


1 Introduction

The generalized Hamiltonian formalism is a classical basis of the gauge
theories [1]. Originally, the theories only with the first-class constraints
played a main role among these theories, because the gauge degrees of
freedom are stipulated by the m'entionedlconstra.ints. However, for ex-
ample, theories with the massive vector fields, supersymmetric and su-

perstring models introduce .in consideration also the constraints of sec-
~ ond class. But the general case of the generalized Hamiltonian dynamics,
when in addition to first-class constraints the second-class constraints are
present also in a theory, is studied relatively weakly up to now. Actually,
there are two approaches to treat constrained systems. In one approach,
using the classification of constraints into the first and second class, the
second-class constraints are disposed of by the Dirac brackets method
[1]-[4]. Here the separation of constraints into the first- and second-class
ones is needed, a possibility of which was indicated by Dirac. But only
in recent years there have appeared the real methods for such separation
[5]-[7], developed, however, in the framework of the modified generalized
Hamiltonian formalism. In these papers, other than Dirac schemes were
used for the constraint proliferation, therefore, the question arises natu-
rally about equivalence of the constraint sets obtained in these works to
the Dirac set. Generally in the investigations of the dynamical systems
with second-class constraints there is a tendency (maybe, not always jus-
tified) to modify the initial formulation of the generalized Hamiltonian
dynamics [5]-[9]. Note that there is another more recent approach [10]
which does .10t apply the above classification of constraints and where one
has shown that for some Lagrangian systems the basic bracket relations
can be obtained without using the usual Dirac brackets. '

In this paper, we shall follow the conventional Dirac approach. Assum-
ing a complete set of constraints to be obtained according to the Dirac
scheme for breeding the constraints, we shall show that we can separate
them into the first- and second-class ones without modifying this scheme
and solve the problem of passing to an equivalent canonical set of con-
straints to be used in subsequent papers for deriving the local-symmetry
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transformation generator and for proving the fact that second-class con-
straints do not contribute to the law of these transformations unlike the
assertions appeared recently in the literature [11}-[13].

2 Classification and Separation of First- and Second-
Class Constraints

Here we restrict for simplicity ourselves to a system with a finite number
" of the degrees of freedom N described by a degenerate Lagrangian L(g, ¢),
where ¢ = (q1,--+,qn) and ¢ = dq/dt = (¢1,---,qdn) are generalized co-
ordinates and velocities, respectively (all subsequent considerations may
be extended to the field theory by a standard way). After passing to
the Hamiltonian formalism, let A primary constraints be obtained in
the phase space (g,p). Further, provided that equations of motion are
self-consistent, all constraints are established according to the Dirac pro-
cedure of breeding the constraints, i.e. we have a system of constraints
¢To where o = 1,---,Aand m, = 1,2,---, M, (ZleMa = M). Note
that m, = 1 indicate primary constraints (their number is equal to A);
mq = 2, secondary constraints, etc.. The set of constraints ¢™= is com-
plete and irreducible [1]. Furthermore, let

rank “{¢;ﬂa,¢;'ﬂ} —9R < M, 3 (1)

which implies the presence of 2R constraints of second class ¥7'+ and
M — 2R constraints of first class ®J* subjected to the relation:

{(@m=, 87} £ {@m=, g} £ 0, (2)
{@e, gy} £ Fram £ 0 (3)

(E means this equality to hold on the surface of all constraints ). The
constraint sets (@, ¥) and ¢« are related with each other by the equiv-
alence transformation:

e >

¥
A possibility of constructing the set (®, ') was indicated by Dirac. How-
ever, for practical aims (for example, to elucidate a role of second-class

constraints in gauge transformations [14]) the explicit form of set (&, ¥)
is to be known. In what follows we shall busy ourself to obtain this set of
constraints through several successive stages being remain in the frame-
work of the Dirac approach and having in mind its employment next for
deriving the local-symmetry transformation generator.

Let us consider the antisymmetric matrix K!! with elements Kl = 3=

{o4, ¢}, and let .
rank || K} “ A =2R < A (4)

(2, is a primary constraint surface), i.e. A; primary constraints exhibit
their nature of second class already at this stage (more exactly, they arc
candidates for this role provided that we shall be able to develop the
following procedure). One can regard the principal minor of rank A;.
disposed in the left upper corner of the matrix K'!, to be not equal to
Zero. erte down

{d)a?d)[li}:faﬂ'r ¢;+Daﬂ, a’ﬁary:la"'aA (5)
“where
Da[; = P
Among Fio (@ =2,---, Ay) at least one element is non-zero in accordance

with the supposition (4). Renumbering the constraints onc can always
obtain that Fj9 # 0.
Pass to a new set of constraints:
1
1¢{ =i, lép = ¢},
¢(11=¢¢11+1Ual¢}+1u02¢%a a:3,~--,A, )
The left superscripts indicate a stage of our procedure and will be omitted

in the resultant expressions. Determine the coefficients 'u,; and 'u,, .
which are functions of ¢ and p, by the following expressions:

lual = D‘Za/Dl‘Zs Iua2 =—Dla/D12 5 a=374s"'7‘47 (T)

(6)

to guarantee the fulfilment of requirements:
{1¢i, 1¢¢ly} = flaﬂ ¢}3 + Dla + {4){ ) lunl} 05{ + fl'ld l“n‘l ¢}}
+ D12 Uq2 + {¢1 ; ual} (;bl Ll (8)
{'¢2, '08} = foap b + Dan + {9}, Ual}cf)l + Forp "t @}
+ Dot "tar + {4}, Tt} b3 2.



With the help of (5) and (7), it is easily seen that
D= —'Dy 2 'Fy =Fy #0,

Do 2 Fog =0, a=1,2, B=3,4, - A

So, by means of the transformation

l¢111 = lAaﬂ (Z%, detHIAaﬂ“ =1, : ' (9)

1 1
1 I, 'O
A= < 1U 112 ) ) - (10)

where !I;, I and 'O are the unit 2 x 2-, (4 — 2) x (A — 2)- and zero
2 x (A — 2)-blocks, respectively, and :
tug) lugy
'u=| : i |,
lugr tugg
we obtain at the first stage of our procedure:
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I = {16l '¢5} = "Aae 'Ape K7 + O(gy), (11)

gl & <F12 -J o )
o “lfaﬂ”(a7ﬂ=3a4a"'7"4) ’
where J = ( _01 (1) and O are zero blocks, and ||'F,g| is (4 — 2) x

(A — 2)-block, which must be reduced to the quasidiagonal form at the
next stages of procedure. ’
It is evident, we have

rank ||1fap|| 12=4 - 2,

a,f=3,4,,
therefore among elements 'F3g (8 = 4,---, A) at least one (let 'F34) is

- not equal to zero. Repeating the above procedure in respect to this block,
i.e. making the transformation

141 ‘
2,1 ¢a’ a=172,314’
_ 2
¢a { 1‘75}, + 2“&3 1@% + 2“&4 1‘75}17 o= 516)',"aA7 ( )

where functions 2u,3 and 2uqq are determined as ‘
%4a3 = 'Dia/'Dss, %tas = —'Dsa/'D3sy, a=05,6,---,4, (13)
we satisfy the requirements

e}, %) 2o, (i, 76i} 20, (14)

One can see with the help of (5),(13) and (14) that
2Dy = —2Dg 2 'Fy #0,

Dag 2 2Fap =0, a=3,4, f=56,-,4

and, furthermore,

Dy = 'Dip (B=2,3,4), 2Dy = 'Dyy, 2Dy = 'Dy,

Dap 2 'Dop (@=1,2, B=5,6,--,4),

ie. the structure of zero blocks and the principal left minor, which.is
obtained at the first stage, has survived. ‘
So, at the second stage, with the help of the transformation

2¢¢11 = 2Aaﬂ l¢lﬂ = 2Aaﬂ lAﬂa qﬁzlr ) det‘”2Aaﬂ lAﬂU” =1, . (15)

2T, 20
2 _ 1
A - ( 2U 212 > ] (16)

where 2I;, %I, and 20 are the unit 4 x 4-, (4 —4) x (A — 4)- and zero
4 x (A — 4)-matrices, respectively, and ’

. 00 2'u.53 2u54

U= HE : :
00 2uA3 2uA4 )
we obtain

Fp,- 3 O | ; |
s ( gt ‘ . ) - (7
| o " Feapll(e, 8 =5,6,---,4)




Iterating this procedure Ry = A;/2 times, we shall receive the matrix

RK = “{ Ragl | R‘(;S[l, }“ in the quasidiagonal form on the primary-
constraint surface ¥y:
Fy,-J O ... o
O !Fu-J ... o o
mgh 2 : P : . (18)
10} (0} ces RI_IFAl_l A C J
o) |O

The corresponding equivalent set of primary constraints is determined by
the relation: :

Bgh = Fihog B gy Mhor 9L =Rapdp, detA=1. (19)

Among A primary constraints, A; = 2R, functions had exhibited their
nature of second class already in interaction with each other. In de-
scribed procedure it is important that every subsequent stage preserves
the structure of zero blocks and principal left minor obtained at the pre-
ceding stage. We shall denote the second-class constraints by the letter
¥(¥). Thus the following set of primary constraints is obtained:

Walos s [dhlat (20)
with properties

Fﬂl’h?éo’ A a1=2k+1, b1:2k+2 and

{¢a‘,¢,}l B ~ conversely (k=0,1,---,A;—2), (21)
0 - in other cases,
)
(Wi, oL} 2o, {gL,4h) 2o (22)

It is clear that constraints 1&;1 do not generate secondary constraints.
Furthermore, one can attain that

{9, 67} 2o, me=2---,M,. (23)

To this end, we shall make the transformation

ome = gp= + Coe iy, ' (24)

Then using the definition
1 Mgy z 1 m,
{¢a1’¢a } __1 F(lx o »
and taking account of (21), we shall meet the request (23) provided that
Cma = ._F] ma/Falbl 3

ab; a) a
where if a; = 2k+1, then b, = 2k+2 and conversely (k =0,1,---,.4,—
2).
Now let us turn to ¢, o3 =1,---, 4 — A;. Let
rank |[{¢},, ¢5 }|| = A2 < A - Ay (25)

Furthermore, we have

{6, 85} = {85, 65} (26)

In considering the matrix ” {¢a1, ¢f,l }“ one can regard the principal minor
of rank A,. dlsposed in the left upper corner of this matrix, to be not
equal to zero. We denote it by

= ”{¢a2’¢§2}” s where (lg,b;g: 1,"',.‘-12. ‘

Using the procedure which is analogous to the one for quasidiagonaliza-
tion of the matrix K!!, we shall obtain the matrix K12| in the diagonal

form. To this end, we notice at first that {¢1,¢2} ;é 0. We make the
transformation

‘ol = o1, lob = 6L+ lua b, a=2,--- 4  (20)
from_here \ »
'67 = ¢f, 192 = 2 + lug B, a=2,---, 45  (28)

where lug is taken as

-D}%/D}? : (29)

11La|

to satisfy the requirement

{lob, 192} £ ¢!, 147} Z0.



Moreover, we have ‘
i .
{02, 163} = 'y = Fyf — (R FY #0. (30)
Further making the transformation
2¢é = ld)é ’ 2¢111 = ld)tll + 2uf12 ld)é ’ a = 37 o ,A21 (31)
and, therefore,
2¢% = ld)g 3 2¢3 = ld)z + 2ua2 ld’% 3 a= 37 v '7A27 (32)
we determine 2ug, as
“uay = ~'Dy; / 'Df; (33)
to satisfy the requirement
P> >
{63, "2t = {"¢, %63} =o0.

Furthermore, we have

. .
(o3, 03} = B3 = 'Ff - ('F)* [ 'F #0. (34)
So, we have obta.ined
Fi2 0
by O
k2 £ o 1pR |
0 | I>Fusl|(a,b=3,4,---, As)

Continuing this process, we shall deduce at the (A — 1) stage that with
the help of the equivalence transformation of those primary constraints
which have the nonvanishing Poisson brackets on ¥ with their secondary
constraints (the latter are obtained by the Dirac procedure), the matrix
K!2| leads to the diagonal form with the nonvanishing diagonal elements

(Wi, 02} £ FL2 #0 (a2=1,---,4).

Note, the constraints, which have exhibited their nature of second class,
are denoted again by the letter 1.

Here we notice that sometimes it may be useful to change the matrix
K|y into the unit form. For this we make transformation

! ;2 = a2b2¢;z ’ (35)

-

then -
Lyl = C'a,bﬂ/),i = 1y? | . (36)

a2 a2

Coefficients C,;, will be evaluated from the requirement

1,1 1,271 I
{ ¢az ) ¢bz}, = 6a2bz'
We get the transformation matrix:

C= (Fl;)‘lﬂ. | (37)

2b2

So, it is clear that constra.intsﬁ/zf2 do not generate the tertiary ones.
With taking account of the definition of constraints and the properties of
the Poisson brackets, the property (26) gives rise to

R UM AR (38)

Furthermore, with the help of transformation

maz

T = g 4 Ol (39
one can ensure a realization of the following equality:

{Pm?, ¢ar} 20,  may=1,2, ay=1,---,A—A;— Ay (40)
Besides, all the previously established properties (21)-(23) are kept.

Thus at this stage, A, one-linked chains of second-class constraints are
obtained. In addition, the constraints of different chains are in involution
on ¥ with each other and with all other constraints.

Next one must consider the constraints ¢ar2, 0z =1, -+, A—A; — Ag,
and the matrix ||{},,#3,}||. With the help of the Jacobi identity we
obtain * * ‘

{d)iz, ¢%2} 2_ _{¢b27 22}' | (41)
Let ' |
rank [|[{gL,,¢3,}|| £ As = 2R3 < A~ A; — A, (42)

We shall reckon the principal minor of rank Aj, disposed in the left upper
corner of this matrix, to be not equal to zero. We consider that

K ="{¢¢1137¢:23}" ’ az, b3 =1,---, As.



We have F} = 0. Renumbering these constraints we shall attain that
F3 # 0. We make the transformation

‘o = o1, 14 = 6
1 1> 2 2 43
= Gt )+ undh,  a=3.,4 )

and, hence,

19{’:1; = ?7 ld)g = ¢g7 (44)
1(/)3 = ¢3+1ua1¢?+lua2¢%, a=3,--,As.

Coéfﬁcients lugs; and lu,y are taken as
'ug = Dj/DY, 'uaz =~-Dig/Dy (45)

to satisfy the requirement
{'et, 193} 20, {'¢}, 61}

From here

{ld)(lx ’ ld)?} g(), . {ld)(lz ’ l(rbg} g 07 a= 3, ) 7A3
Thus we have
o 0 . FL3
g Z 13 62 . O
0 |”1fab”(a’b'= 3’4""74’43)

By continuing this process the yr/n'at/}rix K"|5 will be represented in the
quasidiagonal form with iny nonvanishing elements along the principal
diagonal F,,13,,33 # 0 (where if a3 = 2k + 1, b3 = 2k + 2 and conversely;
k=0,1,---,A3 — 2). :

Again we have the relations:

{ve,vh} = (o, vl (46)
(w2, v} £ 0, {¥i,¥h) = 0. (47)

Thus, two-linked doubled chains of second-class constraints are ob-
tained. Constraints of such different formations are in involution on ¥
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with each other and with all other constraints, since all the previously
established properties are kept. Besides one can receive

3
{¥nda} 20,  ma=1,23 a3=1,--, A=Y 4;) (48)
1

making the equivalence transformation

, 16as® = das + Cayag® v ' (49)

Turning to the remaining constraints ¢a;?® one must iterate the above

procedure n times. Besides at every i-th stage we consider the constraint

set Gorit (@i = 1,-++, A — Y1 4;) with which the constraints chains,

already exhibiting their nature of second class at i — 1 previous stages of
our procedure, are in involution on ¥ and suppose that

rank[{8, b M E4<A-34.  (50)
. 1

Further we have the relation [7]:

{(f)tlh-x’(ﬁb.-l} g(_l)i{¢}?i—l’¢i’i—l}' . | (51)

- Renumbering the constraints we obtain that the principal minor in the left

upper corner of the matrix "{qﬁcl,i_l, qﬁz,‘__l}” have the rank A;. Considering
it )

K]i : “{qslll|7¢;7,}” ) ai’bi = 1"_,_’A',
we see that the matrix K" is (anti)symmetric for (odd) even i on &
(furthermore, its rank is even for odd 7). After the (quasi)diagonalization
of K!|y its only nonvanishing elements are (for odd 4, F}; # 0, where if
a; = Zk +1, b; =2k +2 and conversely; k = 0, 1,- - - ,Ai = 2), for-even
i,F‘}‘;iyéO, a,-:l,---,A,-. . )
Furthermore, with the help of the Jacobi identity we have [7]
W i) 2 D) 1=01,0im1, (52)
(Wi, 0} 20, jrk#i+l (53)

And also, making the transformation

1 oy £y a;May ag
P = oyt + Copart hms (54)
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one may obtain
Wi da} =0. (55)

Thus, at the i-th stage we determine A; i — 1-linked chains of secor-ld-
class constraints (doubled for odd ) which are in involution on E with
remaining constraints, since all the previously established properties are

kept also. - _
If after carrying out certain n-th stage it is found that

‘rank“{¢;"""",¢;p"}“- 2‘0, v an,ﬂn?l,"',A—iAja (56)

then these remaiﬁing constraints ¢a-" are all of first class. o
So, the final set of constraints (®, ) is obtained from the initial one

me by the equivalence transformation

i

0

where X is equal to the number of all accomplished stages , S° is the
matrix of the equivalence transformation of each stage. '
The total Hamiltonian assumes the final form

Hr = H+ua®, (58)

where . o |
H=H+Y (Kl AT, H}Y,,
i=1

is a first-class function [1], H, is the canonical Hamiltonian, u, are the
Lagrange multipliers. ‘ - o .

Thus, in the Dirac approach, we succeeded in obtaining the ca.pomcal
set of constraints with properties analogous to the ones in ref. [7] W1th.out
terms quadratic in constraints in the final form of the total Hamiltonian.

12

] «T] s 2o (57)
=T s . detT[s |

3. Conclusion

In the framework of the original generalized Hamiltonian formalism [1]
(without modifications) we have developed a separation scheme of con-
straints intc the first- and second-class ones by passing to an equivalent
canonical set of constraints and have determined the general structure
of second-class constraints which is in accordance with the one in the
approaches [6, 7]. The latter has permitted us to use the classification
of constraints and terminology of paper [7]. That the maximal partition
of the set of constraints is achieved and the canonical set of constraints
is obtained is seen from that each second-class constraint of the final set
has the vanishing (on the constraint surface) Poisson brackets with all the
constraints of the system except one, and the first-class constraints have
the vanishing Poisson brackets with all the constraints. These precisely
properties will be needed in subsequent papers at dériving local-symmetry
transformations. ‘

The important feature of our procedure is that each subsequent stage
preserves the properties of transformed constraints obtained at the pre-
ceding stage. This allowed us to separate, at each stage, the second-class
constraints. Note that in the generalized Hamiltonian approach there
exists a clear distinction between primary constraints, which have a pure
kinematic character as arising only from the definitions of momenta, and

- the constraints of subsequent stages of the Dirac scheme for breeding the

constraints, which uses the equations of motion. It was important also
(for following derivation of local-symmetry transformations) to preserve
this distinction in the final set of constraints. Therefore our procedure
is constructed so that the secondary, tertiary, etc. constraints of the
canonical set do not mix themselves into primary constraints.
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