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1. Introduction 

The study of radial excitations of light mesons is currently of great· 
interest in hadronic physics. During the next years, facilities at CE­
BAF and IHEP (Protvino) are going to provide improved experi­
mental information, e.g., on the 7r

1 meson. The 7r
1 is thought to have 

mass of rv 1.4 GeV. However, recent results suggest that the mass of 
the 1r1 may be below 1 Ge V [1]. 

The theoretical description of radially excited mesons poses some 
interesting challenges. From the point of view of effective meson the­
ories, the introduction of the excited degrees of freedom should not 
spoil the low-energy theorems for pions which are a consequence of 
spontaneous chiral symmetry breaking and PCAC. In pther words, 
the pion field must decouple from the "hard" degrees of freedom in 
the chirallimit in order to describe a Goldstone boson. This require­
ment restricts the form of the interaction of the newly introduced 
fields 'for excited states with the usual pion field. 

At quark level, the spontaneous breaking of cliiral symmetry and 
PCAC are concisely described by the Nambu-Jona-Lasinio model, 
which employs a local four-quark interaction [2, 3]. The bosonization 
of this model and the momentum expansion of the resulting fermion 
determinant reproduce the Lagrangian of the linear sigma model, 
which embodies the physics of soft pions . .The N JL model also affords 
a reasonable description of the massive vector mesons. 

When extending the N JL model to describe radial excitations of 
mesons, it is clear that one has to introduce some degree of non­
locality in the four-quark interaction. . This non-locality has· two 
related aspects. First, it makes possible the occurrence of excited 
states "orthogonal" to the ground state. Second, it provides a form 
factor in the meson-quark-antiquark interaction for the ground state 
meson as well. Thus, it seems impossible to introduce excited states 
without, to some extent, modifying the successful results of the usual 
NJL model. 

Many non-local generalizations of the NJL model have been pro­
posed, using either instantaneous [4, 5] or covariant-euclidean [6] 
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effective quark interactions. While reproducing tJle properties of pi­
ons as following from dynamical chiral symmetry breaking, these 
momentum-dependent interactions allow for considerable leeway in 
the description of excited states. In this type of schemes the main 
technical advantage of the NJL model is lost, namely the gap equa­
tion is solved by a constant constituent quark mass. A very inter­
esting method of describing the excited meson states in the effective 
quark model was also propose9. in [§]. It would 'be desirable to have 
a model on hand which would allow one to include excited states 
while keeping a constant quark mass. 

In this paper, we present a simple extension of the usual NJL 
model, which describes radial excitations of 7f- and o--mesons with 
a minimum number of additional parameters. In particular, the gap 
equation of the NJL model remains unchangeQ.. By momentum ex­
pansion we obtain the effective Lagrangian of the 7f-7f

1 system which, 
after diagonalization, describes the decoupling of the pion in the chi­
ral limit and the vanishing of the 7f

1 leptonic decay constant, as 
expected on general grounds. For finite current quark masses, mo_di­
fications of pion properties due to the presence of the excited degrees 
of freedom are seen to be small. Within this approach we evaluat"e 
the 7f1 decay constant as a function of the 7f

1 mass. 

2. Effective quark model with separable inter­
actions 

In the usual N JL model, the spontaneous breaking of chiral symme­
try is described by a local (current-current) effective quark interac­
tion. This model is defined by the action 

- 0 
SNJL[7/I, 7/1] = S + Sint , 

8° = 1 d4xif;(x) (if) - m
0

) 7/l(x) , 

Sint = ~ 1 d4x [:iu(x)ju(x) + j~(x)j~(x)] 
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where ju,'JI'(x) denote the scalar and pseudoscalar densities of the 
quark field, 

ju(x) = i{;(x)1{1(x) , j~(x) = if;(x)i-y5Ta1jl(x) . (4) 

This model can be bosonized by introducing scalar and pseudoscalar 
meson fields in the standard way. Since the interaction eq.(3) is 6( 
current-current form, the bos~nization can be achieved through lo- · 
cal meson fields. This property is of great practical importance in 
extracting the physical content of this model. It ensures that the re­
sulting effective meson theory, which is obtained by integrating over 
the quark fields, is formulated in terms of local meson fields. By ex­
panding in the number of derivatives of these local meson fields, one 
derives an effective meson Lagrangian, which concisely summarizes 
all low-energy information contained in this model. 

The effective meson Lagrangian derived from the N JL model de­
scribes only ground-state mesons, i.e., it does not include radial 
excitations. To include. excited states in this picture, one has to use 
effective quark interactions with a finite range. In general, such in­
teractions require bilocal meson fields for bosonization. A simple 
possibility which avoids this complication is the use of a separable 
interaction wl_lich is still of current-current form, eq.(3), but which 
allows for form factors in the definition of the interacting quark cur­

rents, eq.(4), 

n 

S g "\;""' ( ·(k)2( ) ·(k)2( )) 
int,sep = 2 ~ Ju X + J'll' X 

k=l 

(5) 

j~~~(x) = 1 d4x: 1 d4x~ i{;(~l)FJ~)(x; x1, x2)1/l(x2). (6) 

Here, FJ~J ( x; x1, x2) ( k = 11 ••• n) denote a set of form "factors, the 
precise form of which will be specified below. Upon bosonization, 

eq.(6) leads to an action. 

Ssep = J d4x1j d 4x21fi(x1) [(if) x2 - m0)6(x1- x2) 
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+ J d4x t (uk(x)FJk)(x; x1, x2) + 7rk(x)FJk)(x; Xf, x2))] V;(x2) 
k=l 

1 J n - 2 d
4x L (ui(x) + 1ri(x)). (7) 

g k=l 

This action describes a system of local meson fields, uk(x), 7rk(x), 
interacting with the quarks through form factors. 

We define the form factors of eq.(6) in the momentum represen­
tation. Due to translational invariance, 

(k) - J·d4P J d4q . [! . -Fu,1r(x) - (21r)4 (21r)4 exp z 2(P + q) (x x1)+ 

+~(P- q) · (x- x2)] FJ~)(qjP): (8) 

Here, q and P denote, respectively, the relative and total momentum 
of the quark-antiquark pair. We choose the form factor to depend 
only on the part of t~e relative momentum transverse to the total 
momentum, · 

FJ~)(qjP) = FJ~)(q1..jP), 
P·q .. 
-P. ql.. = q- p2 (9) 

Eq.(9) is the covariant generalization of the condition of inst~tane­
ity of the interaction in the re~t frame of the meson, i.e., the frame 
in which P = (Po, 0, 0, 0). This ensures the absence of spurious 
(relative-time) excitations and allows one to interpret the resulting 
on-;-shell meson amplitudes as ordinary 3-dimensional bound state 
amplitudes in the rest frame1 [10]. This choice leads to a consis­
tent description of excited states. In particular, it allows one to use 
the concept of a 3-dimensional "excited state', wave function when 
modelling the form factors. 

Our aim is to construct a generalized NJL model for scalar (O+) 
and pseudoscalar (0-) mesons. We therefore choose form factors FJ~) 

1 
In bilocal field theory, this requirement is usually stated in the form of the so-called Markov­

Yukawa condition of covariant instanteneity of the bound state amplitude [5]. An interaction of 
the form eq.(9) automatically leads to bound state amplitudes satisfying this condition. 
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of the form 

FJk)(q1..jP) = f(k)(qi) 1 + f~k)(ql) Q , (10) 

F~~)(q1..jP) = J(k)(qi) /5 Ta + J~k)(qi) /5Q Ta • (11) 

In the usual NJL model, the first term in the RHS of eqs.(10), (11) 
corresponds to the standard sigma and 1r vertices, while the second 
term is known as the induced vector and axial vector component. 
We note that the most general form factor could include also the 
structures {J 1.., q {J 1.. or /5r/J 1.., /5q {J 1.., respectively, which describe 
bound states with the orbital angular momentum L = 1. We shall 
not consider these components here. 

The functions J(k), f~k) in eqs.(lO, 11) are scalar functions of ki 
and P 2 which we define for the case where P = (Po, 0, 0, 0) and ki = 
k 2• For simplicity, we first consider the simplest case without vector 
couplings, f~k) = 0; the role of vector couplings will be investigated 
subsequently. We want to describe the ground and first excited states 
of the mesons and choose the form factors as 

j(1,2)(k2) 

f(k) 

2 . 2) { 1 
0(A3 - k x f(k) 

a+ bk2 = c(1 + dk2
). 

(12) 

(13) 

Note that for d < 0 eq.(13) has the form of an excited state wave 
function with one radial mode. '" 

3. Effective Lagrangian for 1r and 7r
1 mesons 

We now construct the effective Lagrangian describing 1r and 7!"
1 mesons 

r 1 J d4 ( 2 2 2 2) ~-, = -- X 0"1 + 1!"1 + 0"2 + 1!"2 -. 2g 

iNc tr log( if) - m0 + 0"1 + if5Ta7rf + (u2 + if5Ta7r~)f ].(14) 

Here Nc is the colour number (Nc = 3). In the usual mean-field ap­
proximation, the vacuum of the meson action, eq.(14) 1 is determined 
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by the set of equations ( 1ri = 0) 

8S = -iNctr { d4k 1 - a1 
8a1 }A3 (2n-)4 ~- m 0 + a1 + a2f(k) g 

0, (15) 

8S = -iNctr { d4k f(k) - a2 = 0 16 
8a2 }A3 (2n-)4 ~- m 0 + a1 + a2f(k) g · ( ) 

(Here, we have omitted the trivial dependence of a 1, a 2 on the ex­
ternal meson momentum.) In gener~l, the solution of eqs.(15), (16) 
would have a 2 =I 0, in this case the quark mass becomes momentum­
dependent. However, if we choose the form factor, f(k); such that 

I{ :: -iNc f d
4
k f(k) _ 

JA3 (2n-)4 m2- k2 - 0, (17) 

eqs.(15) and (16) admit a solution with constant quark mass, i.e., 
with a2 = 0 and a1 - m 0 

. -m. In this case, eq.(15) reduces to the 
usual gap equation of the N JL model, 

. 1 d4
k 1 m0

- m 
-8mi1 = -8mzNc ( )4 k2 2 = . 

A3 2n- - m g 
(18) 

Obviously, the condition, eq.(17), fixes the parameter d in. eq.(13), 
for given values of A3 and m. Eq.(17) expresses the orthogonality 
of the a2-variation to the usual NJL vacuum a 1 = canst.. In the 

, following, we will consider the vacuum as defined by eqs.(17) and 
(18). 

We now construct the effective Lagrangian describing .the n--n-1 

system. Expanding the action to quadratic order in the fields n-1,2, 

1 d
4
p ~ ,e(n), .c = (2n-)4 L..,. 

n2:2 

1 2 
£(2

) = - L 1ri(p)I<ij(p)n-i(P) (19) 
2 .. 1 

Z,J= 

we obtain in leading order momentum expansion 

I<u = Z1(p2 - m~), K22 = Z2(p2 - m~), 

K12 = K21 = 'YP
2

' (20) 
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where 

z1 
2 m1 

2 
m2 

'Y 

4h, Z2 = 41JJ 
2 ' 

mo 
_ z;-1

(-8I1 + 9-1) = Z
1
gm' 

Z21( -8I{f + g-1), 

4I{ (21) 

Here, In, I! and Ill denote the usual loop integrals arising in the mo­
mentum expansion of the NJL quark determinant, but now without, 
one or two form factors fin the numerator ( cf. eq.(17)), 

Jf .. f __.:_ -i Nc / d4k J(k) .. J(k) 
n }A3(2n-)4(m2-k2)n' (22) 

The evaluation of these integrals with a 3-dimensional cutoff is dis­
cussed in ref.[9]. 

Note that a mixing between the 1r1- and 1r2-fields occurs only in 
the kinetic (p2) terms of eq.(19), but not in the. mass terms. This is a 
direct consequence of the orthogonality condition, eq.(17), which en­
sures that the quark loop witli one form factor has no p2-independent 
part. This "softness" of the 1r1-1r2 mixing has the important conse­
quence that for p2 ~ 0 the 1r1-field decouples. 

The masses of the physical 1r and n-1 states are found as zeros of 
the determinant of I<ii(p2), 

~(p2) = Z1Z2(P2 - mi)(p2 - m~) - 'Y2P4 

Expanding over m~ ex ( m 0) 2; one finds · 

m; = m~ (1- r 2) + O(mf), 

m;, =· m~ + m~ r 2 + O(mf). 

Here r = 1/../Z1Z2. 

0. (23) 

(24) 
(25) 

Thus, for m 0 ~ 0 the Lagrangian eq.(19) describes a massless 
Goldstone pion, while the n-1 remains massive. (Here and in the fol­
lowing, when discussing the dependence of quantities on the current 

7 



· quark mass, m0 , we keep the constituent quark mass fixed and as­
sume the coupling constant, g, to be changed in accorda~ce with m0

, 

such that the gap equation, eq.(18), remains fulfilled exactly. In this 
way, the loop integrals and eq.(17) remain unaffected by changes of 
the current quark mass.) 

After renormalization of the pion fields 

7r!" = rz. Jr· I V LJj . I (26) 
.v~ 

we can rewrite £(2) in the form 

1 £,(2) = 2 [ (p2 - mi) 1rt2 + 2 r p2 7rr7r; + (p2 - m~) 7r22]. ( 27) 

The kinetic part of the Lagrangian £(2) can be diagonalized by trans­
formation of the pion fields 

1 ( r r) 1 1 . ( r r) ( ) 7r = J2 7rl + 7r2 ' 7r = J2 -7rl + 7r2 . 28 

' 

Then, the Lagrangian £(2) can be rewritten in the form 

1 2+ 2 2+ 2 £,(2) = -[( 2 _ ml m2) 7rr2 + ( 2 _ ml m2) tr2 _ 
2 P 2(1 + r) P 2(1 - r) 7r 

2 2 
m2- ml . r lr] - 7r7r 
J(1- r 2 ) ' 

(29) 

where 

1rr = J1 + r 1r,. Jr'r = v'1=1' Jr'. (30) 

The Lagrangian (29) can be diagonalized by the additional transfor­
. mation of the pion fields 

7t = 1rr sin 0:'- 1r1r cos a, if' = -1rr cos 0:'- 7r1r sin 0:'. (31) 

As a result, we obtain the final form for the Lagrangian £(2) 

£,(2) = ~(p2- m!) 7t2 + ~(p2- m~,) if'2· (32) 

8 

Here 

m!,ii'' = 2(1 ~ r2) [ mi +m~ =t= J(mi- m~)2 + (2mlm2r)2] . (33) 

Expanding over mi ex (m0
)
2, one finds (compare with (24) and (25)). 

2 m;r mi +.CJ(mf), 

2 m;r, 
2 2r 2 4) m2 + m1 + O( m1 · 
1- r 2 

the mixing angle a is obtained as 

1 [m~ + mi tan 0:' = 2 2 r + 
v'1 - r2 m2 - ml. 

1- (2~1ffi2~) 2 ] = 
m2- ml . 

(l+r2 = y 1="""f + O(ml)· 

(34) 

(35) 

(36) 

4. The weak decay constants of the if and i' 

We can now evaluate the weak.decay constants of the 7t and if'. They 
are defined through the matrix element of the divergence of the axial 
current· between meson states and the vacuum, 

(OI8J.IAJJI7t) = m! J;r, 
- 2 (OI8J.IAJJI1r'} = m;r, J;r,. 

(37) 

(38) 

By using the usual local quark weak current of the N JL model for the 
axial current operator, the decay constants are given by the divergent 
loop integrals. Taking into account the .two renormalizations ((26) 
and (30)) and the two transformations ((28) and (31)) of the pion 
fields, we obtain 

f ir = sin a .m .(z1-! z 1 + Z2- Ly) -
- · '~'1 + r) 

COSO:' m (-z;!zl+z;Ly) = 
J2(1- r) 

m.,fZ; ( . ~ r.;-r;) J2 sm a v 1 + r + cos a v 1 - r , . (39) 
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fi' = -COS a I m (zl-~ Z~ + z;-ty) -
n/1 • n\ ' 

sin a J m . (-z~~ Z1 + z;-Lr) = 
2(1- r) . 

mVZI(. ~ ~) - sm a v 1 - r - cos a v 1 + r . 

. Expanding over mi ex ( m0
)
2, one finds 

-~' 

. !1+f (2 
sma = v~-2-+0 md, 

~2 
cosa = y~+O(m1), 

f:Tr = m.JZ; + O(mi); 

fi, = O(mi). 

(40) 

(41) 

(42) 

(43) 

(44) 

The f:Tr is very close to the value following from the Goldberger­
Treiman identity, and it coincides with one for the case m 0 = 0. On 
the other hand, the i 1 decay constant vanishes in the chiral limit 

(m0 ) 2 "' my-+ 0, as expected. 

5. Numerical estimates and Conclusions 

In summary, the Lagrangian eq.(19) illustrates in a compact way 
the two possible ways in which the axial current is conserved for 
vanishing quark mass. Both matrix elements of 81-'AI', eqs.(37) and 

. (38), must vanish for m0 = 0. The pion matrix element, eq.(37), 
does so as m~ -+ 0, with J1r remaining finite, while for the excited 
pion matrix element the opposite occurs, fi, -+ 0 with m;r, finite. 
We remark that this behaviour has previously been seen in more 
elaborate models describing chiral symmetry breaking· by non-local 

interactions [4, 11]. 
We can now estimate fi, in this model. We take a constituent 

quark .mass of m = 300 MeV and fix the cutoff at A3 = 671 MeV by 

fitting the physical pion decay constant f1r = 93MeV in the chiral. 
limit, as in the usual NJL model without excited states. Using these 
parameters we obtain for the quark condensate the standard value,~ 
< ijq >o= :-(254 MeV) 3 , and g = 9.l_Gev-2, m0 = 5 MeV. Let us 
also give the values of the integrals I{·f (see (22)). 

I1 = 0.15 m2, I{= 0, I{1 = 0.038 m2 c2, 

I2 = 0.024, I{ = 0.0055 c, I{/ = 0.0075 c2 ( 45) 

and 

r = 0.41. (46) 

From eq.(17) we find d = -4.06 GeV-2 • Using eq. (33)· we can 
obtain the equation 

2 - 1 - r2 [ 2 2 ( 2 2 )2 (2m'irmi' )2] ( ) 
0 

m1,2 -
2 

m7r + m;r, =f m7r + m;r, -
1 

_ r 2 47 

and then calculate c, using eq. (21). 
Let us consider the two possible values of the m;r,: 1) m;r, 

750 MeV [1] and . 
2) m;r, = 1300 MeV [12]. In the first case, we obtain 

m1 = 139MeV, m2 = 682MeV, c = 1.64, a= 57.5°, 

f1r = 92.9MeV, fi, = 0.65MeV. . (48) 

For the second case we get 

m1 = 142MeV, m2 = 1180MeV, c = 1.41, a= 57.3°, 

!1r = 92.9MeV, fi, = 0.32MeV. (49) 

We can see that the modifications of f:Tr due to the excited states 
•l 

turn out to be very small. The ratios f;r,j f:Tr are of the same order as 
the ones found in models with bilocal interactions [11] . 

This work was supported partly by the Russian Foundation of the 
Fundamental Researchs ( N 96. 01. 01223 ) .. 
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