


1 One of the most 1mportant achievements of Quantum Chromodynamrcs is the i
- determma.tlon of Q’-evolutxon law for the structure functions Fi(z,Q? ?) of deep 1nelast1cr ‘
| scattermg It allows one to calcula.te the ma.gmtudes of observable F; (:c Q?) at some sca.lef

Q* start1ng from its value at another one Qo The theoretlca.l bams for this application is

/provxded by. fa.ctorxzatron theorems which give a possrbllxty to express the physrca.l Cross’ ’

sectlon as a Thard” parton subprocess convoluted with a ”soft” parton distribution func-
tion. While the former can be treated perturbatlvely due to the celebra.ted a.symptotlcal
freedom, the latter is governed by strong 1nteract10n dynamlcs at large dlstances and,
,therefore, it cannot be evaluated within perturbatrve QCD. On the other hand, the deep .
inelastic cross- sectlon can also be. computed by usmg the operator product expanslon
(OPE). This gives structure functrons in terms of certain coefﬁc1ents mult1pl1ed by the.
E target. matrxx elements of local quark a.nd .gluon operators of deﬁnlte twist, Comblnlng
the two approaches allows one to express the parton d1strxbut10ns In terms of quark a.nd .
gluon correlation functions on the light cone. Followmg Collms and Soper (1], we ca.n

" writé for the tw1st 2 valence quark dlstrlbutlon in a hadron

(h(p)lo(/\"v—i") lh(p)) —4/1 Cos(,\z)uh(_;;); | i h" : (1)

where?

0 220 = a(2n)reo [ . nty u_in SOy e
P (2 2 2" 2 .

and <I> is a. path ordered exponentla.l 1n the funda.menta.l representatlon of the colour group

along the straight line which i msures the'g gauge invariance of the parton dlstrlbutlon
oby] = Pexp (zg(x _— / dat“B“(y +ate y))) o

It should be noted that the l]ght -cone posmon representatxon is useful to make contact
with the OPE a.pproach while the light- -cone fractlon representa.tlon is a.pproprla.te for
establlshlng the pa.rton language. . , ) ) i
; The determmatxon of parton dlstrrbutrons 1s, up to _now, reserved to experlmenta.l‘
‘ stud1es but as a ﬁnal goal they are expected to be, eva.lua.ted from the ﬁrst _principles of
the theory In the lack of complete understandmg of the yet unclea.r conﬁnement mech-
a.n1sm they prov1de a challengmg task for nonperturbative methods presently available.

. Among the a.pproa.ches WlllCll account for nonperturbative effects the most close to QCD

perturbation theory are the QCD sum rules [2]: In the last deca.de they were applled with

" 1Throughout the paper + subscript.means the convolution of the correspondmg Lorentz index w1th
hght-cone vector ny, such that n? = 0 (np) =1, (nq) =0 and ¢ is ¢- channel momentum mtroduced
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moderate success to determme micleon and’ photon structure functlons in the’ regron of

1ntermed1ate values of the Bjorken variable [3 4] and, recently, in the small A reglon for .-

. the light-cone posmon representation [5].

While the nucleon structure functlons are now well deﬁned by the analyses of the -

prec1se experlmental data and are attacked theoretlcally, much less is known" about the

parton distribution of other hadrons in particular of 7-meson. Being of interest in their

own rlght they provrde good- test1ng ground for predlctlons of the QCD sum rule method
‘ whlch will be used in the followmg for the: deternn'natlon of the leading twist pionic valence

quark distribution. -

2. In’ order to evaluate the quark distribution in the plon by means of the QCD sum ~
rules’ method we cons1der an’ approprlate three-ponnt cotrelation function'of two axial R
currents that have non-zero projection onto the pion state be1ng proportional to the pion : k

decay constant (0l52 [7r(p)) =if,p, and the nonlocal string operator O on the light cone

deﬁned by eq. (2 )

Wuu(Pl,Pz,‘Z)—l / d4xd4ye'“x+'"(0|T{Ju(X)0(}’4‘2",}’—5 )i (0)}10>- (4

The usual strategy is to1 use the duallty between the hadronlc and partonic representatlon :

for the correlator under 1nvest1gatlon
On the one hand we should con51der the dlsperswn relatron for the latter and extract
the contr1butlon due to the low ly1ng hadron, namely, due to 7-meson, approx1mat1ng the

. hlgher state contrrbutron by perturbatlve spectral denslty ’

—51)0(s0—s2)), . (9)
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W1th parameter S0 character1z1ng the beglnnlng of the cont1nuum ‘Note that pro_]ectlng

the Lorentz indices of the pion 1nterpolat1ng fields on the drrectlon plcked by vector Ty,

we extract the leadlng tensor structure in the infinite tomentum’ frame. “We ‘omit the .

subtraction polynom1als in p? and p3 becauise they'disappear after the Borel procedure has
been apphed The latter leads to exponential suppression of the exated state contribution
‘in the phenomenologlcal side of the sum rule and gives factorial 1mprovement of the OPE
serles at the theoretical one. We perform the double Borel transformation and put the
parameters equal M2 = M ;=2M"i in order not to introduce the asymmetry between the
initial and final pion states and to make contact \mth two- pomt sum rulesfor the plon
decay consta.nt ' i : o

-

- On- the other hand we c0n51der the OPE for the same quantlty Of course, the

_QCD sum rules wijthlocal condensates are 1nappropr1ate ‘here because the usual- local

power corrections produce é-type contrlbutlon to the dlstrlbutlon functlon It is not
surprlsrng since some propagators are substituted by constant factors that do not allow
the momentum to flow and the whole hadron momentum be carrled by a s1ngle quark The

probability density of this conﬁguratlon in the phase space is 6(1 :z:) Higher condensatesi -

-produce even more singular; terms. However, this srngular contrlbutlon can be smeared

over the whole region of the momentum fraction from zero to unlty by avoiding the Taylor
expansion of the generic nonlocal objects which are the startlng point of-all QCD sum
rule calculations and 1ntr0duc1ng the concept of nonlocal condensate [6, 7] which assumes ‘
the finite correlation: length for the vacuum ﬁuctuatlons o s
At the two-loop, level, to whlch we restrict our analys1s we need the bllocal quark and
gluon condensates trilocal quark gluon condensates and four-quark condensates The,’

latter w1ll be factorrzed into the product of bllocal scalar quark condensates via the

‘vacuum dom1nance hypothesis. For explicit calculatlons, it is convenient to parametrize

the bllocal condensates in the form of the well known a-representatlon for propagators [ ]
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" One comment concerning eqs.'.(6) is that 1n der1v1ng a QCD sum rule ‘one can always

V perform a Wick rotation xo — iko and treat all the coordlnates as Euclidean; x2'< 0. We :

use the following ansatz for the dlstrlbutlon of ‘vacuum quarks in the vrrtuallty a [8]+
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wh1ch gives the exponentlal fall- oﬁ' for the coordlnate dependence of the condensates found ’
on a lattice [9] Here A? =0. 2GeV’ and v is: fixed from the lowest nontrivial moment of
the distribution: function; fs that is related to, the value of the average v1rtual|ty of the ’
vacuum quarks A2 [10]. s v

-3. Conventlona.l calculations of the perturbatlve dxagram (see fig:1(a )) withit_he light

quark masses neglected result'in: " '_37 e g P e L e

MZ/ d:z:cos Az)zzexp ( 14%22)-L - (8)

Note that we have kept the t channel momentum transferred to be nonzero. lf we expand i

pert(M2 Q2 A ) -

. -the c0s1ne 1n the Taylor serles and 1ntegrate over z, we ﬁnd out that each moment possesses
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; Figure 1" Dialgrams contrlbutlng to théb;’)‘é‘rat‘ér' produétexpansron of the correlatiOn
‘function (3) the first line dlsplay ordlnary power correctlons, whlle the second one —

: contrlbutlon due to the bllocal correlators ’

logarlthmlc non- analytlcltles of the ltype (Qz) ln Q2 These terms come from the small-z

reglon, where the spectator quark carr1es almost the whole momentum of the pion, so that

the struck quark ‘becomes. wee ‘and can, propagate over large distances in the t-channel.

Therefore,)we have to:perform additional factorization: for;separatlon of small and. large

distances in. the corresponding invariant amplitude, this will lead to the appearance of

' addltxonal terms in the OPE for the three-ponnt correlatlon function which correct the
: small -z dependence of the parton densrty

The srmplest nonperturbatlve correctlon comes from the vector condensate (ﬁg l(b))

Ty (M2 A

)= 88—17ra, (tu) / dz cos(/\z)zfv(xM ) o ©)

The dominant contrlbutlon is due to the four—quark condensate. For calculatlon of two
loop dlagrams appearing. in the consideration (fig. 1(c)) it is very convenient to use the
following method wh1ch is an extension of the calculation technlque developed in ref. [11]
for two—pomt correlators The main 1ngred1ent is a constructlon of a more general object,

namely, the current in the vertex opposite to the gluon propagator should be replaced by

the nonlocal one with lxght “like separatxon ‘The advantage of this substltutron results 1n '

appearlng of extra’ 6—funct10n and mtroducmg through this replacement a set of variables
~ : .
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. ’whlch gwe the sxmplest 1ntegratlon At. the end ‘we put the nonlocalhty parameter to'

~equal zero. Performlng stralghtforward calculations we obtain

o

~.in the perturbatlve ferm we can convince: ourselves, comparmg the result w1th the s sum o

\Ils(Mz /\) -3—27ra, (wu)? / d:ccos(/\:l:)

/ "y/ "’5/ "‘fs( M)f (fci )(5 C) ‘;;E;‘l',_;yml( )

" The gluon as well as trllocal quark- gluon condensate contrlbutlons are numerlcally '

much less 1mporta.nt than the power correctron we accounted for, therefore, we neglect
them in what follows. ) ‘ -

1t is well known that. there exists a parton sum rule that implies that the pion contains

'one u-quark. Summing the calculated contnbutlons and takmg the formal llmlt Q*— 0 -

rule for the pion decay constant2 ‘that the normahzatlon condition is broken. The reason

for this has already been mentioned earlier and we elaborate thls point below
4, Now we derive a Ward 1dent1ty (WI) [5] and show that the parton sum rule should

be exact 1n QCD Of course, from the fact that O is a pomt -splitted vector current it

‘ follows that in, the limit A — 0 the correlator (4) is related to the der1vat1ve of the two- i

point correlatlon functlon of two ax1al currents However, a more general WI (for arb1trary o
/\) w1ll be useful 1n the followmg for- d1scusswn of the condensate contrlbutlon om1tted

Notlclng that we are lnterested 1n the hm1t Q2 = 0 ‘we choose vectors Ny and q,, to. 5

'be proportlonal Then, 1ntegrat1ng by parts in: eq (4) and us1ng the equatlon for the

~ complete variation of the pha.se factor with respect to the smooth varratlon of the path

,w1th x,(1) = x,,, x,,(O)

F =T XM(T) _, x' (T) = XM(T) + 6X,,(T) l12]
6(I>rlx y] (I>r'[x ¥ = (I>rlx,)’l zgt“B"(x)6xn(1)(I>r[X,Yl - 'Q‘I’F[x: y]t"B“(y)éx,,(O)

+ig / daranly, x(r)]t“an(xm)«sxu( )"""( dortxril ;

y,,, we obtaln :

R

‘— i / dixe™ ’;*,[ '“<0|T {J,,(x: ), 2@} 0) = <01T{ 3650, A‘rz)}tO)]f =

o dT/ dudyereriv s "G S {J,,(x) o(r+3 An,y ;n )i (o>} 0
,-,',+(,\-.. =A). ST - S (12)

2 20f course, the comparison should be made w1th the sum rule by accountmg for nonlocal condensates
"given'in ref.. [7] : ‘
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is’ a point- splltted operator whlch when sandwiched between the pion state’ and that of

the vacuum‘ and convoluted with the light- like vector n, defines the leading twist-2- -pion
wave. functlon From this WI it follows that the normalization of u- -quark distribution is

exact in QCD pr0v1ded it'is’ not spolled by continuum subtraction

\~r,

5 As we have seen, 1n the lrrmt Q2 - 0 the perturbatrve term though ﬁmte contams”

the logarrthmrc non-analytlcrtres at thrs polnt Thrs 1s a typ1cal example of the mass }

smgularltres in the QCD sum rules framework [13 14 15]’ In order to get rid of this
perturbatrve behav10ur and replace it by a physlcal one, it is necessary to mod1fy the
orlgmal OPE For the form factor type problem a two-fold structure of the modrﬁed OPE

has been realrzed in refs [16 17] bemg of the follow1ng schematxc form i

_ W(pl,pz,q’)—ZC‘” pl,p,, 3)(0,) +Z / d“xe'“*c(' (x)w (g%, A) ' (16)'

An addltronal second term determmes the contrlbutron due to the long-dlstance propa-

gatlon of quarks in the ¢- channel :Here Wi are the two—pornt correlators

S Wig,x,\) = /d“ye"”' OIT{ (x,0), O(y+ LI ;‘ )} |o)‘ (17)“

\

of the operator in question and some nonlocal string operator of a deﬁnrte tw1st {15] wh1ch
arrses from the OPE of T-product of pron mterpolatmg ﬁelds SRR , o

{J“(x>,1,*(o>} 200t 0.0y

The coefﬁcrents C(")(p % pz,qz) in eq. (16) are free from non~analyt1c1t1es or singulari- -

ties in Q2 because they are defined as the difference between the original diagram and

its factorrzed expressron which is the perturbative analogue of the correspondmg bilocal

-~
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“wrrte down the d1sper51on relatron for them L

The parameters of the ‘model could’ be’ found from’ auxiliary sum’ rales:

-~ and

- \forms that are governed by conformal arguments (ﬂ =1- ,B) e G o

B camed out saturatmg it by contrlbutlon of physrcal states, .*. T

d p.(s (xq) x? /\)

irg g2t

~a

‘W(q,x /\) ,-/0

/ \‘acceptlng the: conventronal spectral densrty model ”low-lymg hadron plus contmuum

There’is no’

need in additional subtractions in eq. (19) because one always deals with the dxfference -

between the "exact” bilocal ‘and its ‘perturbative part so due to'the c01nc1dence of thelr -

uv behav1ours the subtraction terms cancel in this dlfference

- 6. The srmplest bilocal power correctlon is glven by the followmg convolutlon

W(l)(pl,pz, Q2 ’\) ‘/d‘lxetpﬂc(l)(x)wi--l-(qix ’\n)’ g t (20)
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We extract the’ contact term [17, 18] due to the vector condensate from tlns correlator

and saturate the remammg part3 by the contrlbutrons of the mesons of i mcreasmg spin;
these are p% g states and so on. The fact that we are mterested in the C-odd drstrrbutlon
(valence quark) results in contribution of spm -odd: states m the tchannel It is very .
convement to parametrlze the appearmg matrix elements v1a the wave functrons descrlbmg

*

thst accuracy we can wr1te T

PR

\ <0|¢(o><1>{0 xm( IMJ(q,n)) = “ i Xpyey (mar)? "¢“’( q) o
iR L T igue £".’u, xu,(mm 124 (xq), (22)

where Jis a spm of the meson, 7 xts polarlzatlon and cm.,,., sisgisa po]arxzatlon tcnsor

l Insplred by our knowledge that in’ some cases the asymptotlcal wave functions turn out

to. be rather close to exact” ones, we take in our estlmatlon the former in the followmg

0oy T@I+2) (2, r@2J+4)" ., o
¢J (ﬂ) I‘2(J+l) (ﬂﬂ) (ﬂ) m(ﬂ ﬂ) (ﬂﬁ) «(23)

A

correlator The brlocals cannot be d1rectly calculated in: perturbatlon theory but we can

. (19)

where the coefficient functlon is expressed through the quark propagator C(l)(x) = 25.,.( ) o

o

[

: “ the hght cone momentum fract10n dxstrlbutlon of quarks 1ns1de mesons To thc leadmg

) 3Although for the present problem the calculatron ofthls part is only ofacadcmlc mtcrcst asit vanlshcs o

" .in the forward limit being proportxonal to’'Q?, we nevertheless evaluate it'in ofder to demonstratc thc

drfﬁcultres one.faces when the contact-type contribution is absent and the estlmatron of the rorrelator is



i E Y R

o y - . . L

In otr: model for: the brlocal correlator we can achleve th1s result 1f we- assume the k

duallty of the mesen resonances to the bare quark loop. 'In general, this: qu1te severe’

a.ssumptlon turns out to be reasonable for the case at hand, at least for the mesons of the

" lowest splns J. It is known experrmentally that the phys1cal cross section averaged over

" the p—meson pea.k comc1des w1th the quark one. Local duality for the low ly1ng states is

-a nontr1v1al dynamlcal property and is not reallzed 1n all channels [19] For the problem'

at hand it can be explalned by the speclﬁc 1nteractlon of the classlca.l vector mesons with
‘the quark and gluon condensates [2). The power correctlon for them even at M* 2 xm?
: does not exceed 10 —20% of the maln perturbat1ve term. So, p is predicted to be dual to
the quark loop with the duallty 1nterval a.bout s, /2 2m2, However the local duallty for

‘ the higher spin ‘mesons can be broken [20]

The net result for the dlﬂ'erence between the exact” bilocal and its pert’urbative part ‘

'

reads
W Wi

‘; ﬂj’z,g /olﬂdfe-f(.,x) {(Olu (i\.n>7+®[;n e i’2‘.n] (x » §n> 0+ (/\ _ ~/\)}
:f‘~;"“rf+2Q (x+ /d-r/ dﬁﬂetrlj(qx) Z (f’(ﬁ (W}ix ),_ - S .

J=1,3,..

{ 3 I‘(J+2)

82 21—1r( )I‘(2J+4) +Q2 274+ Q2

= where oY is the contlnuum threshold a.nd mM is the mass of the lowest meson sta.te 1n the(

cha.nnel of grven spin J Substltutlng this expression into eq, (20) and performlng sxmple

ca.lculatlons we obtain (dlagrammatrcal representatlon is glven in ﬁg l(d))

“’(M’ );Sﬁm,(uu) / dz,ccs‘(xz)zfv‘(zMz)+Qze£ﬁ Z (i/\)"'l
L o : B S

‘ "'3‘*_7‘\‘ 17 Gl f(l)f('l) : '(2)- 1+ 8\ -
'5‘,{87@F(J)F(J+2)/of" +§;—,+( 2 (M) 3 +Q%/;"ﬂ-“°’-(—2‘ﬁ*)~ ’

(25)

where 25 = a_,/AlM2 The former term is a contact- type contrlbutlon due to the vector

condensate. The first one in the curly br,ackets is the dlﬂ'erence between the perturbatlve '

analogue of the brlocal correlator and the. continuum contribution into the ’ exact” one

* This part cancels the logarlthmrc non- analyt1c1t1es in:the perturbatrve dlagram (eq (8)) )

correspondmg to the leading twist- 2 operator in the OPE of plon currents.. The tower of

the next- to—leadmg non- analytlcrtres can be subtracted in a similar way by accountlng for

2

|
{

/ ds s b I)JM}’ ) :

‘ (the mirror con]ugated contrlbutlon can tr1v1ally be added) where Ca (2)

‘All nonperturbatlve 1nformatlon is a.ccounted for in the correlator

{derlva.tlon of the Ward 1dent1ty (12) we ﬁnd

JARRE
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“ the tw1st 4 operator The last term dlsplays the phys1ca.l contrlbutlon to the correlatlon' +

function that" possesses the correct beha.v1our in the momentum transferred an "Re- o

‘quiring that in the limit of large Q? the expressron in the braces should be zero, e come 2

to the loca.l duallty relatlon for the overlaps

o SR N e
(i ”')’f"’f"’ C g,rzz—l—‘x(faa)fm

The sum of eqs. (8) and (25) is.an ana.lytlcal functlon in Q2 as all smgularxtles are -

)

,replaced by the comblnatron Q? + a9 wh1ch is safe in the Timit Q2 = 0. Due to the

presence of. the non analytrcrtles in each moment of the dxstrlbutxon functlon, we need an
infinite number of parameters to be found from addltlonal sum rules Obvrously, thls is ,V v
an impossible-task. Safely, for the problem at hand, th1s pa.rt vanlshes in the forward~
limit and the sum rule is dommated by the contact terms.’ e L e :

. The result of eq: (25)," as concerns the Qz-lndependent part can be seen from the WI

‘The contact term contrlbutron contarned in the bllocal correlator is effectlvely transformed

into the power correctlon due to vector condensate wh1ch arlses together wrth eq.’ (8) :

from the two- pornt correlatlon functlon in the Wl (ﬁrst two terms of eq (12)) The latter : ’

was 1nvest1gated in connectlon w1th the plon wave functlon jin the same framework [7]

However it is not s0 for the most 1mportant bllocal part In th1s respect the WI is. useless e

ﬁas it transforms the bllocals Wthh can be reduced to the condensates not a.ccompa.nled ,

by the strong coupllng constant

The domrnant contrlbutron comes from the bllocal correla.tor convoluted w1th a three- :

,propagator coefﬁcrent functlon (see ﬁg l(e)) WlllCll looks llke

(2)(1’171’2; QZ /d4xe:p;xc(2)(x)w+(q’x An) “ ‘, (27)

Axa+Bnu+Cplav

~and we will not speclfy ‘the coefﬁclents in this decomposltlon beca.use of thelr complexrty

w+<q,x ) =i /d“ye""(OIT {u<o><1>[o Aux), (y 4 Qn,y

:  >} o ;fésifi

-In order to extract the contact term we make the followmg decomposrtlon

‘ W (q,x /\n) = qu(l) +q“P(2) + AnuP(:;) “ 3 »‘3 (29) “

and convolute this expressxon with- the vector qu Performmg the same steps as in the .



_,_ / dr / d“ye"”(OIT {u(oyr[o x]u(k) g(y+ Lt,y %n T)} IO‘) |
V+(A—»—A)+Q7’(z> JE T (30)

'The last term in the second llne vamshes in the llmlt of zero Q2 that manlfests the
absence of the massless part1cles in the correspondlng channels: Wrthln the accuracy we

: ba,re llnuted to,’ we are left with the ﬁrst term only because the second one contains an

extra power of gG,,.,, and thus the correspondlng OPE starts from the hlgher orders in”

‘the coupllng constant and ‘the drmens1on of the operators Performrng the 1ntegratlon

7 by usxng ‘the method outllned at the beglnmng of the paper, ‘we obtaln the followmg :

fcontrlbutron to the structure functron

(2) (M2 /\) .—7ra,(uu / d:rcos(/\:c) R PR f",‘j T

o [ () <<w>e<< S

Now, havrng accounted for addrtlonal terms in OPE ‘we can easrly check that the«

‘normallzatlon cond1tlon for the quark dlstrrbutron in the p10n is restored ,
7 For zero Q2 the perturbatrve spectral densrty is concentrated on the lrne 51 = sz,
" so that there is no transition between the states w1th different ‘masses. We collect all

? contrlbutlons and make the cont1nuum subtractron that fesults in the subst1tutron M2

Mz(l - exp( so/Mz)) in the perturbat1ve term We have found good stability of the
, drstrlbutron functlon w1th respect to the var1at10n of the Borel parameter in the region 4
‘ 0 5 < M2 < 0.8 for the standard value of the cont1nuum threshold so = 0. 7GeV2 ‘The

" normalization point. of the OPE 1s w2 ~0. 5G’eV2 therefore, the functxon obta1ned can be
'regarded as an 1nput” quark drstrrbutron at this low energy scale. In fig. 2, we present .

"the curves for the valence quark distribution: in‘the pron ‘for M? =0. 6GeV2 the solrd

“and long dashed lines correspond to the. values of the average v1rtuallty of vacuum quarks ]

AZ=0. 6G’eV2 (v = 0:154GeV?) and A2 =0.4GeV? (v -1= 0. 087GeV2), respectrvely

:In'the large—:r regron the correctrons due to the quark condensate do not exceed 30% of ..

the perturbatlve term. However, i in the small-z region at =02 the ratio of the contact )

. term to the main one comprises 50% for /\2 = 0.6GeV? and 70% for A2 = 0.4GeV?2. Below

* this point the nonperturbative contrrbutlon increases and reaches 100% at z = 0 13 for.

/\2 = 0.4GeV? (for A7 = 0. 6GeV? it strll amounts 50%) So, for z as small as 0.2 we could

‘not trust z-dependence of our, result Of course; there is no possibility to reproduce the
““correct z — 0 behaviour of the parton densrty in the present approach asitis determlned

by the exchanges of the Regge tra]ectorles

Now we can comment on the contrrbutron of the nonlocal gluon condensate to our sum
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Figure 2 Quark d1str1butron in the plOIl at the low energy scale JTLa 0 5GeV2 calculated i
from the QCD sum: rule for dlfferent Values of the average vrrtuallty of vacuum quarks .
solid and long—dashed curves correspond to /\7 = 0.6GeV2 and /\2 =0. 4GeV2, respectlvely e
Short dashed curve is the u- quark densrty found in the NJL model [22}
rule.: As can be easrly seen from the Wl some part of thls contrlbutron is concentrated in‘+

the two-point_correlation functron, whrch has’ been studled in ref. [21] Bemg numerxcally

. rather small, it contains.terms not van1sh1ng for z -, 1 as dlstmgulshed from nonlocal

quark condensates that do not sporl the (1= z)-behaviour. as z — 1, but only rcnormallze ,v g
the slope Therefore, the nonlocal gluon condensate llmrts the valrdlty of the present. -

approach from the large-:r values Thrs conclusron is made drscardmg additional terms o

- "appearing from the three~pornt correlator in the WI which can somewhat ‘change: the

_ situation: This problem as well as a particular value of z in the large-z region, where thc,

approach becemes invalid, deserves further mvestlgatlon and only smallness of the gluon
condensate contrlbutlon favours our decrsron to dlsregard it.in the prcsent study 2

- Since our result i is- valld only in the hmlted regron of Bjorken varlablc we could not k

‘evolve it to the experlmentally accesslble energlcs In fig. 2, we compare our calculatlou

with the dlstrrbutron obtalned in the, NJL model [22] at.the same normallzatron pomt Ll

" . and find rea.sonable agreement beLWeen two’ approaches ina w1de region of thc momentum ‘
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g Flgure 3 The experlmental ﬁts of the valence u- quark d1str1butxon in the plon at Q%=

 20GeV: SMRS result [24] is depicted by 'solid. curve,’ GRV: analysxs [25] is shown by ©
l long-dashed one. Short dashed curve is the u quark densrty calculated in the NJL: model ~

A ‘[22] evolved up to Q2 = 20GeV?.

! fractron In ﬁg '3, the latter evolved up to Q2 = ?.()G’eV2 (short dashed curve) is compared &

with' the presently avallable fits of experxmental data [23] It shows good agreement with

; ' the result of the analys1s of Sutton; Martm Roberts and Stirling (solxd curve) [24] which

-is consrstent with all present Drell Yan and prompt photon xN data ‘We also present

~the (long-dashed) curve due to’ Gliick, Reya and Vogt [25]; however, thelr result does .

" not’agree with' E615 experiment [23] Wthl’l requrres ‘the valence dlstrrbutlon to be larger :

. by 20%. Slmllarly enhanced dlstrrbutlon has been obtained in ref.” [26]. If the GRV

curve is renormallzed ‘within-a factor of 1.2 — 1 3 in the central reglon there w1ll be no

dlsagreement between the different analyses

ln conclusron, we have calculated the plOHlC parton densrty at’ low momentum ‘scale i in

‘ QCD sum rules with nonlocal condensates "It is shown that the parton sum rule i is fulﬁlled‘ ‘

only after the bilocal power corrections are accounted for. We have found good agreement

with the u- quark d1str1butlon function computed in the NJL model whrch when evolved'

up to the experlmental scales is well comparable wrth data
s ,
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