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COMMENT TO THE SECOND ENGLISH PRINTING 

This article originally appe~ed in August 1994 in Russian as a preprint of Joint Institute 

for Nuclear Research No. P2-94-310 being simultaneously submittedto 'Uspekhi Math. Nauk'. 

Unfortunately, in the second part of published version ['YcnexH Ma-r. Hayx\ -r.49, No.5, (1994) 

147-164] by so~e pure technical reasons there appeared m~y (m~re than'. 25) misprints ~elated 

to the refere~ces of papers ... In spite of the author's signal for t_he UMN Editorial Board, these 

errors have been reproduced in th~ American translation. 
• , - I 

Moreover, this latter•English~language publication ['Russian Math. Surveys', 49:5 ·(1994) 

155-176], due to the translator's poor qualification both in subject terminology and Russian, 

contains a lot (around 50) of errors distorting the at1thor's text. 

By these reasons the author decided to present corr~cted English text. It results from the 

editing of the RMS publication and is adequate to the Russian-preprint P2-94-310. 
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1 INTRODUCTION 

1.1 Quantum fields 

Nikolai Nikolaevich Bogoliubov (N .N. in what follows) took up problems in 
quantum field theory (QFT) in real earnest in the late 40s, possibly under 
the influence of the well-known series of articles by Schwinger which were 
presented at N.N.'s seminar in the Steklov (Mathematical) Institute. In 
any case, the first publications on quantum field theory by N.N., which ap
peared in the early 50s[l], were devoted to variational-derivative equations 
of Tomonaga-Schwinger type and were based on the axiomatic definition 
of the scattering matrix as a functional of the interaction domain g( x ), 
generalizing Schwinger's surface function a(t) . 

In the first half of the 50s N .N. made an active entry from the mathe
matical direction into a developing science, namely, renormalizable QFT, 
progressing more rapidly and reaching more deeply than other scientists 
who moved from mathematics into theoretical physics. As is known, he de
veloped his own renormalization method based on the theory of Sobolev
Schwartz distributions. His approach makes it possible to dispense with 
"bare" fields and particles and the physically unsatisfactory picture of in
finite renormalizations. 

It was N .N. 's custom from time to time to present lectures containing 
surveys of large portions of QFT such as "renormalizations", "functional 
integral", or "surface divergences". Those who listened to the whole series 
of surveys were under the impression that N .N. "saw" these outwardly so 
different fragments from a single viewpoint, perceiving them as parts of 
the same picture. 

This was at a time when the pre-war edition of Heitler's "Quantum 
Theory of.Radiation" served as a textbook on the theory of elementary 
particles. Akhiezer and Berestetskii's "Quantum Electrodynamics" (1953) 
and the first volume of "Mesons and Fields" by Bethe, Hoffman and Schwe
_ber (1955) were yet to appear. 

One day in the autumn of 1953, being under the influence of one of 
these lectures, I asked: "N.N., why don't you write a textbook on the new 
QFT?". His answer was: "Thafs not a bad idea, perhaps we should do it 
together?". At first I did not take it seriously. It should be explained that 
it was only in May of that memorable year that one of the co-authors of the 
future book defended his candidate dissertation in diffusion and neutron 
thermalization theory and he did not have a single publication in quantum 

t
b\c~e:v..liif ~;;:;--, 
-- --•~n~~ti~ a!ll'l,~::n;;;.._u,1, Cln.\l-<11·"-•va.::,;;..-,a-a 

§;WS ffimTEl11l 



~ 

field theory, while already in October of the same year the other became 
an academician. 

Nevertheless, the conversation was resumed the following week and we 
begun to discuss the details of the project. The time frame of these events 
is quite well defined, firstly, by the fact that the above conversation took 
place in a car when going to N .N. 's flat in Shchukinskii passage ( near the 
Kurchatov Institute), that is, before N.N. moved to the Moscow State 
University high-rise building in Lenin Hills at the end of 1953. Secondly, 
Akhiezer and Berestetskii's book had appeared just before our proposal was 
submitted at Gostekhizdat at the beginning of 1954. At the same time, 
the first version of the subsequent presentation of the axiomatic scattering 
S-matrix was put forward for publication in Uspekhi Fiz. Nauk at the end 
of 1954. 

The initial draft of the book, apart from an introductory part presenting 
the Lagrangian formalism for relativistic fields and Schwinger's quantiza
tion scheme, included the original axiomatic construction of the scattering 
matrix based essentially on Bogoliubov's causality principle, the renormal
ization method resting on the distribution theory, as well as the functional 
integral method and the generalized Tomonaga-Schwinger equation. 

Technically, the book was written as follows. I would visit N .N. in 
Lenin Hills and we would talk for an hour or two sketching the next chap
ter. Then, in my place I would write the first.version of the text. At the 
next meeting this piece would be discussed and frequently altered substan
tially. When.approved, the rewritten fair copy of the manuscript would be 
put in the left corner on the top of a large wardrobe. It would be taken 
from there to be typed by Evgeniya Aleksandrovna. Lightly embossed · 
multicoloured paper was used for typing. Such paper, made in a factory 
in Riga, was purchased specially for our work. N .N. liked it very much. 
Different sections of the manuscript had different colours: blue, yellow, 
light green, violet .... Three copies were typed at ohce. I would collect the 
typed sections from the opposite, right corner of the wardrobe to enter the · 
formulae. 

The third copy of the coloured sections collected into chapters was read 
critically by colleagues working at N .N. 's department in the Steklov Insti.~ 
tute. This reading provided the first "grinding-in". Two large articles in 
Uspekhi Fiz. Nauk1 were intended ti:> provide the.second one. The text of 
the book[4] which appeared in September 1957, was therefore, in principle, 

1 Published in 1955[2],[3]. 
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quite well "ironed out" and, except for the last two chapters containing 
new material on the renormalization group and dispersion relations, con
stituted, so to say, the "third approximation". 

Looking back, equipped with my later experience as an author, I would 
say that the monograph consisting of 30-odd printer's sheets was created 
rather quickly. This was because from the very beginning N .N. had a clear 
plan and later the entire written text in his mind. 

1.2 The birth of Bogoliubov's renormalization 
group 

In the spring of 1955 a small conference on "Quantum Electrodynamics 
and Elementary Particle Theory" was organized in Moscow. It took place 
at the Lebedev (Physical} Institute in the first half of April. Among the 
participants there were several foreigners, including Hu Ning and Gunnar 
Kallen. My brief presentation touched upon the consequences of finite 
Dyson transformations for renormalized Green functions and matrix ele
ments in quantum electrodynamics (QED). 

Landau's survey lecture "Fundamental Problems in QFT", in which the 
ultraviolet (UV) behaviour in quantum field theory was discussed, consti
tuted the central event of the conference. Not long before, the problem of 
short-distance behaviour in QED was advanced substantially in a series of 
articles by Landau, Abrikosov, and Khalatnikov. They succeeded in con
structing a closed approximation of the Schwinger-Dyson equations, which 
turned out to be compatible both with renormalizability and gauge covari
ance. This so-called "three-gamma" approximation admitted an explicit 
solution in the massless limit and, in modern language, it resulted in the 
summation of the leading UV logarithms. 

The most remarkable fact was that this solution turned out to be self
contradictory from the physical point of view because it contained a "ghost 
pole" in the renormalized amplitude of the photon propagator, the difficulty 
of "zero physical charge". 

At that time our meetings with N .N. were regular and intensive be
cause we were busy preparing the final text of the book. N .N. was very 
interested in the results of Landau's group and presented me with the gen
eral problem of evaluating their reliability by constructing, for example, 
the second approximation (including next-to-leading UV logarithms) of the 
Schwinger-Dyson equations to verify the stability of the UV asymptotics 
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and the existence of a ghost pole. 
At that time I would sometimes meet Alesha Abrikosov, whom I had 

known well since our student years. Shortly after the conference at the 
Lebedev Institute, Alesha told me about Gell-Mann and Low's article, 
which had just appeared. The same physical problem was considered in 
this paper, but, as he put it, it was complex to understand and they had 
not succeeded in combining it with the results obtained by their group. 

I looked through the article and presented my teacher with a brief 
report on the methods and results, which included some general assertions 
on the scaling properties of charge distribution at short distances and rather 
complex functional equations. 

The scene that followed my report was quite impressive. On the spot, 
N.N. announced that Gell-Mann and Low's approach was correct and very 
important: it was a realization of the normalization group (la groupe de 
normalisation) discovered a couple of years earlier by Stueckelberg and Pe
termann in the course of discussing the structure of the finite arbitrariness 
in the matrix elements arising upon removal of the divergences. This group 
is an example of the continuous transformation groups studied by Sophus 
Lie. This implied that functional group equations similar to those obtained 
in the article by Gell-Mann and Low must take place not only in the UV 
limit, but also in the general case. _ 

Then N.N. added that differential equations corresponding to infinites
imal group transformations constitute the most powerful tool in the theory 
of Lie groups. 

Fortunately, I was also familiar with the foundations of group theory. 
Within the next few days I succeeded in recasting Dyson's finite trans
formations and obtaining the desired functional equations for the scalar 
propagator amplitudes in QED, which have group properties, as well as 
the corresponding differential equations, that is, the Lie equations of the 
renormalization group·. Each of these resulting equ'ations contained a spe
cific object, namely, the product of the squared electron charge a = e2 and 
the transverse photon propagator amplitude d( Q2). We called this prod
uct, e2

( Q2
) = e2d( Q2

), the invariant charge. From the physical point of 
view it is an analogue of the so-called effective charge of an electron, first 
considered by Dirac in 1933, which describes the effect of charge screen
ing due to quantum vacuum polarization. Also, the term "renormalization 
group" was first introduced by us in the original publication (5] in Doklady 
Akademii Nauk SSSR in 1955 (and in Nuovo Cimento(7] in 1956). 
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1.3 Episode with a "ghost pole" 
At the above-mentioned conference at the Lebedev Institute Gunnar Kallen 
presented a paper written in collaboration with Pauli on the so-called "Lee 
model", the exact solution of which contained a ghost pole (which, in con
trast to the physical one corresponding to a bound state, had negative 
residue) in the nucleon propagator. K~llen and Pauli's analysis led to the 
conclusion that the Lee model is physically void. 

In view of the result on the presence of a similar pole in the photon 
propagator in QED (which follows from the solution of Landau's group 
as well as an independent analysis by Fradkin) obtained a little earlier in 
Moscow, Kallen 's report resulted in a heated discussion on the possible 
inconsistency of QED. I remember particularly well a scene by a black
board on which Kallen was presenting an example of a series converging 
non-uniformly with respect to a parameter (the terms of the series being 
dependent on the parameter) to support the claim that no rigorous conclu
sion about the properties of an infinite sum can be drawn from the analysis 
of a finite number of terms. 

The parties left without convincing one another and before long a pub
lication by Landau and Pomeranchuk appeared with a statement that not 
only quantum electrodynamics, but also local quantum field theory were 
self-contradictory. 

Without going into details, let me remark that the analysis of this 
problem carried out by N.N. with the aid ohthe renormalization group 
formalism just developed by himself led to the conclusion that such a claim 
cannot have the status of a rigorous result, independent of perturbation 
theory . 

Nevertheless, like Kiillen's arguments, our work also failed to convince 
the opponents. It is well known that Isaak Yakovlevich Pomeranchuk even 
closed his quantum field theory seminar shortly after these events. 
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HISTORY OF THE RENORMAL2 
IZATION GROUP IN QUANTUM 
FIELD THEORY 

2.1 Renormalizations and renormalization in-. 
variance 

As is known, the regular formalism for eliminating ultraviolet divergences 
in quantum field theory (QFT) was developed on the basis of covariant 
perturbation theory in the late 40s. This breakthrough is connected with 
the names of Tomonaga, Feynman, Schwinger and some others. In par
ticular, Dyson and Abdus Salam carried out the general analysis of the 
structure of divergences in arbitrarily high orders of perturbation theory. 
Nevertheless, a number of subtle questions concerning so-called overlapping 
divergences in the scattering matrix, as well as surface divergences, discov
ered by Stueckelberg[8) in the Tomonaga-Schwinger equation, remained 
unclear . 

An important contribution in this direction based on a thorough analy
sis of the mathematical nature of UV divergences was made by Bogoliubov. 
This was achieved on the basis of a branch of mathematics which was new 
at that time, namely, the Sobolev-Schwartz theory of distributions. The 
point is that propagators in local QFT are distributions (similar to the 
Dirac delta-function) and their products appearing in the coefficients of 
the expansion of the scattering matrix require supplementary definitions. 
In view of this the UV divergence existence reflects the ambiguity in the 
definition of the products in the case when their arguments coincide or lie 
on the light cone. 

In the mid 50s on the basis of this approach Bogoliubov and his dis
ciples developed a technique of supplementing the definition of the prod
ucts of singular Stueckelberg-Feynman propagators [2] and proved a the
orem [9, 10] on the finiteness and uniqueness (for renormalizable theories) 
of the scattering matrix in any order of perturbation theory. The prescrip- · 
tion part ofthis theorem, namely, Bogoliubov's R-operation, still remains 
a practical means of obtaining finite and unique results in perturbative 
calculations in QFT. 

The R-operation works, essentially, as follows. To remove the UV 
divergences, instead of introducing some regularization, for example, the 
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momentum cutoff, and handling quasi-infinite counterterms, it suffices to 
complete the definition of divergent Feynman integrals by subtracting from 
them certain polynomials in the external momenta which in the simplest 
case are reduced to the first few terms of the Taylor series of the inte
gral. The uniqueness of computational results is ensured by special con
ditions imposed on them. These conditions contain specific degrees of 
freedom 2 that can be used to establish the relationships between the La
grangian parameters (masses, cou piing constants) and the corresponding 
physical quantities. The fact that physical predictions are independent 
of the arbitrariness in the renormalization conditions, that is, they are 
renormalization-invariant, constitutes the conceptual foundation of the 
renormalization group. 

An attractive feature of this approach is that it is free from any aux
iliary nonphysical attribut~s such as bare masses, coupling constants, and 
regularization parameters which turn out to be unnecessary in computa
tions employing Bogoliubov's approach. As a whole, this method can be 
regarded as renormalization without regularization and counterterms. 

2.2 The discovery of the renormalization group 
The renormalization group approach has been known in theoretical physics 
since the mid 50s. The renormalization group was discovered by Stueckel
berg and Petermann [11] in 1953 as a group of infinitesimal transformations 
related to the finite arbitrariness arising in the elements of the scattering 
S-matrix upon elimination of the ultraviolet divergences. This arbitrari
ness can be fixed by means of certain parameters Ci: 

" we must expect that a group of infinitesimal operators Pi = 
( a I aci)c=O, exists, satisfying 

PiS = hi(m,e)8S(m,e, ... )/8e, 

admitting thus a renormalization of e." 

These authors introduced the normalization group generated ( as a Lie 
group) by the infinitesimal operators Pi connected with the renormaliza
tion of the coupling constant e. 

2These degrees of freedom correspond to different renormalization schemes 
and momentum scales. 
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In the following year, on the basis of Dyson 's transformations written in 
the regularized form, Gell-Mann and Low [12] derived functional equations 
for QED propagators in the UVlimit. For example, for the renormalized 
transverse part d of the photon propagator they obtained an equation of 
the form 

(k2 2) - dc(k2/m2,en ' e~ = e~dc(>.2/m2,en' 
d >,2,e2 - dc(>.2/m2,eD (1) 

where >. is the cutoff momentum and e2 is the physical electron charge. The 
appendix to this article contains the general solution ( obtained by T .D.Lee) 
of this functional equation for the photon amplitude d(x, e2) written in two 
equivalent forms: 

e2d(x,e2) = F(xF-1 (e2
)) 

and 
e2 d 

J dy 
ln x = '1/J(y) ' (2) 

e2 

where 
8(e2d) 

'1/J( e2
) = -- at x = 1 . 

8lnx 
A qualitative analysis of the behaviour of the electromagnetic interaction 
at small distances was carried out with the aid of (2). Two possibilities, 
namely, infinite and finite charge renormalizations were pointed out: 

Our conclusion is that the shape of the charge distribution 
surrounding a test charge in the vacuum does not, at small 
distances, depend on the coupling constant except through the 
scale factor. The behavior of the propagator functions for large 
momenta is related to the magnitude of the renormalization 
constants in the theory. Thus it is shown that the unrenormal
ized coupling constant e5/41rlic, which appears in perturbation 
theory as a power series in the renormalized coupling constant 
ei/41rlic with divergent coefficients, many behave either in two 
ways: 

It may really be infinite as perturbation theory indicates; 

It may be a finite number independent of ei/41rlic. 
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The latter possibility corresponds to the case when '1/J vanishes at a finite 
point:3 'I/J(a00 ) = 0. 

We remark that paper [12] neither paid attention to the group character 
of the analysis and the results obtained, nor paper [11] quoted. Moreover, 
the authors did not recognize that the Dyson transformations used by them 
are valid only for the transverse scaling of the electromagnetic field. Maybe 
this is why they failed to establish a connection between their results and 
the standard perturbation theory and they did not discuss the possibility 
that a ghost pole might exist. 

The final step was taken by Bogoliubov and Shirkov [5], [6] 4 • Using 
the group properties of finite Dyson transformations for the coupling con
stant and the fields, the authors obtained functional group equations for 
the propagators and vertices in QED in the general case (that is, with 
mass taken into account).· For example, the equation for the transverse. 
amplitude of the photon propagator was obtained in the form 

d(x,y;e2) = d(t,y;e2)d (x/t,y/t;e2d(t,y;e2)) , 

in which the dependence of d not only on x = k2 / µ 2 ( where µ is a certain 
normalizing scale factor), but also on the mass variable y = m2 / µ 2 is taken 
into account. 

In the modern notation, the above relation 5 is an equation for the 
square of the effective electromagnetic coupling constant a= ad(x, y; a= 
e2): 

a(x,y;a) = a(x/t,y/t;a(t,y;o:)) . (3) 

The term "renormalization group" was introduced and the notion of in
variant charge 6 was defined in [5]. 

Let us emphasize that, in contrast to the Gell-Mann and Low approach, 
in our case there are no simplifications due to the massless nature of the 
ultraviolet asymptotics. Here the homogeneity of the mass scale is violated 
explicitly by the scale term m. Nevertheless, the symmetry ( even though 
a bit more complex one) underlying the renormalization group can, as 
before, be stated as an exact symmetry of the solutions of the quantum 

3 Here 0 00 is the so-called fixed point of the renormalization group 
transformations. 

4See also the survey (7) published in English in 1956. 
5In the massless case y = 0 it is equivalent to (4). 
6This notion is now known as the effective or running coupling constant. 
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field problem.7 • This is what we mean when using the term Bogoliubov's 
renormalization group or Renorm-group for short. 

The following differential group equations for o:: 

80:(x, y; a) = /3 (I, o:(x, y; a)) 
81n X X 

(4) 

in the nonlinear form, which is standard in Lie theory, and for the electron 
propagator s(x, y; a): 

where 

8s(x,y;a) = 1 (I,o:(x,y;a)) s(x,y;a), 
.8ln X X 

/J(y, a)= ao:(~, Yi a) 
a~ , 

8s(~,y;a) at ~ = 1 · ,(y,a) = a~ 

(5) 

(6) 

were first obtained by differentiating the functional equations. In this way 
an explicit realization of the differential equations mentioned in the citation 
from [11] was obtained. These results established a conceptual link between 
the Stueckelberg-Petermann and Gell-Mann-Low approaches. 

2.3 Creation of the RG method 
Another important achievement of [5] consisted in formulating a simple al
gorithm for improving an approximate perturbative solution by combining 
it with the Lie equations8 : -

Formulae (4) and (5) show that to obtain expressions for o: and 
s valid for all values of their arguments one has only to define 
a(~, y, o:) and s(~, y, o:) in the vicinity of~ = 1. This can be 
done by means of the usual perturbation theory. 

In the next publication {6] this algorithm was used effectively to analyse 
the ultraviolet and infrared (IR) asymptotic behaviour in QED in trans
verse gauge. The one-loop and two-loop UV asymptotics 

a 
-(

1
) (x O,o:) = 

1 
a -lnx 

CXRG ' - 31r 
(7) 

7See equation (11) below. 
8 Modern notation is used in this quotation from [5] 
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and 
(8) 0(2) (x O o:) - a 

RG ' ' - l a 1 + 3a l (1 a l ) - 31r n x 41r n - 31r n x 

of the photon propagator as well as the IR asymptotics 

s(x, y; o:) ~ (p2 /m2 - 1)-3a/21r 

of the electron propagator were obtained. At that time these expressions 
had already been known only at the one-loop level. It should be noted that 
in the mid 50s the problem of the UV behaviour in local QFT was quite 
urgent. Substantial progress in the analysis of QED at small distances 
was made by Landau and his collaborators [13] by solving an approximate 
version of the Schwinger-Dyson equations including only the two-point 
functions ( "dressed" prop~gators) ~i( ... , o:) and the three-point function 
f( ... ,a), that is, the so-called "three-gamma equations". The authors ob
tained asymptotic expressions for QED propagators and 3-vertex, in which 
( using modern language) the leading UV logarithms were summed 9 • How
ever, Landau's approach did not provide a prescription for constructing 
subsequent approximations. 

An answer to this question was given only within the new renormal
ization group method. The simplest UV asymptotics of QED propagators 
obtained in our paper [6], for example, expression (7), agreed precisely with 
the results of Landau's group. 

Within the renormalization group approach these results can be ob
tained in just a few lines of argument. To this end, the one-loop approxi-
mation 

o~fh(x,O;o:)=o:+o:
2
£+ ... , i=lnx 

311' 
of perturbation theory should be substituted into the right-hand side of the 
first equation in (6) to compute the generator /3(0,a) ='¢(a)= a 2/311', 
followed by an elementary integration. 

Moreover, starting from the two-loop expression 

-(2) o:2 a2 (£2 i) 
o:PTh(x,O;o:)=o:+311'£+11'2 9+4 + ... , 

we arrive at the second renormalization group approximation (8) corre
sponding to the summation of the next-to-leading UV logarithms. This 

9These results were obtained under arbitrary covariant gauge. 
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demonstrates that the RG method is a regular procedure, within which it 
is quite easy to estimate the range of applicability of the results. 

The second-order renormalization group solution (8) for the effective 
coupling constant first obtained in '[6] contains the nontrivial log-of-log 
dependence which is now widely known as the two-loop approximation for 
the running coupling constant in quantum chromodynamics (QCD). 

Before long [14] this approach was formulated for the case of QFT 
with two coupling constants g and h, namely, for a model of pion-nucleon 
interactions with self-interaction of pions 10• The following system of two 
coupled equation: 

g2(x,y;g2,h) =i(f,f,"tJ2(t,y;g2,h),h(t,y;g2,h)), 

- ( 2 ) - (X Y -2 ( 2 ) - ( 2 )) h x,y;g ,h =h t't'g t,y;g ,h ,h t,y;g ,h . 

was first obtained. The corresponding system of nonlinear differential equa
tions from [14] was used in [15] to carry out the UV analysis of the renormal
izable model of pion-nucleon interactions based on one-loop perturbative 
computations. 

In [5, 6] and [14] the renormalization group approach was thus directly 
connected with practical computations of the UV and IR asymptotics. 
Since then this technique, known as the renormalization group method 
(RGM), has become the sole means of asymptotic analysis in local QFT. 

2.4 Other early RG applications 

The first general theoretical application of the RG method was made in 
the summer of 1955 in connection with the (then topical) so-called ghost 
pole problem ( also known as the "zero-charge trouble"). This effect, first 
discovered in QED [161 17], was at first thought [17] to indicate a possible 
difficulty in quantum electrodynamics, and then [18, 19] as a proof of the 
inconsistency of the whole local QFT. 

However, the renormalization group analysis of the problem carried out 
in [20] on the basis of (2) demonstrated that no conclusion obtained with 

10lt is essential that for the Yukawa PS 1rN-interaction ~ g to be renorma
lizable, it is necessary to add to the Lagrangian a quartic pion self-interaction 
term with an independent, that is, a second, coupling constant h. At that time 
this was not fully recognized: compare the given system with equations 
(4.19)'-(4.21)' in [12], and the discussion in [18]. 
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the aid of finite-order computations within perturbation theory can be 
regarded as a complete proof. This corresponds precisely to the impression, 
one can get when comparing (7) and (8). In the mid 50s this result was 
very significant, for it restored the reputation of local QFT. Nevertheless, 
in the course of the following decade the applicability of QFT in elementary 
particle physics remained doubtful in the eyes of many theoreticians. 

In the general case of arbitrary covariant gauge the renormalization 
group analysis in QED was carried out in [21]. Here the problem is that the 
charge renormalization is connected only with the transverse part of the 
photon propagator. Therefore, under nontransverse (for example, Feyn
man) gauge the Dyson transformation has a more complex form. Logunov 
proposed to solve this problem by considering the gauge parameter is an
other coupling constant. 

Ovsyannikov [22] found the general solution of the functional RG equa
tions taking mass into account: 

<I>(y,a) = <I>(y/x,a(x,y;a)) 

in terms of an arbitrary function <I> of two arguments, reversible in its 
second argument. To solve the equations, he used the differential group 
equations represented as linear partial differential equations of the form 11 : 

{ 
8 8 8} x
8
x+y

0
y-/3(y,a)

00 
a(x,y,a)=O. 

The results of this "period of pioneers" were collected in the chapter 
"Renormalization group" in the monograph [23], the first edition of which 
appeared in 1957 12 , and very quickly acquired the status of "quantum-field 
folklore". 

3 FURTHER RG DEVELOPMENT 

3.1 Quantum field theory 

The next decade brought a calm period, during which there was practi
cally no substantial progress in the renormalization group method. An 
important exception, which ought to be mentioned here, was Weinberg's 

11 Which are now known as the Callan-Symanzik equations. 
12Sbortly after that is was translated into English and French [24]. 
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article [25], in which the idea of a running mass of a fermion was proposed. 
If considered from the viewpoint of [21], this idea can be formulated as 
follows: 

any parameter of the Lagrangian can be treated as a (general
ized) coupling constant, and so can be included into the renor
malization group formalism. 

However, the results obtained in the framework of this approach turned 
out the same as before. For example, the most familiar expression for the 
fermion running mass 

m(x, a)= mµ ( a(:, 
0
J v , 

in which the leading UV logarithms are summed, was known for the elec
tron mass in QED (with v = 9/4) since the mid 50s (see [13] M [6]). 

New possibilities for applying the RG method were discovered when 
the technique of operator expansion at small distances ( on the light cone) 
appeared. The idea of this approach stems from the fact that the RG 
transform, regarded as a Dyson transformation of the renormalized vertex 
function, involves the simultaneous scaling of all its invariant arguments 
( normally, the squares of the momenta) of this function. The expansion on 
the light cone, so to say, "separates the arguments", as a result of which 
it becomes possible to study the physical UV asymptotic behaviour by 
means of the expansion coefficients (when some momenta are fixed and lie 
on mass shell). The argument-separation method for functions of several 
variables proposed by Wilson makes it possible to study a number of cases 
important from the physical point of view. 

The end of the calm period can be marked well enough by the year 
1971, when the renormalization group method was applied in the quantum 
theory of non-Abelian gauge fields, in which the famous effect of asymptotic 
freedom was discovered [27]. 

The renormalization group expression 

-(1) Gs 
Q =--

s 1 + .81 ln x 

for the effective coupling constants Os in QCD, computed in the one-loop 
approximation, exhibits a remarkable UV asymptotic behaviour thanks to 
,81 being positive. This expression implies, in contrast to Eq. (7), that the 
effective QCD constant decreases as x increases and tends to zero in the UV 
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limit. This discovery, which has become technically possible only because 
of the RG method use, is the most important physical result obtained with 
the aid of the RG approach in particle physics. 

3.2 Spin lattice 

At the same time Wilson [28] succeed~d in transplanting the RG philoso
phy from relativistic QFT to another branch of modern theoretical physics, 
namely, the theory of phase transitions in spin systems on a lattice. This 
new version of the RG was based on Kadanoff's idea[29] of joininig in 
"blocks" of few neighbouring spins with appropriate change (renormaliza
tion) of the coupling constant. 

To realize this idea, it is necessary to average the spins in each block. 
This operation reducing the number of degrees of freedom and simplifying 
the system under consideration, preserves all its long-distance properties 
under a suitable renormalization of the coupling constant. Along with this, 
the above procedure gives rise to a new theoretical model of the original 
physical system. 

In order that the system obtained by averaging be similar to the original 
one, one must also discard some terms of the new effective Hamiltonian 
which turns out to be unimportant in the description ofinfrared properties. 
As a result of this Kadanoff - Wilson decimation, we arrive at a new 
model system characterized by new values of the elementary scale and 
coupling constant. By iterating this operation, one can construct a discrete 
ordered set of models. From the physical point of view the passage from 
one model to some other one is an irreversible approximate operation. Two 
passages of that sort applied in sequence are equivalent to one, which gives 
rise to a group structure in the set of models. However, in this case the 
renormalization group is an approximative and is realized as a semigroup. 

This construction, obviously in no way connected with UV properties, 
was much clearer from the general physical point of view and could there
fore be readily understood by many theoreticians .. Because of this, in 
the seventies the concept of the renormalization group and its algorithmic 
structure were rather quickly and successfully carried over to new branches 
of theoretical physics such as polymer physics [30], the theory of noncoher
ent transfer [31], and so on. 

Apart from constructions analogous to those of Kadanoff and Wilson, 
in a number of cases the connection with the original quantum field RG 
was established. 
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3.3 Turbulence 

This has been done with help of the functional integral representation. For 
example, the classic Kolmogorov-type turbulence problem was connected 
with the RG approach by the following steps [32]: 

1. Define the generating functional for correlation functions. 

2. Write for this functional the path integral representation. 

3. By a change of functional integration variable establish an equivalence 
of the given classical statistical system with some QFT model. 

4. Construct the Schwinger-Dyson equations for this equivalent QFT. 

5. Apply the Feynman diagram technique and perform the finite renor
malization procedure. 

6. Write down the standard RG equations and use them to find fixed 
point and scaling behavior. 

The physics of renormalization transformation in the turbulence problem 
is related to a change of UV cutoff in the wave-number variable. 

3.4 Ways of the RG expanding 

As we can see, in different branches of physics· the renormalization group 
developed in two directions: 

• The construction of a set of models for the physical problem at hand 
by direct analogy with the Kadanoff - Wilson construction ( averaging 
over certain degrees of freedom) - in polymer physics, noncoherent 
transfer theory, percolation theory, and others; 

• The search for an exact RG symmetry in the theory directly or by 
proving its equivalence to some QFT: for example, in turbulence 
theory [32, 33], turbulence in plasma [35], phase transition physics 
(based on a model of a continuous spin field). 

What is the nature of the symmetry underlying the renormalization 
group? 

a) In QFT the RG symmetry is an exact symmetry of a solution de
scribed in terms of the fundamental notions of the theory and some bound
ary value(s). 

b) In turbulence and some other branches of physics it is a symmetry 
of a solution of an equivalent quantum field model. 
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c) In spin lattice theory, polymer theory, non coherent transfer theory, 
percolation theory, and so on (in which the blocking concept of Kadanoff 
and Wilson is applied) the RG transformation involves transitions between 
various auxiliary models ( constructed especially for this purpose). To for
mulate RG, it is necessary to construct an ordered set M of models Mi. 
The RG transformation connecting various models has the form 

R(n)Mi = Mni. 

In this case the RG symmetry can thus be realized only on the whole set 
M. 

There is also a purely mathematical difference between the aforesaid 
realizations of the renormalization group. In field theory the RG is a con
tinuous symmetry group. On the contrary, in the theory of critical phe
nomena, polymers, and other similar cases (when an averaging operation is 
necessary) we have an approximate discrete semigroup. It must be pointed 
out that in dynamical chaos theory, in which renormalization group ideas 
and terminology can sometimes be applied too, functional iterations do not 
constitute a group at all, in general. An entirely different terminology is 
sometimes adopted in the above-mentioned domains of theoretical physics. 
Expressions such as "the real-space renormalization group", "the Wilson 
RG", "the Monte-Carlo RG", or "the chaos RG" are used. 

Nevertheless, the affirmative answer to the question 
"Are there distinct renormalization groups?" 

implies no more than what has just been said about the differences between 
cases a) and b) on the one hand and c) on the other. 

3.5 Two faces of the renormalization group in 
QFT 
As has been mentioned above, invariance under RG transformations, that 
is, renorm-group invariance, is a very important notion in renormalized 
quantum field theory. It means that all physical results are independent 
of the choice of the renormalization scheme and the subtraction point. 
The latter corresponds to a symmetry whose presence is embodied in the 
renormalization group. In QFT the RG transformations can be considered 
in two different ways. 

The existence of virtual states and virtual processes is a characteristic 
feature of quantum field theory. For example, virtual transformations of a 
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photon into an electron-positron pair and vice versa can take place in QED. 
This vacuum polarization process gives rise to the notion of effective charge. 
In the classical theory of electromagnetism a test electric charge placed in a 
polarizable medium attracts nearby charges of opposite sign, which leads to 
partial screening of the test charge. In QED the vacuum, that is, the very 
space between the particles, serves as a polarizable medium. The electron 
charge is screened by the vacuum fluctuations of the electromagnetic field. 
Dirac was the first to demonstrate in 1933 [37] that the electron charge in 
momentum representation depends on Q 2 according to the formula 

e(Q
2
,A

2
) = e0 { 1 + ;; ln ~: + ···} , (9) 

where e0 = Fo is the bare charge and A is the cutoff momentum. 
The first attempt to formulate renormalization group ideas in this con

text was undertaken by Stueckelberg and Petermann [11]. In their pio
neering work the RG transformations were introduced somewhat formally 
being related to the procedure for divergences eliminating, the result of 
which contains a finite arbitrariness. It is this "degree of freedom" in the 
finite renormalized expressions that was used in our papers [5], [6]. Roughly 
speaking, our result corresponds to a parameter change ( A --+ µ) describing 
the degree of freedom, so that the "finite representation" 

e(Q 2 ,µ 2
) = eµ {1 + CY.µ In Q: + ···} , 

671" µ 
(10) 

is obtained in place of Eq. (9), eµ = ,J'a;; being the physical charge of an 
electron measured at Q 2 = µ 2

• Here the renormalization group symmetry 
can therefore be expressed in terms of the momentum transfer scale, that 
is renormalization point µ. 

Gell-Mann and Low used another representation. In their article the 
small distance behaviour in QED is analysed in terms of A, the momentum 
transfer cutoff. In this approach the electron charge could be represented 
by the expression (9) that is singular in the limit A--+ oo. 

We shall present a simple physical picture (which can be derived from 
Wilson's Nobel lecture) to illustrate this approach. Imagine an electron 
of finite dimensions distributed in a small volume of radius RA = n/cA 
with In( A 2 / m~) ~ 1. We assume that the electric charge of such a non
local electron depends on the cutoff momentum so that this dependence 
accumulates the effects of vacuum polarization taking place at distances 
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not exceeding RA from the centre of the electron. We thus obtain a set 
of models with a nonlocal electron of charges e; = ...,(<.ii corresponding to 
different values of the cutoff parameter A;. 

Here a; depends on R; as the effects of vacuum polarization in the 
excluded volume r < R; must be subtracted. In this picture the RG 
transformation can be thought of as the passage from one radius R; = 
hf cA; to another Rj accompanied by a simultaneous change of the effective 
electron charge 

( 
a· A~ ) 

e; = e(A;)--+ Cj = e; 1 + 
6
; In A~ + ... , 

which can be determined with the aid of (9). In other words, here the 
RG plays the role of a symmetry of operations in the space of nonlocal 
QED models constructed so that each model is equivalent to the true local 
theory at long distances. It is right to say that in these two approaches 
the renormalization groups differ from one another. 

3.6 Functional self-similarity 
An attempt to analyse the relationship between these formulations on a 
simple common basis was undertaken about ten years ago [38]. In this 
paper (see also our surveys [39, 40, 41]) it was demonstrated that all the 
above-mentioned realizations of the renormalization group could be con
sidered in a unified manner by using only some common notions of math
ematical physics. 

In the general case it proves convenient to discuss the symmetry under
lying the renormalization group with the aid of a continuous one-parameter 
transformation of two variables x and g written as 

Rt: {x--+ x' = x/t, g--+ g' = g(t,g)} (11) 

Here x is the basic variable subject to a scaling transformation, while g is 
a physical quantity undergoing a more complicated functional transforma
tion. To form a group, the ·transform Rt must satisfy the multiplication 
law -

RtR-r = Rt-r, 

which leads to the following functional equation for g: 

g(x,g) = g (x/t,g(t,g)) (12) 
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This equation has the same form as the functional equation (3) for the 
effective coupling in QFT in the massless case, that is, when y = 0. It is 
also fully equivalent to the Gell-Mann-Low functional equation (1 ). It is 
therefore clear that the contents of RG equation can easily be reduced to 
the group multiplication law. 

In physical problems the second argument g of the transformation is 
usually the boundary value of a dynamical function, that is, a solution of 
the problem under investigation. This means that the symmetry underly
ing the RG approach is a symmetry of the solution (not of the equation) 
describing the physical system at hand, involving a transformation of the 
parameters entering the boundary conditions. 

As an illustration, we consider a solution f( x) defined by the bound
ary condition f(xo) = Jo- Among the arguments off we also include the 
boundary parameters: f(x) = f(x, xo, Jo)- In this case the RG transforma
tion corresponds to altering the parametrization of the solution, say, from 
{ xo, Jo} to { x1, Ji}. In other words, the value of x for which the boundary 
condition is given should not be equal to x 0 ( that is, another point Xi can 
also be used). We now assume that J can be represented as F(x/x0 , Jo) 
with F(l, 1 ) = 1 . The equality 

F(x/xo,fo) = F(x/xi,fi) 

reflects the fact that the function itself is not modified under that change 
of the boundary condition13 . Setting Ji = F(xifx0 ,J0 ), e = x/x0 and 
t = xif xo, ":e get F(e, Jo) = F(e/t, F(t, Jo)), which is equivalent to (12). 
The group operation can now be defined by analogy with Eq. (11): 

Rt : { e-+ e/t, Jo-+ ii= F(t,Jo)}. 

Therefore, in the simplest case the RG can be defined as a continuous one
parameter group of transformations of a solution of the physical problem 
fixed by a boundary condition. The RG transformation affects the param
eters of the boundary condition and corresponds to changing the way in 
which this condition is introduced for one and the same solution. 

Special cases of such transformations have been known for a long time. 
If we assume that F = g is a factored function of its arguments, then from 
Eq.(12) it follows that F(z, f) = Jzk, with k being a number. In this 
particular case the group transform takes the form 

Pt : { z-+ z' = z/t , f-+ J' = Jtk } , 
13 As, for example, in the case F(x, 1) = <I>(ln x + 1). 
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that is known in mathematical physics as a power self-similarity transfor
mation. More general case Rt with functional transformation law can be 
characterized as a functional self-similarity (FSS) transformation [38]. 

4 CONCLUSION 

We can now answer the question concerning the physical meaning of the 
symmetry that underlies functional self-similarity and the renormalization 
group. Consider the case when the RG is equivalent to FSS. As we have 
already mentioned, it is not a symmetry of the physical system or the 
equations of the problem at hand, but a symmetry of a solution considered 
as a function of the essential physical variables and suitable boundary 
conditions. A symmetry like that can be defined, in particular, as the 
invariance of a physical quantity described by this solution with respect to 
the way in which the boundary conditions are inposed. Changing this way 
constitutfs a group operation in the sense that the group property can be 
considered as the transitivity property of such changes. 

Homogeneity is an important feature of the physical systems under 
consideration. However, homogeneity can be violated in a discrete manner. 
Let us imagine that such a discrete inhomogeneity is connected with a 
certain value of x, say, x = y. In this case the RG transformation with 
canonical parameter t will have the form: 

Rt: {x'=x/t, y'=y/t, g'=g(t,y;g)}. 

The group multiplication law yields precisely the functional equation (3). 
The symmetry connected with functional self-similarity is a very simple 

and frequently encountered property of physical phenomena. It can easily 
be "discovered" in many very different problems of theoretical physics: in 
classical mechanics, transfer theory, classical hydrodynamics, and so on 
[42, 40, 41, 43]. 

Recently, interesting attempts have been made [45, 46] to use the RG 
concept in classical mathematical physics, in particular, to solve nonlinear 
differential equations. These articles discuss the possibility of establishing 
a regular method for finding a special class of symmetries of the equations 
in modern mathematical physics, namely, RG-type symmetries. The latter 
are defined as solution symmetries with respect to transformations involv
ing parameters that enter into the solutions through the equations as well 
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as through the boundary conditions in addition to { or even rather than) 
the natural variables of the problem present in the equations (see [47, 48]). 

As is well known, the aim of modern group analysis [49, 50], which goes 
back to works of S. Lie[51], is to find symmetries of differential equations 
(DE). This approach does not include a similar problem of studying the 
symmetries of solutions of these equations. Beside the main direction of 
both the classical and modern analysis, there also remains the study of 
solution symmetries with respect to transformations involving not only 
the variables present in the equations, but also parameters appearing in 
the solutions, including the boundary conditions. 

From the aforesaid it is clear that the symmetries which attracted at
tention in the 50s in connection with the discovery of the RG in QFT were 
those involving the parameters of the system in the group transformations. 
It is natural to refer to these symmetries related to functional self-similarity 
as the RG-type symmetries. As we have already mentioned, they are in
herent in many problems of mathematical and theoretical physics. It is 
therefore important to establish, on the basis of modern group analysis, a 
regular method for finding RG symmetries for various classes of mathemat
ical problems, including those whose formulation goes beyond the scope of 
systems of a finite number of partial differential equations. 

The timeliness of the search for RG symmetries is connected with the 
effectiveness of the RG method, which makes it possible to improve the 
properties of approximate solutions of problems possessing the symmetry 
and, in particular, to reconstruct the correct structure of the behaviour 
of the solution in a neighbourhood of a singularity, which is, as a rule, 
disturbed by the approximation. 

In problems admitting description in terms of DE's a regular algorithm 
for finding RG-type symmetries can be constructed by combining the group 
analysis [48, 52] with Ambartsumyan invariant embedding method [53]. In 
those cases when the embedding of the boundary-value problem for a DE 
leads to an integral formulation, it is required that the algorithms of group 
analysis should be extended to integro-differential systems of equations. 
Taking into account that recently some progress has also been made [54, 
55, 56] in extending the range of applicability of the established methods 
of group analysis, one can say that the above combination turns out to 
be constructive enough also for integro-differential equations. We recall 
that the first embedding with a physical end in view was realized for the 
integral equation of radiative transfer [53]. 

At the same time, the embedding of the Cauchy problem for systems of 
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ordinary differential equations brings us back to the origins of the theory of 
such equations. This is because it can be realized within the framework of 
the well-known theorem on the existence of derivatives with respect to the 
initial values of the solutions of the system. Here it proves fruitful to treat 
the parameters { such as a coupling constant) as new variables introduced 
into the group transformations and/or the embedding procedure. 

The differential formulation of RG symmetries employs an infinitesimal 
operator (tangent vector field), which, in general, combines the symmetry 
of the original problem with a symmetry { approximate or exact) of its so
lution taking the boundary conditions into account. Algorithmically, the 
invariant embedding procedure contains the operation of including these 
data among the variables taking part in group transformations. Here the 
object of group analysis is the system of equations consisting of the ini
tial system and the embedding equations corresponding to it and to the 
boundary-value problem. The latter can be constructed on the basis of 
both the original equations and the boundary conditions. From the view
point of group analysis,\ combining the original system with the embedding 
equations changes the differential manifold ( as a rule, quite substantially). 

The symmetry group of the combined system can be found by the usual 
methods of Lie analysis and its modern modifications with the aid of the 
solution of the determining equation for the coordinates of the infinites
imal operator corresponding to the condition that ensures the invariance 
of this new manifold. As a matter of fact, the RG can be obtained (see 
Refs.[57,58]) by a suitable restriction of the resulting group to a solution, 
the representation of which can be quite diverse: as an exact integral or an 
algebraic expression, as a final portion of a perturbation series or another 
approximation formula, as a functional integral, and so on. 

The author would like to express his gratitude to Drs. B.V. Medvedev ' 
and V.V. Pustovalov for helpful remarks. 
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