


1 Introduction

In his basic works [1] on the generalized Hamiltonian formalism Dirac
has shown that from the presence of first-class constraints in a theory the
existence of the local symmetry group follows, a rank of which is deter-
mined by the number of first-class primary constraints. In the same place
it is pointed out that,“possibly, all the first-class secondary constraints
are to be atiributed to a class of generators of transformations which are
not related with a change of the physical state” (Dirac’s hypothesis). In
connection with the importance of constructing gauge transformations
this hypothesis has brought about a rather excited discussion [2]-[13]. In
papers [4]-[6] it is queried. And in refs.[14]-[16] one even asserts that
second-class constraints contribute also to a generator of gauge trans-
formations which become global in the absence of first-class constraints
[14]. The generalized Hamiltonian dynamics of systems with constraints
of first and second class is at all studied relatively weakly up to now. For
example, only recently there have appeared the real schemes of separa-
tion of constraints into the first- and second-class ones [17]-[19]. Explicit
form of the local-symmetry transformations is needed in both the tradi-
tional Dirac approach and, e.g., for realization of the presently popular
BRST-BFV methods of covariant quantization [20]-[22].

In our previous papers [10]-[13], we have suggested a method of con--
structing the generator of gauge transformations for singular Lagrangians
only with first-class constraints. At present, we extend our scheme also
to the theories with second-class constraints; and moreover, in the given
work we consider theories with an algebra of constraints of special form,
when first-class primary constraints are the ideal of quasi-algebra of all
the first-class constraints. A majority of the physically interesting theo-
ries satisfy this condition. The general case (without restrictions on the
algebra of constraints) will be investigated in a subsequent paper. The
local-symmetry transformations is looked for here from the requirement
of a quasi-invariance (within a surface term) of the action functional un-
der these transformations. To elucidate a role of second-class constraints

VG ncEnaugl GLITRTYY ¢
1. ass craasty
g‘: SACKRHEL BOTanKEBRBEY
I

)

3

b R et

[
:



in the local-symmetry transformations, we consider first- and second-class
constraints on the same basis in the hypothetical generator of these trans-
formations. We prove that the second-class constraints do not contribute

to the local-symmetry transformation law and, thus, the Dirac hypoth--

esis holds true in this case (i.e. the transformation generator is a linear
combination only of all the first-class constraints).

The paper is organized as follows. Section 2 is devoted to constructing
the -local-symmetry transformation generator in the theories with con-
straints of first and second class and to proving of that the latter are
in no way responsible for this symmetry.” These derivations are based
substantially on results of our previous paper [19] (below cited as paper
I) on the separation of constraints into the-first- and second-class ones
and on properties of the canonical set of constraints. In the 3rd section
our results are examplified with a number of model Lagrangians [14], the
Chern-Simons theory and spinor electrodynamics.

2 Locai Symmetry Transformations

Let us consider a dynamical system with the canonical set ((I>  Tar)

of first- and second-class constraints, respectively (¢ =1,--- F, ma =
1, ,My; ai=1,---,A; my, =1,-+-,M,, i =1,---,n). Passing to
this set from the initial one is always possible in an arbitrary case by the
method developed in paper 1.

A group of phase-space coordinate transformations, that maps each
solution of the Hamiltonian equations of motion into the solution of the
same equations, will be called the symmetry transformation. Under these
transformations the action functional is quasi-invariant within a surface
term.

Consider the action

s= [ at i~ i), (1)

where
Hp = H + u,®, _ (2)

H= H+Z(K1’

i=1

AT, T,

is a first-class function [1], H, is the canonical Hamiltonian, u, are the
Lagrange multipliers.

We shall require a quasi-invariance of the action S with respect to
transformations:

{ g =qi+8¢  bg:={4:G}, 3)
pi=pi+6épi, _ 6pi={p:i,G}.
The generator G will be looked for in the form .

G — Emaéma + nalﬂ; \I,m": . (4)

In contrast to our previous works, in expression (4) for G the second
term with constraints 5, is added, because we will elucidate a role of
second-class constraints under these transformations.

So, under transformations (3) we have

t 2 oG
55:/ dt[6p G +p 64— 6Hy] = / at (L 2 _g)
: Ml
oG
+o {G, Hr}].

From (5) we see: in order that the transformations (3) were the symmetry
ones, it is necessary '

oG '
5 +1G, Hr} 20, ()

That the last equality must be realized on the primary-constraint surface

- X, can be easily interpreted if one remembers that the surface X; is the

whole (g, §)-space image in the phase space. Since under the operation of
the local-symmetry transformation group the (g, §)-space is being mapped
into itself in a one-to-one manner, therefore the one-to-one mapping of £,
into itself corresponds to this in the phase space. Therefore, at looking
for the generator G it is natural to require also the primary-constraint
surface ¥; to be conserved under transformations (3) and (4), i.e. the
requirement (6) must be supplemented by the demands

{G,uL} Eo, (7)
{G,2} 2o, | ®

Note in connection with the relations (7) and (8) that the symme’qu group
of the action functional for dynamical system is the symmetry group of



~ the motion equations obtained from the variational principle (the inverse

is incorrect in the general case). Since the constraint equations. ol =0
and \I'}, 0 are contained in a system of the motion equatlons the
relations (7) and (8) are an expression of this group property 1.

" Furhter we shall use the following Poisson brackets among the canon-
ical constraint set (®, ¥) and H established in paper I:

{@;"“,H}—g;""g" <I>Z"’ mﬂ=1 e Mg+ 1, (9)

(e H} = ga"a” @0 + Eh'""'""" L1

a;

my, = me, +1, (10)

{@0, 25"} = 175" ¢>"“' (11)
{‘I’Z:a',wmbk} fgla';:lbk:l-, q)m_y_l_zkma‘::bg:c, \I’mcl +Dma,mbk, (12)

where the structure functions, generally speaking, depend on ¢ and p and,
besides, one can see that

9a°g" =0, fme+2<myg, (13)
g(rzrila;zla =0, if ma > mg,

(14)

Rrs™ =0, if mg +2 < my, orif a;=bg, me = Mg,

as bk
bk Z Mag’ .
™ =0 for my > 2, (15)
! F;:lai'.—lblfl ( 1)1 le ’ l=0a17"'7Mai_17
ik _ e :
Fasb;—l)’ lf]+k:/éMa;+17 (16)
F ;" “™k =0, if ay by refer to different chains (or doubled
\ chains) of second-class constraints (D::"";b" =F, : N mb").

The equality (15) reflects the first-class primary constraints to make a
subalgebra of quasi-algebra of all the first-class constraints. The equalities

1The relations of type (7) and (8) on the secondary constraints are not imposed in accordance with
reasoning after formula (6).

T

(16) express partly the structure of the canonical second-class constraints
established in paper 1. :
So, from eqs.(6) and (4) with takmg account of (9)- (12) we write down

(G e Z g e

+ Z (n + Z T e )\1:"‘ any
+u. {G, <I>3,} =0
Taking into consideration (8), We: hayé N ’
w{Gel} 2o (18)

Then, in view of the functional independence of constraints ®™= and ¥,
in order to satisfy the equality (17) one must demand the coefficients of
constraints &7 (m, > 2) and g (mg, > 2) to vanish.

Before analyzing these conditions to satisfy the equality (17), let us
consider in detail the conditions of the primary-constraints surface con- -
servation starting from (7). Its réalization would mean the presence of
the following equalities:

eme{@me, w1} Eo, ann{q,::»k,\y;i} 2. (19)

~

The first requirement (19) may be always realized by vanishing the Pois-
son brackets with the help of the corresponding transformation of equiv-
alence as it is made in the previous section.

Since we take that passing to the canonical constraints set of paper 1
has been performed, in the second equality (19) for each value of q; in the
double sum over k£ and over by the only non-vanishing Poisson brackets
are those at by = a;,” M;, = ¢, therefore

T"ii=0» fori=1,---,n, (20)

i.e. we have determined that in expression (4) the coefficients of those
i-ary constraints, which are the final stage of each chain of second class
constraints, and of those second-class primary constraints, whicli do not



generate the secondary constraints, disappear. Now we consider the re-
quirement of vanishing the coefficients of constraints ¥y, * (Mg, > 2, 1=
2,--,n, a;=1,:--,4;) in eq. (17):

f’::,, + 7’[? b, a,, +7’b 1h’b_1 N= 0,

n Gn

na" +7’b hn n— 1+7’ h ln 1_*_7”:1 2h;:n 2an—1:0, (21)

n

T’aZ + T’bzhbz asz + T’ th asz = 0'

In this system of equations the number of unknown functions exceeds
the number of equations by the number of the second-class primary con-
straints which make up the constraint chains. However, we have already
established the result (20) for senior terms of each subsystem of equa-
tions for a;. Inserting the values 77 = 0 into the first line of system
(21), we obtain a system of A, algebraic linear homogeneous equations
for A, unknowns 771?,,_1 that has only a trivial solution ng‘n_l = () since
det||hz~* || # 0 (see below). Using this result in the second line of (21),
we obtain a system of analogous equations for unknowns U/ 2, Its solu-
tion is My, ~ = 0 since det||h; —2 n— 1|| # 0. Contmumg successively this
process we shall deduce that all quantltles Na:" vanish, i.e. the second-
class constraints do not contribute to the generator of local—symmetry
transformations.
Now we shall show that

det||hi*1 ik £ 0 (22)

since a set of all constraints consists of independent functions. We shall
apply a method by contradiction, i.e. suppose the indicated determinant
to vanish. Further from the relation (10) we have

(Ut B PR e e 23)

where ¥;_;_; is the surface of all constraints up to and including the
t—k —1 stage. But the assumption of vanishing the determinant of
the matrix ”h;;,-_k_l ;:k || means a linear dependence of its some rows or
columns:

ot

: M ]

Inserting (24) into the right-hand side of (23) we obtain
{\I,ifk—l Hc} Ei—__k—x Cashi k— 11 k \II' —k Zi- k-1 {Ca-s-\I,i_k_l H }

From here write down

(Ui - Gy, U S H e

0.

The last equality means that
Wikl = Wikl (TG e,
me,=k+1,-,i=1, meg=k+1,---,i—1,

where ¢ and d™ are arbitrary functions of ¢ and p, non-vanishing on
the constraint surface X;-;_;. Thus, we have arrived at the contradic-
tion with the condition of independence of constraints. This proves the
validity of (22).

Returning to the second condition (8) of the primary-constraint surface
conservation under local-symmetry transformations, we see that it (and
from here, too, the equality (18)) will be fulfilled if

{aL,ap )= ™lal | (25)

This relation emerged already earlier [10] in the case of dynamical systems
only with the constraints of first class and ensured the conservation of
the primary-constraint surface ¥; under the local-symmetry transforma-
tions. Here it means a quasi-algebra of special form where the first-class
primary constraints make an ideal of quasi-algebra formed by all first-
class constraints, also in the presence of second-class constraints.

To determine the multipliers €= in the generator (4), now we have
only the requirement of vanishing the coefficients of constraints ®™= in’

(17) [10]:
Eneteg’gy’a =0, mg=mg—1,-- M, (26)

In the system of equations (26), the humber of unknowns exceeds the
number of equations by the number F = A — "1, A; of the first-class
primary constraints, therefore the system (26) may be solved to within
F arbitrary functions, This proves that the rank of the local-symmetry
transformation quasigroup is defined by the number of first-class primary



constraints also in the presence of second-class constraints. We shall
remind, for completeness, how one make use of this system of equations
[11]. We write down' (26) as

+eﬂ gﬂ{ fil"+eﬁ"_l gﬂ ‘laM"=0

Mo—2 M,—-1 =0
3

1 ghfe ghfe Meml 4 ghfet ghfemt Mamly gffe? gple=? )
. (27)
€+Eﬂ gﬂ +€Ma,l Mal2+5ﬂgﬂa:0,
o,B=1,---,F.

- Taking €, = €M as arbitrary functions and inserting them into the first
line of system (27) we obtain a system of F' inhomogeneous algebraic
linear equations for F' unknowns e?f"_l(ﬂ =1,---,F). Solving this sys-

tem of equations (we have det||g, o=! Mol £ 0 [11]) and inserting this
result into the second line of (27), we obtain again a system of F inho-
mogeneous algebraic linear equations for F' unknowns eﬂ
solved-(det||g; =% Mo=1)| £ 0). The result must be inserted into the fol-
lowing line of system (27), etc., up to the last line which gives a system of
F equations for F' unknowns eﬂ Solving this last systern of equations we

shall express, finally, all €7 in terms of £,(t ),g;,"’j ™= and their derivatives:

a Ma_
gl = BT ?EE; mp), mg = Mg, -, My (28)

(in formula (28) the summation runs also over mg), where

(Mommg) _ ¥

M,
€5 = Gty eo(t), ’

ep(t) = €

and B;""';;" are, generally speaking, functions of ¢ and p and their deriva-
tives up to the order M, — m, — 1. Note that the condition

det”gM k- lM k”?éo (k=0,].,---,Ma—‘2),

which is needed for the system of equations (26) to have a solution, is
proved as a consequence of the functional independence of all constraints
— in the same way as in the case of dynamical systems with the constraints
of first class only [10], and in the same way as the similar condition (22)

2 that must be

T

for the system of equations (21). So, the generator of the local-symmetry
transformations takes the form

G = B3 ¢m e mg =g, M, (29)

The obtained generator (29) satisfies the group property
{G1,G2} =G, (30)

where the transformation Gj (29) is realized by carrying out two succes-
sive transformations G; and G (29). The amount of group parameters
€q(t) which determine the rank of the quasigroup of these transforma-
tions equal: the number of primary constraints of first class. As can be
seen from formula (29), the transformation law may include both arbi-
trary functions €,(t) and their derivatives up to and including the order
M, — 1; the highest derivatives e( == should be always present.

Thus, we have derived the generator of the local-symmetry trans-
formations and proved that there is no influence of second-class con-
straints on these transformations from requirements of the action quasi-
invariance and of conservation of the primary-constraint surface under
local-symmetry transformations and on the basis of properties of the
completely-separated (into first- and second-class) constraint set.

Notice that the corresponding transformations of local symmetry in
the Lagrangian formalism are determined by following way:

b)) = (@(0),GY| . 8d(1) = sq(a) ()

P=357

3 Examples

In this section we illustrate our results by a number of examples in both
finite- and infinite-dimensional cases.
1. Consider the Lagrangian [14]

. ‘
L=(q1+d)as+ q3 - 50" (32)

The generalized momenta are of the form: p; = g3, p» = g3, p3 = ¢s.
Therefore we have two primary constraints:

¢i = p1 — g3, ®3 = p2 — qs. (33)



The total Hamiltonian gets the form:

Hr = (3 + 0) + w1} + usd), (34
The self-consistency conditions of theory give
¢1={ol, Hr} = —ps, 3y ={op, Hr} =—a2—ps,
i.e. two secondary constraints
$i=p  H=p—a, (35)
and

¢¥={¢%,HT}=U1+U2=0, ¢.>§={¢§,HT}=U2+U1+U2=0,

that means  u; = uy = 0. Two last equations serve for determining the
Lagrangian multipliers u; and ug, and there no longer arise constraints.
Let us calculate the matrix W = ||[K™™|| = [|{¢T, d)},""}”:
0 0 -1 -1 \ '
0 0 -1 =2 .
W=l11 0 o (36)
1 2 0 0)

We see that rankW = 4, i.e. all constraints are of second class, therefore
W have a quasidiagonal (antisymmetric) form. Performing our procedure
we shall pass to the equivalent canonical set of constraints ¥ according
to the formula (57) of paper I:

ol 1 0 0 0 1 P1— g3
T | _|1-1 0 0 s | _ | m—p2
v | =lo o 1 ofle|=| p [ G
5 0 0 1 -1 3 —q2

For the last set of constraints the quasidiagonal form of W will have a
canonical structure:

(38)

o= OO
_ O oo
o
|
—
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Now for quasi-invariance of the action with respect to transformations
(3) with generator (4)

G=n Ui +n Ui +n? U} +ni U3,

it is necessary to realize the condition (7) of conservation of the primary-
constraint surface under these transformations

{G,o}} B0, a=1,2 (39)

From (39) we obtain 7} = nZ = 0. Next from (21) we establish 7} =
n = 0, i.e. the second-class constraints of system (37) Agenera.te the
transformations of neither local symmetry nor global one.

2. Consider the Lagrangian [14]

L =q¢1g2 — goq1 — (1 — @2)g3- (40)
Then passing to the Hamiltonian formalism we obtain the generalized
momenta p; = qs, p; = —qi, p3 =0 and, thus, three primary con-
straints: _
$1=p1 — @, $3 = P2+ 1, ¢3 = p3. (41)
The total Hamiltonian gets the form:
Hr = (g1 — g2)gs + w19} + uadhh + uah. - (42)

From the self-consistency conditions of the theory we obtain
l=-g—2up=0, =gqs+2u;=0, ¢j=—q+q=0.(43)

Two first equations (43) serve for determining the Lagrangian multipliers:
u; = up = —1qs.” The last relation (43) gives the secondary constraint

¢ =q—-q,
and there no longer arise constraints. Let us calculate the matrix W =

|1z, 8543

(44)

- o N O
O O N
[en B an B e B e
[ Rl e R SR

11



From rankW = 2 we conclude that two constraints are of second class
and two ones are of first class. With the help of our procedure we separate
constraints into those .of first and second class. For this purpose, by
means of the equivalence transformation we pass to the canonical set of
constraints according to the formula (57) of paper I:

\I’i 1 0 O O i P1—q2
;] _ 0100 2 | _ P2+ q
| " loo0o10 ' P3 ) (45)
o 1102/ \4 PL+pta—a
For the last set of constraints the matrix W acquires the canonical form:
0-2 0 O
12 0 0 O
W= 0O 0 0 O (46)
0O 0 0 O
Further we look for the generator G in the form (4):
G=mn U+ Uy +e1 Of +¢f 9. (47)

From the second condition (7) of conservation of the primary-constraint
surface £; under transformations (3) we derive 71 = n} = 0, i.e. the
second-class constraints of the system do not contribute to the generator
G. The first condition (8) of conservation of ¥, is realized because

{®},8?} =0
If we take into account that g{ =1 and ¢?? =0 in (9), equation (26)
becomes 1
Denoting 2 =¢, we obtain ¢! = —2¢ and, therefore,

G=-2%ps+e(p1+p2+q—q),

which gives 6¢; = ¢, 6qs = ¢, 6q3 = —2¢, bp) = ¢, bpy = —¢, bp3 = 0.

In the (g,q)-space the local-symmetry transformations are established
with the help of formulas (31): It is easy to verify that the action is
invariant with respect to-the transformations generated by G. This is a
consequence of the constraints being linear in the momentum variables.

12

3. We now look at the infinite-dimensional cases. We consider first a
Chern—Simons theory. Theories of such type describe, e.g., the fractional
quantum Hull effect and other phenomena.

The Lagrangian density for a complex field ¢ interacting with an
Abelian Chern—Simons field is [26]

L= (9, +id)p (0" — iA")p + %s,-j (400:4; + AsA; + 4i9;40), (48)

where 7,7 =1,2 and px=0,1,2. The generalized momenta are

oL oL o
o = 8A0 07 Ty = 6.4 47{61]‘4]-’
oL oL .
=35 = (G0 +ido)p", T = 5 = (3o — iAo)ep-

Therefore, in the phase space we have three primary constraints:
Sl=mi-—eyd;, 1,j=12  ¢l=m (49)
4
and the canonical Hamiltonian:
= /dzz [mp(z)mp.(z) + (8; + iAi(z)) " (z)(8; — iAi(z)) ()
. (81 '
+40(2)jp — eeis (A0()0:4,() + Ai(2)0;40(2)) ], (50)
where j, = i(p(2)7,(2) ~ 9" (2)74 (2)).-
Among the conditions of the time conservation of constraints ¢! = 0

(1 =1,2) and ¢} =0 two first ones serve for determining the Lagrangian
multipliers u; and us:

47
u' = —[i(pdyp" ~ 9" Bap) ~ 2" pAa] — 201 Ao,

4r . * * *
u? = E[Z(SD e ~ pdip*) + 2% p Ay — 28, A,.

From the cundition of conservation for ¢} we obtain the secondary con-
straint

. (03
¢5 = j,— 'é?fijaiAj, (51)

and there do not arise more constraints.

13



The only nonvanishing Poisson brackets among the constraints are
a

{8}(2), J0)} = —=eible =), {81(2), $3(W)} = gEmiOmb(z — v).

Therefore, the matrix W = ”{¢;"a,¢;,"”} takes the form:

0 -1 0 -0y
[0 1 0 0 61
9, -0, 0 O

From rankW = 2 we conclude that two constraints are of second class
and the two ones are of first class.
With the help of the transformation

B = ¢3 + c1) + cas

we shall satisfy the equality {¢2,¢!} =0 if ci=-0:

Thus, we obtain the canonical set of constraints: ¥} = ¢j, Ul =
o5, &l = é3, P? = % = Jo, separated into the ones of first and second
class, since now the matrix W has the form:

0-1 0 O
, o1 0 0 O _
W=olo o o o|%E"Y
0 0 0 O
Further, we seek the generator G in the form
G:/fﬂﬁwhmh%+ﬁﬁ+%¢ﬂ (53)

From the second condition (7) of conservation of ¥; under transforma-
tions (3) we derive 5 = 7} =0, i.e. the constraints of second class do not
contribute to G. The first condition (8) of conservation of I is realized

because
(a},8%} =0.
12 _

_ Since g; { =1 and g2 2 =01in (9), eq.(26) accepts the form:

-2 1
61 +€1 =0,

14

i.e. €l = —¢(z) where €(z) = ¢?. Therefore we obtain

G= /d2z{——é7r0 + e[ i(pmy, — P 7y ) — Bimi] }, (54)

from which it is easily to derive the local-symmetry transformations in
the phase space:

bp(z) = ie(z)p(z), bmy(x) = —ie(z)my(2),

bp*(z) = ~ie(z)p*(z), Omp(x) = te()Tp(2), (55)
8 Ap(x) = é(x), §mo(x) =0,

8A(z) = Oie(x), émi(z) = 0.

With the help of (31) it is easily to write the local-symmetry transforma-
tions in the (g, ¢)-space and to obtain that 6L =4, [fem ’\e(x)a,,A,\], ie.
the theory is quasi-invariant under obtained transformations.

4. Now we consider the well-known case of spinor electrodynamics:

L= —%F,,,,F“" + i97,(8, — ieAL)p — mypy (56)

where F,, =0,A,—0,A,. Here A, 1,1 play the role of the generalized
coordinates. The generalized momenta are

oL oL — oL
T, = —— = Fy,, p¢=—_'=i¢707 pg=—==0,
oA, T o (
from which we have three primary constraints: ‘ )
$i=m, S=py-in, H=py (57)

and the total Hamiltonian:
1 1. S
Hp = /dax[ ZF;J'FU + 571"7(" + m:0: Ag + iep,,,Amﬁ
(0 — i AN + T + wid} + wdh + ugd} |- (58)

Among the conditions of the constraint conservation in time Yl=0(@=
1,2,3) the two last ones serve for determining the Lagrangian multipliers
1y and us. From the first condition we obtain one secondary constraint

¢? = dim* — iepyi),

15-



and there do not arise more constraints. Calculating the matrix W =

[, 457}

0 0 0 0
_ ' 0 0 Yo —iepy 59
W=b@-z) 0 v 0 —ewy |’ (59)
0 iepy ey O

we see that rankW = 2; therefore, two constraints are of second class and
the two ones are of first class. Now implementing our procedure, we shall
pass to the canonical set of constraints by the equivalence transformation:

oi 1 0 0 0 b Py — iy

)l o 1 0o offe]|_ Py

' |~ 0o o 1 o0 o | o

3? ey —iey 0 1 ¢ aiwi—ie(p¢w+¢pa)/

where the constraints are already separated into the ones of first and
second class, since now the matrix W has the form:

0 iy 0 0

y o nfiw o0 0 0
Wi=8z-)1 "4 o 0 o
0 0 0 0

Further, we look for the generator G in the form
G:/d%[n{ U4} U+l @4 0l (60)

From the second condition (7) of conservation of the primary-constraints
surface 3, under transformations (3) we derive 5! = 74 = 0, i.e. the
constraints of second class do not contribute to G. The first condition
(8) of conservation of ¥ is realized because

(@}, — 0.

Taking into account that g{ Z = —1 and ¢} = 0 in (9), eq.(26) accepts
the form:

16

i.e. € =¢ where ¢ =¢?. Therefore we have

G = /d%{éﬂo +e[0im’ — ie(pyd + ¥py)] }1

from which it is easily to obtain the gauge transformations in the phase
space and well-known transformation rule:

0A, =0, &Y =iect, 6 = —iect.

4 Conclusion

Constrained special-form theories with first- and second-class constraints,
when the first-class primary constraints are the ideal of quasi-algebra of
all the first-class constraints, are considered. One must say that this
restriction on the algebra of constraints is fulfilled in most of the phys-
ically interesting theories, e.g., in electrodynamics, in the Yang — Mills
theories, etc., and it has been used by us in previous works [10] in the
case of dynamical systems only with the first-class constraints and also by
other authors in obtaining gauge transformations on the basi§ of different
approaches [3, 4, 15, 24, 25]. : ?

Here in the framework of generalized Hamiltonian formalism by Dirac
for systems with first- and second-class constraints we have suggested the
method of constructing the generator of local-symmetry transformations
in both phase and configuration space. The generator is derived from
the requirewent of quasi-invariance (within a surface term) of the action
functional (in the phase space) under desired transformations which must
be supplemented by the demand on the primary-constraints surface X; to
be conserved at these transformations. Necessity of second requirement
can be seen from following reasoning. Because X, is whole (g, ¢)-space
image in the phase space and under operation of the local-symmetry
transformation group the (g, §)-space is being mapped into itself in a one-
to-one manner, then one-to-one mapping of ¥, into itself corresponds to
this in the phase space.

Note that the condition of the ¥; conservation actually is not the addi-
tional restriction on the properties of the local-symmetry transformation
generator. It naturally follows from definition of the symmetry group of
the action functional (see the explanation after relation (8)).
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We have proved, that Dirac’s hypothesis [1] (see Introduction) holds
true in general case also at presence of second-class constraints and these
mentioned constraints do not contribute to the local-symmetry transfor-
mation law and do not generate global transformations in lack of first-
class constraints.

The corresponding transformations of local symmetry in the (q,4)-
space are determined with the help of formulae (31).

When deriving the local-symmetry transformation generator the em-
ployment of obtained equation system (26) is important, the solution of
which manifests a mechanism of appearance of higher derivatives of coor-
dinates and group parameters in the Noether transformation law in the
configuration space, the highest possible order of coordinate derivatives
being determined by the structure of the first-class constraint algebra, and
the order of the highest derivative of group parameters in the transfor-
mation law being by unity smaller than the number of stages in deriving
secondary constraints of first class by the Dirac procedure. The arising
problem of canonicity of transformations in the phase space in the pres-
ence of higher derivatives of coordinates and momenta will be considered
in our subsequent paper. '

- So, we can state in the case of special-form theories with first- and
second-class constraints that the necessary and sufficient condition for
certain quantity G to be the local-symmetry transformation generator
is the representation of G as the linear combination of all the first-class
constraints (and only of them) with the coefficients determined by the
system of equations (26).

Obtained generator (29) satisfies the group property (30). The amount
of group parameters, which determine a rank of quasigroup of these trans-
formations, equals to the number of primary constraints of first class.

As it is known, gauge-invariant theories belong to the class of de-
generate theories. In this paper we have shown that the degeneracy of
special-form theories with the first- and second-class constraints is due
to their quasi-invariance under local-symmetry transformations.
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