(a+ 1) - b(b+ 1) + c(c+ i)-2n{1](al,o'/'3\q) 

= J( a+ a)(a - a+ l)(b - {3)(b + ,8 + I )(a, b, a - 1, ,B + 1 \q) 

+✓(a - a)(a +a+ l)(b + ,B)(b- {; + l)(a, b,a + l,{3 - I le,,). (5:l) 
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Then, by introducing Eq. (53) into Eq. (52) and by using the orthonormality conditio.~ 

2)abo:/3iq)(abo:'/3'lq) = 800,8/3/3'• 
c,-, 

we find that M~;,l is given by 

M;;,> = 2[p(p ± b)(n - p + l)(n + c- p + 1)]'8P',p-i 

+[s ( c =i= b + s) ( c =i= b + 3s) + 2(p + 1 )(n - p) + 2(p ± b)(n + c - p + 1 )]8P'P 

(54) 

+2[(p + l)(p + 1 ± b)(n - p)(n + c - p)]' 8P',p+l• (55) 

Now by introducing (55) into (50), we get the following three-term recursion relation 

[(p + l)(n - p) + (p ± b)(n + c - p + 1) 

1 R2 1 
+4(c =i= b + s)(c =i= b + 3s) + 8E,(p, ±b) - 4,\k(R)] u:k 

+ [ (p + 1) (p + 1 ± b) ( n - p) ( n + C - p) l • u:t 1 

+ [p(p ± b )( n - p + 1) ( n + c - p + 1 )]' u:;1 = 0 (56) 

for the expansion coefficients U~k = U~k(R; c, ±b). The recursion relation (56) provides 
us with a system of n + 1 linear homogeneous equations which can be solved by taking 
into account the normalization condition 

L iu:k(R; c, ±b)l2 = 1. 
p=O 

The eigenvalues ,\k(R) of the operator A then follow from the vanishing of the determinant 
for the latter system. 

1 

Second, let us concentrate on the expansion ( 49) of the prolate spheroidal basis in 
terms of the spherical basis. By employing a technique similar to the one used for deriving 
Eq. (.50), we get 

where 

> 
R2 n 

[.\k(R)-Aq{c,±b)]TJk(R;c,±b) = 2 LTJ~(R;c,±b)N::>, 
q'==O 

N::> = 1oo1f12

" 'V:,qmN'Vn,q'mr2 sin0drd0dr.p. 
. 0 0 0 

(57) 

The matrix elements N:]~l can be calculated in the same way as M:;,> except that we 
must use the relation (26 · 

aba --[ c
2
(2c+1)(2c-l) ]' 

( /31C"'f)- (c2 - 1 2 )(-a+b+c)(a-b+c)(a+b-c+l)(a+b+c+l) 

12 

r 
;' 

\l 
. :' 
I 

x { [(c - 1 - l)(c + 1 - 1)(-a + b + c - l)(a - b + c - l)(a + b- c + 2)(a + b + c)] • 
(c - 1)2(2c - 3)(2c - 1) 

( b al , ) (o:-f-11c(c-1)- 1a(a+l)+ 1 b(b+l)( b al )} x a ap c - '.l 1 - - -'----'---,-~~-~--'- a exp c - 1 1 ' c(c-1) ' 

and the orthonormality condition 

L(aba/31C"'f )(aba/31c'1') = 8c'c8-,,-,, 
a,/3 

instead of Eqs. (53) and (54). This produces the matrix element 

N(±) = E (c ±b/q(q + 1) + (c± b)(2q± b+ 1) 8 , 
qq' n ' (2q + C ± b)(2q + C ± b + 2) q q 

-2n[A~+1 (c,±b)8q',q+1 + A~(c,±b)oq',q-iJ, 

where 

Aq(c,±b) = [q(n-q+ l)(q+c±b)(q±b)(q+c)(n+q+c±b+ 1)]' 
n (2q + C ± b)2(2q + C ± b - 1)(2q + C ± b + 1) 

Finally, the introduction of (58) into (57) leads to the three-term recursion relation 

[
,\ (R) - A ( ±b) - R2 E ( ±b/q(q + 1) + (c ± b)(2q ± b + 1)] Tq 

k qc, 2 nC, (2q+c±b)(2q+c±b+2) nk 

+nR2 [A~+1(c,±b)T~t1 + A~(c,±b)T~;-1] = 0 

(58) 

(59) 

for the expansion coefficients r:k = T;k(R; c, ±b). This relation can be iterated by taking 
into account the normalization condition 

n 

L IT~k(R; c, ±b)l2 = 1. 
q=O 

Here again, the eigenvalues ,\k(R) may be obtained from the vanishing of the determinant 
of a system of n + 1 linear homogeneous equations. 

5.3 Limiting Cases 

Putting b = s-, i.e., P = o-, in the matrix element (58) with Q #- 0 and by using (20), 
we have 

N(±) - E (8) 2A,(o) - 2(1ml + 6)
2 

-
1 o,,, - 2n[Alt(o)o,,,1+2 + Al,.,(0)0,,,1-2]' 

qq' - N (21+26-1)(21+26+3) 
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where 

Al (
5
) = [L(L - l)(l+ + 25)(1+ + 25 - l)(N - l + 2)(N + l + 25 + 1)] • 

N 4(2/ + 25 - 1)2(2/ + 25 - 3)(2/ + 25 + 1) 

(with I± = / ± \m\) and finally we get the following three-term recursion relation 

[
.X (R) - A (5) - R2 E (5) 2A1( 5) - 2(\m\ + 5)2 - 1 ] Tl (R· 5) 

k I 2 N (2/ + 25 - 1)(2/ + 25 + 3) Nk ' 

+!1R2 [ A~2( 5)T]:;(R; 5) + A½( 5)T;i;(R; 5)] = 0 

for TJ.rk(R;5) = TJ.rk(R;c,±s). By analogy it is easy to obtain a three-term recursion 
relation for the inter basis expansion coefficients UJ::t(R; 5) = UJ::3k(R; c, ±s ). We get 

!1R2 
[(2n3 + l)(N - n3 + 5 + 1) + (\m\ + 5)2 -1 + -

4
-(2n3 + 1) - .Xk(R)] URMR; 5) 

+ [(n3 + l)(n3 + 2)(N - \m\ - n3)(N + \m\ - n3 + 25)]'U;t+
2
(R; 5) 

+ [n3(n3 - l)(N - \m\-- n3 + 2)(N + \m\ - n3 + 25 + 2)]'u;z-
2
(R; 5) = 0. 

Consequently, when b = s- we have the expansions [cf., Eqs. ( 48) and ( 49)] 

N 

l}!Nkm = LUJ::HR;5)WNmnJ> 
n3 

N 

l}!Nkm - LTJ.rk(R;5)1}!Nlm, 
l 

for the ring-shape oscillator. The summations on l and n3 go, by steps of 2, from \m\ or 
\m\ + 1 to N and from O or 1 to N - \m\ according to whether as N - \m\ is even or odd 
(because N - l and N - \m\ - n3 are always even). 

The next limiting case 5 = 0, i.e., Q = 0, is trivial and the corresponding results for 
the isotropic harmonic oscillator agree with the ones obtained in Ref. [34]. 

Finally, it should be noted that the following two limits 

N!!6 u:k(R; c, ±b) W!k(c,±b), 

lim T~k(R; c, ±b) 
R-oo 

w~k(c, ±b) 

furnish a useful mea~s for checking the calculations presented in the fourth and fifth 
sections. 
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5.4 Separation and Interbasis Expansions for the Oblate Sphe-
roidal Wavefunctions · 

The oblate spheroidal coordi.nates (l, 71, <p) are defined by 

X 
R✓ -2 2 (e+1)(l-712)cos<p, 

y R✓ -2 2 2 (e + 1)(.1 -r; )sin<p, 

z -
R-2er;, 

(with 0:::; l < oo, -1:::; r;:::; 1, and 0:::; <p < 2ir), where R is the interfocus distance in the 
oblate spheroidal coordinate system. As in the prolate system, in the limits R -> 0 and 
R -> oo, the oblate spheroidal coordinates give the spherical arid cylindrical coordinates, 
respectively [31, 34]. 

The potential V, the Schrodinger equation, the oblate spheroidal constant of motion 
A, and the interbasis expansion coefficients for the oblate spheroidal coordinates can be 
obtained from the corresponding expressions for the prolate spheroidal coordinates by 
means of the trick: e -> -il and R -> iR. . 

6 Spheroidal Corrections for the Spherical and Cy
lindrical Bases 

As we have already mentioned, the spheroidal system of coordinates is one of the most 
general one-parameter systems of coordinates which contains spherical and cylindrical 
coordinates as some limiting cases. Accordingly, the prolate spheroidal basis of the gen
eralized oscillator as R -> 0 and R -> oo degenerates into the spherical and cylindrical 
bases that can be treated as zeroth order approximations in some perturbation series. 
The three-term recursion relations for the expansion coefficients of the prolate spheroidal 
basis in the cylindrical and spherical bases, which have been obtained in the fifth section, 
may serve as a basis for constructing an algebraic perturbation theory, rcsped.iv<'ly, at 
large (R » 1) and small (R ~ 1) values of the interfocus distance R. Thus it is possibl<' 
to derive prolate spheroidal corrections for the spherical and cylindrical bases. 

6.1 The Case R ~ 1 

Let us rewrite the three-term recursion relation (59) in the following form 

[.Xk(R)- Aq(c,±b)- !1R2B~(c,±b)]T~k 

+!1R2 [A~+I ( c, ±b )T~:1 + A~ ( c, ±b )T;:;;1 l = 0, 

where 

Bq(c±b)=!(2n c±b 2)2q(q+I)+(c±b)(2q±b+I) 
n' 2 + + (2q+c±b)(2q+c±b+2) 
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The zeroth order approximation for the separation constant >.k(R) and the coefficients 
r;k(R; c, ±b) can immediately be derived from the recursion relation (60). Indeed, from 
Eq. (60), we obtain 

lim >.k(R) = Ak(c, ±b), lim r;k(R; c, ±b) = bkq, 
R-+O R-+O 

so that, for the wavefunction, we have 

N~ IVnkm(e, 1/, <p; R, c, ±b) = Wnrkm(r, 0, 'P, z; c, ±b). 

As is seen from these limiting relations, the quantum number k, labeling the spheroidal 
separation constant and being (according to the oscillation theorem [31]) the number of 
zeros of the prolate angular spheroidal function ip2 (7J) in the interval -1::; 7/::; 1, turns 
into a spherical quantum number determining the number of zeros of the angular function 
(9). It is clear that this fact is a consequence of the independence of the number of zeros 
of the wavefunction on R. 

In order to calculate higher order corrections, we represent the interbasis coefficients 
r;k(R; c, ±b) and the spheroidal separation constant >.k(R) as expansions in powers of 
O.R2

: 

r;k(R; c, ±b) = 8kq + L r!~l (nR2)i, (61) 
j=l 

00 

>.k(R) = Ak(c, ±b) + L >.~) (O.R2)i. (62) 
j=l 

Substituting Eqs. (62) and (62) into the three-term recursion relation (60) and equating 
the coefficients with the same power of R, we arrive at the equation for the coefficients 
T(j) and \ (j) kq ' k 

4(k - q)(k + q + c ± b + l)TU) = -N+1 (c ±b)T(j-t) + Bq(c ±b)T(j-t) kq n , k,q+ 1 n , kq 

j-1 

-Aq(c ±b)TU-tl - '°' >.U-tlr(t) 
n , k,q-1 ~ k kq · (63) 

t=O 

Equation (63) with the initial condition r;~) = bkq and the condition rJgl = bjo arising 

in the standard perturbation theory [35] allow us to derive a formula expressing >.tl for 

j :2: 1 through the coefficients T~t- 1
) and rt;·( 

:,..U) = -Ak+1(c ±b)T(j-t) + Bk(c ±b)T(j-t) - Ak(c ±b)T(i-t) (64) k n , k,k+l n , k,k n , k,k-1" 

This gives a possibility to determine, step by step, the coefficients>.~) and r!t' in Eqs. (62) 
and (62). As an example, let us write down the first and second order corrections in (62) 
for >.k(R) and the first order correction in (62) for r;k(R;c,±b). It follows from Eq. (64) 
that 

).. (I) 
k 

).. (2) 
k 

B!(c, ±b), 

-A~+l(c, ±b)Tt2+1 - A~(c, ±b)TfL 
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and Eq. (63) for j = 1 results in 

(t) _ A~(c,±b) A~+1(c,±b) 
8 Tkq - 4(2k + C ± b) bq,k-l + 4(2k + C ± b + 2) q,k+l• (65) 

Thus, for the spheroidal separation constant, with an accuracy up to the term (0.R2 ) 2 , 

we get 

>. .(R) = A ( ±b) nR2 B\ ±b) n,2 R4 [A~(c, ±b)2 - A~+1(c, ±b)2 ] 
k k c, + n c, + 4 2k + C ± b 2k + C ± b + 2 · 

Introducing (65) into (62) and then using ( 49) for the expansion of the prolate spheroidal 
basis over the spherical one, we get the following approximate formula · 

Wnkm ((, 1/, 'Pi R, c, ±b) = Wnkm(r, 0, cp; c, ±b) 

_ n,
2 

R
4 

[ A~(c, ±b) \JI (r 0 · c ±b) - A~+l(c, ±b) W (r 0 · c ±b)] 
4 2k + C ± b n,k-l,m ' '<p, ' 2k + C ± b + 2 n,k+l,m ' '<p, ' • 

6.2 The Case R ~ l 

Now let us consider the case R ~ 1. The three-term recursion relation (56) can be written 
as 

[D~(c,±b) + R8
2 

E.(p,±b)- >.k(R)]u:k + [c~+1(c,±b)U!t1 + Ch(c,±b)u:;;1] = 0, (66) 
4 . 

where 

Ch(c, ±b) = [p(p ± b)(n - p + l)(n + c - p + l)]', 

1 
D~ ( c, ± b) = (p + 1) ( n - p) + (p ± b) ( n + c - p + 1) + 4 ( c =f b + s) ( c =f b + 3s). 

It follows from Eq. (66) that 

. >.k(R) = ~E.(k,±b), hm -R2 2 R-+oo 
lim U!k(R;c,±b) = bkp· 

R-+oo 

For R ~ 1, the interbasis expansion coefficients and the spheroidal separation constant 
are developed in negative powers of 0.R2 : 

00 

UP (R· c ±b) = 8 + ""u(il(nR2)-; nk'' kp~kp , (67) 
j=l 

>.k(R) 1 00 

nR2 = 2n,E.(k,±b)+ L:,..~l(nR2t;. 
i=l 

(68) 
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Substituting Eqs. (68) and (68) into Eq. (66), we get 

!(p - k)u<il + CP+I(c ±b)U(j-l) + DP(c ±b)U(j-l) 4 kp n , k,p+l n , kp 

j-1 

+CP(c ±b)U(j-l) - ! ~ _x(i-t)u(t) = 0 n , k,p-1 4 L...J k kp · (69) 
t=l 

Using the conditions u1~) = 8kp and uJtl = 8;0 , one easily obtain 

!_xU) = CP+I(c ±b)U(j-l) + DP(c ±b)U(j-l) + CP(c ±b)U(j-l) 4 k n ' k,p+l n , kp n , k,p-1 · (70) 

Equations (69) and (70) completely solve the problem of determining the expansion co
efficients .xfl and U1!)· For instance, we have the approximate formulae 

Ak(R) 1 4 . k 16 [ k 2 k+l 2) 
flR2 =2flE.(k,±b)+flR2Dn(c,±b)+(nR2)2 Cn(c,±b) -Cn (c,±b) , 

Wnkm(l, 1/, cpj R, c, ±b) = Wnkm(P, cp, Zj c, ±b) 

+ fl~2 [ C!(c, ±b)Wn,k-1,m(P, cp, z; c, ±b) - C!+i(c, ±b)Wn,k+l,m(P, cp, z; c, ±b)]. 
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Appendix A: Bi-Orthogonality of the Radial Wavefunctions 

Besides.the orthonormality relation (14) in the quantum numbers nr for the function 
Rn,q, we also have an orthogonality relation in the quantum numbers q, viz., 

= fl C 1 d - Vq•q, 1<~) = Rn~q•Rn,q r - 2q + c ± b + 1 qq 0 (71) 

for a given value n~ + q' = nr + q of the principal quantum number n. The proof of (71) 
is as follows. In the integral in Eq. (71), we replace the two radial wavefunctions by their 
expressions (13). Then, with the help of the formula [36] 

1= -ex o-1£-Y ( )£).( )d = ('y + l)m(.X - a+ l)nf(a) 
e X mCX nCX X II 

a · m.n.c0 

X3F2(-m,a,a - .X;, + 1,a - .X - n; 1), 
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we arrive at 

f~l=fl f(q'+q+c±b+l) 
qq r(2q'+c±b+2)r(q-q'+l) 

(n - q')!r(n + q' + c ± b + 2) 
(n - q)!r(n + q + c ± b + 2) 

X2F1 (-q + q'' q + q' + C ± b + 1; 2q' + C ± b + 2; 1 ). 

By using the Gauss summation formula (24] 

r(c)r(c - a - b) 
2 F1 (a, b; c; 1) = r( c _ a) r( c _ b) 

we can rewrite (72) as 

1<~ = fl 
" q+~+c±b+l 

(n - q')!r(n + q' + c ± b + 2) 
(n - q)!r(n + q + c ± b + 2) 

[r(q - q' + l)r(q' - q + !)rl 

This completes the proof of Eq. (71) since (r(q - q' + l)r(q' - q + l)J- 1 = f,qq'· 

Appendix B: The Smorodinsky-Winternitz and Morse Systems 

The Morse system with the potential 

VM = Vo(e-2ax - 2e-ax) 

can be connected to the dynamical system with the potential 

fl2 p 1 
Vsw = -z2 + --. 

2 2 z2 

(72) 

(The latter potential may be considered as a one-dimensional component of the so-called 
Smorodinsky-Winternitz (37, 38, 39] potential. The potential Vsw was investigated by 
Calogero (40].) 

The Schrodinger equation for the Morse potential VM, i.e., 

[dxx + 2E - 2Vo(e-2ax - 2e-ax)] if;= 0 (73) 

admits a discrete spectrum (with E < 0) and a continuous spectrum. For the discrete 
spectrum, by making the change of variable 

y=ax, yER, z=e-•Y, zER+ 

and the change of function 

in Eq. (73), we get 

1 
i/;(x): Jzf(z) 

[ 
2 2 ) (SE 1) l ] f d,2 + 4-X (2 - z + ~ + 4 z

2 
= 0, 
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(74) 



where 

>-= v'2Vo 
a 

Equation (74) has the same form as Eq. (26) for z > 0 with 

E. = 4>.2, n = 2>., P = -
8! - ~-
a 4 

Therefore, we must consider two admissible regions for the energy E: (i) -32E > a
2 

and 

(ii) 0 < -32E < a
2

• 
In the case (i), by employing the energy formula (30) for E., we obtain that E is 

determined by the relation 

HE = >. - (P + s) , p = 0, 1, • · ·, [>. - s]. (75) 
a 

In Eq. (75), [x] stands for the integral value of x. As a result, we have 

E = -V0 [1 - ½ (p + s{, p = 0, 1, · · ·, [>. - s]. (76) 

Equation (76) is in agreement with the well-known result according to which the discrete 
spectrum of the Morse system has a finite number (here[>. - :SJ+ 1) of energy levels with 

the condition >. > s. 
In the case (ii), we have 

HE -- = ±[>. - (p + s)], 
a 

which has no solution for p EN. 
The connection just described between the Morse and Smorodinsky-Winternitz sys-

tems can be used also to deduce the wavefunctions of one system from the wavefunctions 
of the other. For instance, from Eq. (29), we immediately get the normalized solution 

1/;(x) = i/Jp(z; >.) of (73): 

1 
1P (z· ,\) = (-l)P(2>.)>.-p f ap. e->-z2 z2>.-2p-I L2>.-2p-1(2>.z2) (77) 

P ' \ f(2>. - p) P · ' 

with 

z=e-sax, p=0,1,···,[>--s]. 

Our result (77) differs from the one of Nieto and Simmons [41] (by the fact that the factor 

p! in (77) is 2p - ,\ in Ref. [41]). 
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Kibler M;, Marcloy'an LG., Pogosyan O.S. _- .'"c-. 

On a Generalized Oscillatb~ System: -I~terbas,s Exp~nsions' 
, .',,, ,\' . :,_ .. "'"·'. ' -

I' - .- - '. - ' - ' - • ~ • ·- • • • \ •• ,·. > -

Ttiis 'a~ticle deals WI!h a nojlrelativistic qu'antum_ rriechani_cai study' ofa dynaniical 
system :\Yhic::h genernlizes the,' isotropic harmonic .oscilfator systdn :. in· three· 
dimensions,:'- The Schrodi11ger equation -Jar this gener,lliieq oscilbto~ system is 
separable in sph-erical, cylindrical, and spheroidal. (piolate and oblate) coor,dinates, . 

: The qu'antum mechanical spectr_urn. 'of thi~ sys tern. is_' worked ,Ol_lt° ;in some' details: ... 
_ ~h~ prnblt.;m" ?f'inJ~rbasis!xpansions' o(the wa~efonctio~s~is con1pletely_ ~ol~ed. -
The coefficients fo~ the:expansio_n of the cylindrfcal basis iri terms 'Oftfie· spherical= _ 

·basis, and,vicecversa; are 'found to be·analytic"continuations'(to .real values or' th'eir 
- \ ~ .,_ / ... •' .. ·-~ . . . . · .. - ' ~-• _. ,, .'\. . . ' - .. :. J .. -

-arguments).of-Clebsch---,-Gotdan coefficients-for.the group. SU(2). The interbasis 
expansion ~oefficients for ·the. prolate _ ~nd oblate· spheroidal j;ses- ii1; term~
.of the. spherical, or the cylindrical bases. are shO\vn _to satisfy thi-ee~term recursi6n 
relations.~Finally; a connection betw~en ·the gen·eralizcd oscillator· system (ptojected 
on ~he' z:Jine) _and .th'e Morse system' (i~'o.Tle dimensicm) i; discu~ted. . . 

_- · The in'vestigation , has ·Geeri _· pert·ormeci -'a( the _Bogoliubov -_- L.~boratory,-
of Thecii-etica)Physics;'JINR. .- : •· , : > '~ -;_·_' _ :, ,-- · ' .. 
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