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1 Introduction 

In his basic works [1] on the generalized Hamiltonian formalism Dirac 
has shown that from the presence of first-class constraints in a theory the 
existence of the local symmetry group follows, a rank of which is deter­
mined by the number of first-class primary constraints. In the same place 
it is pointed out that, "possibly, all the first-class secondary constraints 
are to be at~ributed to a class of generators of transformations which are , 
not related with a change of the physical state" (Dirac's hypothesis). In 
connection with the importance of constructing gauge transformations 
this hypothesis has brought about a rather excited discussion [2]-[13]. In 
papers [4]-[6] it is queried. And in refs.[14]-[16] one even asserts that 
second-class constraints contribute also to a generator of gauge trans­
formations which become global in the absence of first-class constraints 
[14]. The generalized Hamiltonian dynamics of systems with constraints 
of first and second class is at all studied relatively weakly up to.now. For 
example, only recently there have appeared the real schemes of s_epara­
tion of constraints into the first- and second-class ones [17]-[19]. Explicit 
form of the local-symmetry transformations is needed in both the tradi­
tional Dirac approach and, e.g., for realization of the presently popular 
BRST-BFV methods·of covariant quantization [20]-[22]. 

In our previous papers [10]'-[13], we have suggested a method of con­
structing the generator of gauge transformations for singular Lagrangians 
only with first-class constraints. At present, we extend our scheme also 
to the theories with second-class constraints; and moreover, in the given 
work we consider theories with an algebra of constraints of special form; 
when first-class primary constraints are the ideal .of quasi-algebra of all 
the first-class constraints. A majority of the physically interesting theo­
ries satisfy this condition. The general case (without restrictions on the 
algebra of constraints) will be investigated in a subsequent paper. The 
local-symmetry transformations is looked for here from the requirement 
of a quasi-invariance (within a surface term) of the action functional un­
der these transformations. To elucidate a role of second-class constraints 
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in the local-symmetry transformations, we consider first- and second-class 
constraints '>n the same basis in the hypothetical generator of these trans­
formations. We prove that the second-class constraints do not contribute 
to the local-symmetry transformation law and, thus, the Dirac hypoth­
esis holds true in this case (i.e. the transformation generator is a linear 
co~bination only of all the first-class constraints). 

The paper is organized as follows. Section 2 is devoted to constructing 
the · local-symmetry transformation generator in the theories with con­
straints of first and second class and to proving of that the latter are 
in no way responsible for this symmetry. These derivations are based 
substantially on results of our previous paper (19] (below cited as paper 
I) on the separation of constraints into the· first- and second-class ones 
and on properties of the canonical set of constraints. In the 3rd section 
our results are examplified with a number of model Lagrangians (14], the 
Chern-Simons theory and spinor electrodynamics. 

2 Locai Symmetry Transformations 

Let us consider a dynamical system with the can~nical set ( <l>;:'", w:a;) 
of first- and second-class constraints, respectively (a = 1, · · ·, F, m"' = 
1,···,Mc,; ai = 1,···,Ai, ma;= l,···,Ma;, i = 1,···,n). Passing to 
this set from the initial one is always possible in an arbitrary case by the 
method developed in paper I. 

A group of phase-space coordinate transformations, that maps each 
solution of the Hamiltonian equations of motion into the solution of the 
same equations, will be called the symtnetry transformation. Under these 
transformations the action functional is quasi-invariant within a surface 
term. 

Consider the action 

1
t2 

S = dt (pq - Hr), 
ti 

(1) 

where 
Hr = H + uc,<l>~, (2) 

n 

H = He+ 2)K1 i)b;\,{w~;,He}wt 
i=l 
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is a first-class function [1], He is the canonical Hamiltonian, Uc, are the 
Lagrange multipliers. 

We shall require a quasi-invariance of the action S with respect to 
transformations: 

{
qi= qi+ 8qi, 
I. • D P; =Pi+ Pi, 

8qi = {qi, G}, 
. 8pi = {Pi, G}. 

The generator G will be looked for in the form 

G - cma m.ma + n ma; '[Ima; 
- c 0 '.¥er •,ai ai · 

(3) 

(4) 

In contrast to our previous works, in expression ( 4) for G the second 
term with constraints w:a; is added, because we will elucidate a role of 
second-class constraints under these transformations. 

So, under transformations (3) we have 

1
t2 

8S= dt[8piJ+p8q-8Hr] = 
ti 1t2 d 8G 

dt [dt(p -8 - G) 
ti p 

8G 
+at+ {G,Hr}]. (5) 

From (5) we see: in order that the transformations (3) were the symmetry 
ones, it is necessary 

~~ + {G,Hr} ~ 0. (6) 

That the last equality must be realized on the primary-constraint surface 
E1, can be easily interpreted if one remembers that the surface :E1 is the 
whole (q, q)-space image in the phase space. Since under the operation of 
the local-symmetry transformation group the ( q, cj)-space is being mapped 
into itself in a one-to-one manner, therefore the one-to-one mapping of E1 
into itself corresponds to this in the phase space. Therefore, at looking 
for the generator G it is natural to require also the primary-constraint 
surface :E1 to be conserved under transformations (3) and ( 4), i.e. the 
requirement (6) must be supplemented by the demands 

{G '[1 1 } ~ 0 
'f Oi 7 

{ G, <I>~} ~ 0, 

(7) 

·(s) 

Note in connection with the relations (7) and (8) that the symmetry group 
of the action functional for'dynaniical system is the symmetry group of 
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the motion equations obtained from the variational principle ( the inverse 
is incorrect in the general case). Since the constraint equations .<I>~ = 0 
and w!; = 0 are contained in a system of the motion equations, the 
relations (7) and (8) are an expression of this group property 1

. 

· Furhter we shall use the following Poisson brackets among the canon­
ic.al constraint set (<I>, w) and H established in paper I: 

{ ;i:.m,, H} - m,,m/1 n.m/1 1 + 1 '±'a, -ga /3 'i:'/3, mp= ,···,ma , (9) 
n 

{
wm•; H} = -~•;ma <Pm"+~ hma;mbk wmbk 

a, , 9a, a a L a; bk h ' mbn = ma; + 1, (10) 
k=l 

{ <Pm" <Pm/I}= fm,,m11m1 <Pm.y (11) °''/3. a/3-y ,, 
n 

{
i;r,m•; wmbk} = FJ.1a;mbkm-y <l>m-y + ~ kma;mbkm'l wm'l + Dma;mbk (12) 

a, ' bk J a; h 1 , L a; h c1 ci a; bk ' 
l=l 

where the structure functions, generally speaking, depend on q and p and, 
besides, one can see that 

{ 

_ma;ma 
9a; a = 0, 

h ma; mb k _ O 
a; bk - , 

m 0 m11 -0 
ga /3 - ' if m 0 + 2 ::; mp , 

if m0 2'.: ma; , 

if ma; + 2 ::; mbk or if a; = bk, ma; = Ma;, 
mbk 2'.: Ma;, 

f l m11m-r O £ > 2 a /3 , = or m, _ , 

FMa;-1 /+1 = (-l)/ Fl Mb; 
ai · bi ai bi ' 

l=0,l,··•,Ma;-l, 

. k F1i b; = o, if j + k =/=Ma;+ l, 

Fa:•;~bk = 0, if ai, bk refer to different chains (or doubled 

(13) 

(14) 

(15) 

(16) 

h · ) f d 1 • (Dma,mbk E Fm •. mbk) c a1ns o secon -c ass constraints a; 'h = a; 'bk • 

The equality (15) reflects the first-class primary constraints to make a 
subalgebra of quasi-algebra of all the first-class constraints. The equalities 

1The relations of type (7) and (8) on the secondary constraints are not imposed in accordance with 
reasoning after formula (6). 
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(16) express partly the structure of the canonical second-class constraints 
established in paper I. 

So, from eqs.(6) and ( 4) with taking account of (9)-(12) we write down 

n 

( 
·ma + m11 m/lma + ~ ma; _m,;ma ) ;i:.m0 c°' c/3 913 a LT/a; 9a; a '¼'a 

i=l 
n n 

~(•ma; ~ mbkhmbkma; )wma; + L T/a; + L "lbk bk a; a; (17) · 
i=l k=l 

+ua{G,<I>~} ~O. 

Taking into consideration (8), we have 

u0 {G,<I>~} ~ 0. (18) 

Then, in view of the functional independence of constraints <l>;:'0 and w::>, 
in order to satisfy the equality (17) one must demand the coefficients of 
constraints <I>:;1° (ma 2'.: 2) and w;:;•; (ma; 2'.: 2) to vanish. 

Before analyzing these conditions to satisfy the equality (17), let us 
consider in detail the conditions of the primary-constraints surface con­
servation starting from (7). Its realization would mean the presence of 
the following equalities: 

cm" {<l>m" i;r,1 } ~ O a a , a; , 

n 

~ 'f/mbk {wmbk i;r,1 } ~ 0 L bk bk ' a; • 
k=1 

(19) 

The first requirement (19) may be always realized by vanishing the Pois­
son brackets with the help of the corresponding transformation of equiv­
alence as it is made i.n the previous section. 

Since we take that passing to the canonical constraints set of paper I 
has been performed, in the second equality (19) for each value of a; in the 
double sum over k and over bk the only non-vanishing Poisson brackets 
are those at bk= ai, · Mh = i, therefore 

T/ i = o. for i = 1 • • • n a; , , , (20) 

i.e. we have determined that in expression ( 4) the coefficients of those 
i-ary constraints, which are the final stage of each chain of second class 
constraints, and of q10se second-class primary constraints, which do not 
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generate the secondary constraints, disappear. Now we consider the re­
quirement of vanishing the coefficients of constraints w::;a, (ma, 2'. 2, i = 
2, · · ·, n, ai = l,, ··,Ai) in eq. (17): 

•n + n hn n + n-lhn-l n _ 0 
T/an 'fJbn bn an 'fJbn bn an - ' 

·n-1 + n hn n-1 + n-lhn-l n-l + n-2hn-2 n-1 _ 0 
'f/an 'fJbn bn an 'fJbn bn an 'fJbn bn an - ' 

·2 + 2 h2 2 + 1 hl 2 _ 0 
T/a2 'fJb2 b2 a2 'fJb2 b2 a2 - • 

(21) 

In this system of equations the number of unknown functions exceeds 
the number of equations by the number of the second-class primary con­
straints which make up the constraint chains. However, we have already 
established the result (20) for senior terms of each subsystem of equa­
tions for ai. Inserting the values 'f/~n = 0 into the first line of system 
(21), we obtain a system of An algebraic linear homogeneous equations 
for An unknowns ry1t 1 that has only a trivial solution 'f/;:n-l = 0 since 
detJJht- 1 a:11 i- 0 · (see below). Using this result in the second line of (21), 
we obtain a system of analogous equations for unknowns 'f/;:-2• Its solu­
tion i~ 'f/;:n-2 = 0 since detJJh;:n-\:-1 JJ i- 0. Continuing succnessively this 
process we shall deduce that all quantities 'f/::;a, vanish, i.e. the second­
class constraints do not contribute to the generator of local-symmetry 
transformations. 

Now we shall show that 

detllhi~k-l ;,-kll i- 0 (22) 

since a set of all constraints consists of independent functions. We shall 
apply a method by contradiction, i.e. suppose the indicated determinant 
to vanish. Further from the relation (10) we have 

{ 
wi-k-1 H } E,~-1 hi-k-1 i-k wi-k 

Oi ' C Oi bm bm (23) 

where Ei-k-1 is the surface of all constraints up to and including the 
i - k - l stage. But the assumption of vanishing the determinant of 
the matrix llhi~k-I ;,-kll means a linear dependence of its some rows or 
columns: 

hi-k-1 i-k = C hi-k-1 i-k 
bi Om Oi 8 i Si bm • (24) 
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Inserting (24) into the right-hand side of (23) we obtain 

E,-k-1 
{wi-k-1 H} E,~-1 c . . hi-k-1 i-k wi-k 

Oi ' C a,s, Si bm bm = {C >T,i-k-l H} 
OiSi'J!Si , C • 

From here write down 

{ wi-k-1 _ c .. wi-k-1 H} 
Oi a,s, Si . ' C 

E,-k-1 0. 

The last equality means that 

wi-k-l = C .. wi-k-l + ~a,wi-:-ma, + dma<l>i-ma 
ai a,s, Si Ca, a, a a , 

ma, = k + l, · · · , i - 1, ma = k + l, · · · , i - 1, 

where c::;a, and d1Z: 0 are arbitrary functions of q and p, non-vanishing on 
the constraint surface E;-=k-1· Thus, we have arrived at the contradic­
tion with t_l-.e condition of independence of constraints. This proves the 
validity of (22). 

Returning to the second condition (8) of the primary-constraint surfac~ 
conservation under local-symmetry transformations, we see that it ( and 
from here, too, the equality (18)) will be fulfilled if 

{<l>l <l>mp} = fl mp 1 <l>l 
a, (3 a (3 'Y -y· (25) 

This relation emerged already earlier [10] in the case of dynamical systems 
only with the constraints of first class and ensured the conservation of 
the primary-constraint surface E1 under the local-symmetry transforma­
tions. Here it means a quasi-algebra of special form where th~ first-class 
primary constraints make an ideal of quasi-algebra formed by all first­
class constraints, also in the presence of second-class constraints. 

To determine the multipliers cr;:0 in the generator (4), now we have 
only the requirement of vanishing the coefficients of constraints <1>:0 in· 
(17) [10]: 

·ma + mp mpma _ O 
ca c/3 9(3 a - ' mp= ma - l,··•,Ma. (26) 

In the system of equations (26), the number of unknowns exceeds the 
number of equations by the number F = A - I:?=1 A; of the first-dass 
primary constraints, therefore the system (26) may be solved to within 
F arbitrary functions: This proves that the rank of the local-symmetry 
transformation quasigroup is defined by the number of first-class primary 
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constraints also in the presence of second-class constraints. We shall 
remind, for completeness, how one make use of this system of equations 
[11]. We write down· (26) as 

E;M" + E:M" gM" M,, + E:M,,-1 g' M,,-1 M,, = 0 
a /3 /Ja /3 /3 a , 

f;M,,-1 + E:M" gM" M,,-1 + E:M,,-1 gM,,-1 M,,-1 + E:M,,-2 M,,-2 M,,-1 = 0 
a /3 /3 a /3 /3 a /3 913 a ' 

(27) 
€2 + E:M" gM" 2 + E:M,,-1 gM,,-1 2 + €1 gl 2 = 0 
a /3 /3 a /3 /3 a /3 /3a ' 

a, {3 = l, · · ·, F. 

Taking E:a = 1::1;!0 • as arbitrary functions and inserting them into the first 
line of system (27) we obtain a system of F inhomogeneous algebraic 
linear equations for F unknowns i/0

-
1({3 = 1, · · ·, F). Solving this sys­

tem of equations (we have detllg:0 -\M"II =/- 0 [11]) and inserting this 
result into the second line of (27), we obtain again a system of F inho­
mogeneous algebraic linear equations for F unknowns 1::;0

-
2 that must be 

solved (detllg:0
-

2 aM,,-lll =f. 0). The result must be inserted into the fol­
lowing line of system (27), etc., up to the last line which gives a system of 
F equations for F unknowns 1::}. Solving this last system of equations we 
shall express, finally, all 1:::0 in terms of E:a(t),g;P;a and their derivatives: 

E:m" = Bm,,mp (M,,-mp) 
a a f3 €13 , mp= ma,···,Ma (28) 

(in formula (28) the summation runs also over mp), where 

(M ) dM,,-mp 
€13 ,,-mp = d M E:p(t), t ,,-mp E:p( t) = 1::;ifp 

and B',;"p/3 are, generally ·speaking, functions of q and p and their deriva­
tives up to the order Ma - ma - 1. Note that the condition 

detllg:"-k-la M,,-kll =/- 0 (k = 0, 1, ···,Ma - 2), 

which is needed for the system of equations (26) to have a solution, is 
proved as a consequence of the functional independence of all constraints 
- in the sawe way as in the case of dynamical systems with the constraints 
of first class only [10], and in the same way as the similar condition (22) 

8 

I 
\ 

r 
~ 
' 

for the system of equations (21). So, the generator of the local-symmetry 
transformations takes the form 

G = Bm,,mp ,._m,, (M,,-mp) 
a /3 'f'a €13 , mp = ma,···, lvla. 

The obtained generator (29) satisfies the group property 

{G1,G2} ~ G3, 

(29) 

(30) 

where the transformation G3 (29) is realized by carrying out two succes­
sive transformations G1 and G2 (29). The amount of group parameters 
E:a(t) which determine the rank of the quasigroup of these transforma­
tions equal: the number of primary constraints of first class. As can be 
seen from formula (29), the transformation law may include both arbi­
trary functions E:a(t) and their derivatives up to and including the order 
Ma - l; the highest derivatives E:~M,,-l) should be always present. 

Thus, we have derived the generator of the local-symmetry trans­
formations and proved that there is no influence of second-class con­
straints on these transformations from requirements of the action quasi­
invariance and of conservation of the primary-constraint surface under 
local-symmetry transformations and on the basis of properties of the 
completely-separated (into first- and second-class) constraint set. 

Notice that the corresponding transformations of local symmetry in 
the Lagrangian formalism are determined by following way: 

oqi(t) = {qi(t), G}'p=~t, 

3 Examples 

oiJ(t) = !oq(t). (31) 

In this section we illustrate our results by a number of examples in both 
finite- and infinite-dimensional cases. 

1. Consider the Lagrangian [14] 

L ( . . ) ' 1 ·2 1 2 = q1 + q2 q3 + 2q3 - 2q2 . 

The generalized momenta are of the form: P1 = q3, P2 
Therefore we have two primary constraints: 

<Pi= Pl - q3, <Pi= P2 - q3. 

9 

(32) 

q3, p3 = q3. 

(33) 



The total Hamiltonian gets the form: 

Hr= ~(p/ + ql) + ui</>~ + u2</>i. (34) 

The self-consistency conditions of theory give 

. 1 1 
<Pi= {</>1,Hr} = -p3, 

. 1 1 
</>2 = { </>2, Hr} = -q2 - p3, 

i.e. two secondary constraints 

<Pi= p3, </>~ = p3 - q2, (35) 

and 

·2 2 </>1 = {</>1,Hr} = u1 + u2 = 0, 
. 1 1 

</>2 = { </>2, Hr} = u2 + u1 + u2 = 0, 

that means u1 = u2 = 0. Two last equations serve for determining the 
Lagrangian multipliers u1 and u2, and there no longer arise constraints. 

Let us calculate the matrix W = IIKmam/JII = 11{</>;;1°,</>?}II= 

W= ( 
0 0 -1 -1) 
0 0 -1 -2 
1 1 0 0 . 

1 2 0 0 

{36) · 

We see that rankW = 4, i.e. all constraints are of second class, therefore 
W have a quasidiagonal (antisymmetric) form. Performing our procedure 
we shall pass to the equivalent canonical set of constraints \JT;:1• according 
to the formula (57) of paper I: 

( 

\J,

1

) ( 1 0 w! = 1 -1 
w2 o o 1 

w2 o o 2 

0 ) ( <P} ) ( Pl - q3 ) 0 <P2 Pl - P2 
0 </>~ = p3 . 

1 -1 </>~ -q2 

0 
0 
1 

(37) 

For the last set of constraints the quasidiagonal form of W will have a 
canonical structure: 

W'= 
( 

0 0 -1 0) 
0 0 0 -1 
1 0 0 0 . 
0 1 0 0 

(38) 
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Now for quasi-invariance of the action with respect to transformations 
(3) with generator ( 4) 

G 1 ,T,l 1 >T,l 2 >T,2 2 >T,2 = T/1 '£1 + T/2 '£2 + T/1 '£1 + T/2 '£2, 

it is necessary to realize the condition (7) of cons·ervation of the primary­
constraint surface under these transformations 

{c w1
} ~o ., a ' a= 1,2. (39) 

From (39) we obtain TJI = TJ~ = 0. Next from (21) we establish T/i = 
r,! = 0, i.e. the second-class constraints of system -(37) ·generate the 
transformations of neither local symmetry nor global one. 

2. Consider the Lagran~ian (14] 

L = q1q2 - q2q1 - (qi - q2)q3·. (40) 

Then passing to the Hamiltonian formalism we obtain the generalized 
momenta Pl = q2, P2 = -qi, p3 = 0 and, thus, three primary con­
straints: 

</>~=Pl - q2, </>i = P2 + qi, 

The total Hamiltonian gets the form: 

,,,1 . 
'1'3 = p3. 

. 1 1 1 
Hr= (q1 - q2)q3 + u1</>1 + u2</>2 + u3cp3. 

From the self-consistency conditions of the theory we obtain 

(41) 

· (42) 

. 1 . 1 . 1 . 
</>1 = -q3 - 2u2 = 0, </>2 = q3 + 2u1 = 0, </>3 =-qi+ q2 = 0. (43) 

Two first equations ( 43) serve for determining the Lagrangian multipliers: 
u1 = u2 = -½q3. The last relatio_n (43) gives the secondary constraint 

</>~ = q2 - qi, 

and there no longer arise constraints. Let us calculate the matrix W = 
II{ 1:a, <t>?}II= 

( 
0 -2 0 1) 
2 0 0 -1 

W = 0 0 0 0 . ( 44) 

-1 1 0 0 

11 



From rank W = 2 we conclude that two constraints are of second class 
and two ones are of first class. With the help of our procedure we separate 
constraints into those of first and second class. For this purpose, by 
means of the equivalence transformation we pass to the canonical set of 
constraints according to the formula (57) of paper I: 

w~ = 0 1 0 0 </>~ = . P2 + q1 ( 45) 
( 

wl ) ( 1 O O O) ( </>} ) ( P1 - q2 ) 

<I>1 0 0 1 0 q>3 p3 
<l>i 1 1 0 2 </>i PI + P2 + q2 - q1 

For the last set of constraints the matrix W acquires the canonical form: 

( 

0 -2 

W'= 2 0 
0 0 
0 0 

0 
0 
0 
0 D-

Further we look for the generator G in the form ( 4): 

G 1 ,T,l 1 ff,l 1 .:F.l 2 iF.2 
= T/1 '1'1 + T/2 '1'2 + E1 '±'1 + E1 '±'1. 

(46) 

(47) 

From the second condition· (7) of conservation of the primary-constraint 
surface :E1 under transformations (3) we derive T/i = T/~ = 0, i.e. the 
second-class constraints of the system do not contribute to the generator 
G. The first condition (8) of conservation of :E1 is realized because 

{ <I>L <I>i} = o. 
If we take into account that gf i = ½ and gf i = 0 in (9), equation (26) 
becomes 

·2 ' 1 1 0 
E1 + :t1 = . 

Denoting ci = c, we obtain cl= -2i and, therefore, 

G = -2ip3 + c(p1 + P2 + q2 - q1), 

which gives 8q1 = E, 8q2 = E, 8q3 = -2i, 8p1 = c, 8p2 = -E, 8p3 = 0. 
In the (q, q)-space the local-symmetry transformations are established 
with the help of formulas (31). It is easy to verify that the action is 
invariant with respect to the transformations generated by G. This is a 
consequence of the constraints being linear in the momentum variables. 
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3. We now look at the infinite-dimensional cases. We consider first a 
Chem-Simons theory. Theories of such type describe, e.g., the fractional 
quantum Hc1ll effect and other phenomena. 

The Lagrangian density for a complex field </> interacting with an 
Abelian Chem-Simons field is [26] 

£ = ( 8µ + iAµ)<p*( 8µ - iAµ)<p + 4: Cjj ( Ao8;Aj + A;Aj + A;8jAo),. ( 48) 

where i,j = 1, 2 and µ = 0, l, 2. The generalized momenta are 

8£ = 0, 
7ro = 8Ao 

_ 8£ = (8o+iAo)<p*, 'lr,p - 81.f) 

8£ = ~CjjAj, 
7r; = 8A.; 41r 

- 8£ = (80 - i1o)<p. 1r,,,, - 81.fJ* 

Therefore, in the phase space we have three primary constraints: 

,1,I a A · · l 2 
'f'i = 7r; - 47rEij j, Z,J = ' ' </>j = 7ro 

and the canonical Hamiltonian: 

He = j d2x [1r,,,(x)1r,,,,(x) + (8; + iA;(x))9*(x)(8; - iA;(x))<p(x) 

(49) 

+Ao(x)j,,, -
4
: c;i ( Ao(x)8;Ai(x) + A;(x)8iAo(x))], (50) 

where j,,, = i(9(x)1r,,,(x) - <p*(x)1r,,,,(x)). 
Among the conditions of the time conservation of constraints ¢f = 0 

(i = 1, 2) and ¢} = 0 two first ones serve for determining the Lagrangian 
multipliers u1 and u2: • 

u1 = 
4

1r (i(<p82<p* - <p*82<p) - 2<p*<pA2] - 281Ao, 
a 

u2 = 
4

1r (i(<p*81<p - <p81<p*) + 2<p*cpAi) - 282Ao. 
a 

From the cundition of conservation for </>! we obtain the secondary con­
straint 

2 . a 
</>3 = ],p - 21r Cjj8iAj, (51) 

and there do not arise more constraints. 
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The only nonvanishing Poisson brackets among the constraints are 

{ ¢;(x), ¢}(y)} = -;: E;j8(x - y), { ¢;(x), <P~(y)} = ;: Emi8m8(x - y). 

Therefore, the matrix W = II{ ¢:,:1°, ¢;/3}11 takes the form: 

(° -1 0 -½) a 1 0 ~ ~
1 

8(x - y). (52) 
W = 271" 0 0 

82 -81 0 0 

From rank W = 2 we conclude that two constraints are of second class 
and the two ones are of first class. 

With the help of the transformation 

J..2 ,1..2 ,1..l ,1..l 'f'3 = 'f'3 + CJ 'Pl + C2'f'2 

we shall satisfy the equality {¢~,<fat} = 0 if c; = -8;. 
Thus, we obtain the canonical set of constraints: '11} = ¢L '11~ = 

<fat <I>} = ¢!, <I>i = ¢i = jl<', separated into the ones of first and second 
class, since now the matrix W has the form: 

( 

0 -1 

W'=_::_ 1 0 
271" 0 o 

0 (j 

0 
0 
0 
0 

D 6(x-y). 

Further, we seek the generator G in the form 

G = j d2x [ 1,f wl + 11~ w~ + c:1 <I>l + ci <I>i] . (53) 

From the second condition (7) of conservation of :E1 under transforma­
tions (3) we derive 17} = r,J = 0, i.e. the constraints of second class do not 
contribute to G. The first condition (8) of conservation of :E1 is realized 

because 
{ <I>L <I>i} = o. 

Since g} i = 1 and gr i = 0 in (9), eq.(26) accepts the form: 

·2 1 0 
€1 + €1 = , 
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_f. 

i.e. c:} = -i(x) where E(x) = EI- Therefore we obtain 

G = j d2x{ -i1r0 + E [ i( cp1rl<' - cp*1rl<'•) - 8;1r;] }, (54) 

from which it is easily to derive the local-symmetry transformations in 
the phase space: 

8cp(x) = iE(x)cp(x), 8;\<'(x) = -iE(x)1rl<'(x), 
8cp*(x) = -iE(x)cp*(x), 81rl<'•(x) = iE(x)1rl<'•(x), (55) 
8A0(x) = i(x), 81r0(x) = 0, 
8A;(x) = 8;E(x), 81r;(x) = 0. 

With the help of (31) it is easily to write the local-symmetry transforma­
tions in the (q, q)-space and.to obtain that 8£, = 8µU:.cµv,\(x)8vAA], i.e. 
the theory .is quasi-invariant under obtained transformations. 

4. Now we consider the well-known case of spinor electrodynamics: 

£, = -¼FµvFµv + i'ljJ1µ(8µ - ieAµ)1P - m'ljJ'ljJ (56) 

where Fµv = 8µAv-8vAµ- Here Aµ,¢, 'ljJ play the role of the generalized 
coordinates. The generalized momenta are 

8L = Faµ, 
11"µ = 8Aµ 

8L -
Pt/J = 

8
,;p = i¢,o, 

from which we have three primary constraints: 

¢1 = 7l"Q, 
1 .-

¢2 = Pt/; - z¢,o, 

and the total Hamiltonian: 

8L =0, 
~= 8~ 

q>~ =~ 

13[1 .. 1 .. 
Hr :-c d x 4F;iF21 + 21r11r1 + 1r;8;Ao + iep,;,A0 'ljJ 

- - 1 1 t] +i¢1;( 8; - ieA;)'ljJ + m'ljJ'ljJ + u1 ¢1 + u2¢2 + u3q>3 . 

(57) 

(58) 

Among the conditions of the constraint conservation in time ,;;;J = 0 ( i = 
1, 2, 3) the two last ones serve for determining the Lagrangian multipliers 
u2 and u3. From the first condition we obtain one secondary constraint 

,1..2 !l i · .!, 'Pl = u;7r - zep,;,'f/, 
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and there do not arise more constraints. Calculating the matrix W = 
II { <p:a' <p;P} II: 

Wd(x-x') 0 0 0 
o ho 

ho o 
iept/J e"fo1P 

-i~Pt/J ) 
-e,o'lj; ' 

0 

(59) 

we see that rankW = 2; therefore, two constraints are of second class and 
the two ones are of first class. Now implementing our procedure, we shall 
pass to the canonical set of constraints by the equivalence transformation: 

( 
wt) ( 1 W1 . 0 

2 -<I>} - . 0 

<I>i ie'lj; 

0 0 
1 0 
0 1 

-ie'lj; 0 

0 ) ( <p~ ) ( Pt/J - i 1P,o ) 0 <fa} - P:;j; 
0 ~ - ~ 
1 'Pi 8;1ri - ie(P¢1P + 1PP:;j;) 

where the constraints are already separated into the ones of first and 
second class, since now the matrix W has the form: 

W' = O(x - x') ( ;~, 

ho 
0 
0 
0 

0 
0 
0 
0 

Further, we look for the generator Gin the form 

D 
G= J d3x[11t wt+11~ w~+d <I>t+d <I>r]. (60) 

From the second condition (7) of conservation of the primary-constraints 
surface :E1 under transformations (3) we derive 77f = 77J = 0, i.e. the 
constraints of second class do not contribute to G. The first condition 
(8) of conservation of :E1 is realized because 

{ <I>L <I>i} = o. 
Taking into account that gf I = -1 and 9I I = 0 in (9), eq.(26) accepts 
the form: 

·2 1 0 
€1 - E1 = , 
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1 •. 

1.e. d = i where E = EI. Therefore we have 

G = j d3x{ i1ro + 1:[8;1ri - ie(P¢1P + 1PP:;f)] }, 

from which it is easily to obtain the gauge transformations in the phase 
space and well-known transformation rule: 

bAµ = 8µE, b'lj; = ieE'lp, b'lj; = -iee1jJ. 

4 Conclusion 

Constrained special-form theories with first- and second-class constraints, 
when the first-class primary constraints are the ideal of quasi-algebra of 
all the first-class constraints, are considered. One must say that this 
restriction on the algebra of constraints is fulfilled in most of the phys­
ically interesting theories, e.g., in electrodynamics, in the Yang - Mills 
theories, etc., and it has been used by us in previous works [10] in the 
case of dynamical systems only with the first-class constraints and also by 
other authors in obtaining gauge transformations on the basis of different 

!, 

approaches [3, 4, 15, 24, 25]. • '' 
Here in the framework of generalized Hamiltonian formalism by Dirac 

for systems with first- and second-class constraints we have suggested the 
method of constructing the generator of local-symmetry transformations 
in both phase and configuration space. The generator is derived from 
the requirel!lent of quasi-invariance (within a surface term) of the action 
functional (in the phase space) under desired transformations which must. 
be supplemented by the demand on the primary-constraints surface :E1 to 
be conserved at these transformations. Necessity of second requirement 
can be seen from following reasoning. Because :E1 is whole (q, q)-space 
image in the phase space and under operation of the local-symmetry 
transformation group the ( q, q)-space is being mapped into itself in a one­
to-one manner, then one-to-one mapping of :E1 into itself corresponds to 
this in the phase space. 

Note that the condition of the :E1 conservation actually is not the addi­
tional restriction on the properties of the local-symmetry transformation 
generator. It naturally follows from definition of the symmetry group of 
the action functional ( see the explanation after relation ( 8)). 
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We have proved, that Dirac's hypothesis [1] (see Introduction) holds 
true in general case also at presence of second-class constraints and these 
mentioned constraints do not contribute to the local-symmetry transfor­
mation law and · do not generate global transformations in lack of first­
class constraints. 

The corresponding transformations of local symmetry in the (q, <j)­
space are determined with the help of formulae (31 ). 

When deriving the local-symmetry transformation generator the em­
ployment of obtained equation system (26) is important, the solution of 
which manifests a mechanism of appearance of higher derivatives of coor­
dinates and group parameters in the Noether transformation law in the 
configuration space, the highest possible order of coordinate derivatives 
being determined by the structure of the first-class constraint algebra, and 
the order of the highest derivative of group parameters in the transfor­
mation law being by unity smaller than the number of stages in deriving 
secondary constraints of first class by the Dirac procedure. The arising 
problem of canonicity of transformations in the phase space in the pres­
ence of higher derivatives of coordinates and momenta will be considered 
in our subsequent paper. · 

So, we can state in the case of special-form theories with first- and 
second-class constraints that the necessary and sufficient condition for 
certain quantity G to be the local-symmetry transformation generator 
is the representation of G as the linear combination of all the first-class 
constraints (and only of them) with the coefficients determined by the 
system of equations (26). 

Obtained generator (29) satisfies the group property (30). The amount 
of group parameters, which determine a rank of quasigroup of these trans­
formations, equals to the number of primary constraints of first class. 

As it is known, gauge-invariant theories belong to the class of de­
generate theories. In this paper we have shown that the degeneracy of 
special-form theories with the first- and second-class constraints is due 
to their quasi-invariance under local-symmetry transformations. 

18 
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CBS13H BTCJporo po.i{a H noianbHble CttMMeTpmi 

E2-96-234 

✓. ~ •.. ~ •. ,·. . - ' ... ~ ... / ' • . ' - ~, . 

B o6o6meHHOM "raMHJibTOHOBOM cpopMa.iJH3Me L{ttpaKa HCCJie,nyJOTCSI JIOKaJlbHble 
cHMMeTpHH ·· cttcTeM co cilsi3siMw nepeoro H · BTopoio poi.ta. IT pewio)KeH · Me-ro.n 
KOHCTpyttpoBaHHSI rettepa-ropa npeo6pa30B~HHi-i JIOKaJlbHOH CHMMeTp~m ,!l)]SI Teopili-i 
C anre6po~ ~BSl3eH cneUHaJlhHOro BH.ri.a (K_.KOTOpblM OTHOCHTCSI 6o_JibWll~CTBO 
cpH3H~ecK~ 11HTepecttb1x1 teoptt~) HJ ipe6oeaHHSI. KBa3HHHBilpHaHTHocrn .nei-ic_TBHSI 
OTHOCHTeJlbHO 3THX ripeo6pa3oBaHHi-i. L{oKa3aHO, '-ITO CBSl3JI BTOporo po.na He ,naJOT 

. BKmma 
0

8 JaKOH npeo6pa30BaHHi-i . JIOKaJlbHOi-i cin.tMeTpHH, _KOTOpblH llOJIHOCTblO 
onpei:ieiisiem1 BCeMH CBSl3SIMH nepeoro po.na.TeM ca~W,IHOKa3a~o. _'-ITO BblpO)KJJ.eH­
HOCTb TeOpHH cneumlllbHOro ei-i.na ,co CBS!3SIMII nepeoro H BTOpor6 ·po,na 06ycnoBJJe11a 

_11x HHBapttaHTHOCfhJO OTHOCHT~hHO npeo6pa3oeamii-i noKanhttoi-i c11MMeTjmH. · · 
' ' .' .. • • • , I • - • .._,, 

. ' . Pa6orn BbinOJIHeHa B Jla6~parnpHH TeopeTH'-leCKOH cpH3HKH HM.H.H.Eoron~6o- .I ~a omrn.· · · · , · · 
,_ .. ; ... 

"' ...... 
/ 

Coo6~eHHe Ofu.emrnem10,ro HHCTH!}'Ta 11.uepHhlX HCC!Jt:.UOBUIJHii. .[fy611a, 1996 

' 
' 

Chitaia N.P., Gogilidze S;A:, Surovtsev:Yu.S ... / 
Second-Class Consiraints' and.Local Symmetries 

._ / \ 

'· 
· . E2a96-234. 

.... In the frame..,;ork of the generalized Hamiltonian formalism.by Dirac, the local 
symmet~ies. of dynamical systein; ·with first- and second-cl.ass . c·onstraints are 
)nvestigated: For theories ·with an ·algebra:9f constraints· o"r special form (to'. which 
a majoritY,6f the physically interesting theories belongs)the method of constructing 
the generator:: of• loi;al-symmetry transformations is obtained .from· the requirement 
of the 'quasi-invariance of an action. ltis proved that second-class constrnint{do not 
contribute to the transformation law of the loc.al symmetry whi~h entirely is stjpulated 
by all thdirst-class constraints. It is thereby shown that degeneracy of special form 
the~ries with the.first- and second-class constraints is due to' their quasi-invariance 
under local-symmetry tfansfomfations'.- ; _ . . . \ . _ ). . · _ .. 

, ·. . . • . , . I 
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