


The KdV and Boussinesq equations, their modified versions, their higher order hier-
archies, etc., are the most well studied 1+ 1 dimensional integrable equations in the
context of (W)-string and 2D (W )-gravity theories [1-5]. It is fairly well established
that the second Hamiltonian structure for these equations are very intimately con-
nected to the spin-2 Virasoro algebra W; (i.e. conformal symmetry) and its higher
spin generalization W; algebra [4,5]. The complete integrability of these equations
stems from the existence of infinite number of commuting conserved quantities. To
gain an insight into these quantities has been an outstandmg problem and many
authors have explored their existence and properties from various points of view at
the classical as well as at the quantum level (see, e.g.,[6,7] and references therein).
It is very essential to understand the geometry underlymg 1+1 dlmensxona.l

integrable equations associated with W-type symmetries as it might shed llght on -

2D gravity theories. We studied the W, algebra of Zamolodchikov as well as its
superextension and explained the geometrical origin for the associated Boussmesq ‘
equations [8] as well as super Boussinesq equations [9] in the framework of the uni-~
versal geometric approach of nonlinear realization (NLR) method [10]. Under NLR
scheme, the geometrical origin for the zero curvature representation, Hamlltoman
Miura maps, Drinfeld-Sokolov type of Lax-pair formulatlon, etc., emerge in a trans-
parent manner. As a step in the direction of integrability, it is an interesting venture
to understand the involuting conserved quantities in the framework of NLR method
as it will provide a geometrical interpretation for the integrability criteria itself.
' The main objective of the present paper is to provide a geometrical origin for
the involuting conserved quantities for the Boussinesq equdtionéy in the framework
“of the coset space construction (group realizations) on homogeneous spaces [10]. .
The conserved quantities are derived by exploiting the i inverse nggs-oovana.nt re-
duction constraints [11,12] and the Maurer-Cartan equatlon for the one-dlfferentla.l
Cartan form in terms of which the curvature tensor, torsion, complex structure,
etc., of the coset manifold are expressed (see, e.g., Ref.[12]). Besides estabhshmg
the complete 1ntegrab111ty of the above equation, the derivation of the commutmg
conserved quantities under NLR scheme also provides a way to obtam hlgher order
Boussinesq hierarchies. For instance, we derive the Boussmesq and’ its first hler—
archy equation under the universal geometric approach of NLR:by using the first
nontrivial conserved quantity. The latter equation has recently been shown to be the
Ward-identity for the Ws- gravity [2]. It turns out that the commutmg quantities
correspond to the translation generators on the coset manlfold and their involution
properties are equivalent to the linear 1ndependence of the codérdinate directions on
~ the coset manifold. The application of inverse Higgs-covariant reduction constraints
on the infinite dimensional coset manifold singles out a 2D geodesic surface. The
embeddmg conditions on this 2D surface corresponds to the BoussmeSq equatlon
(8]. In a similar manner, the next equation in the Boussmesq hierarchies can be ge-
ometrically interpreted as the embedding conditions on'a 2D geodesw surface that
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: 1ntersects the previous one in a linearly independent way along the space axis.
The W3 algebra is a nonlinear algebra.' One of the key ingredients in the appli-
catlon of the N LR method to the classical (centrally extended) W algebra

[L,,,L,,.] =(n—m) Lnym + E(" = 1) Snym,o,
[Lm Wnl = (2n —m) Woim, -

[W,,, W,,,] = 16(n — m) Angm — —(n. —m)(n®+m? - —2— —4) Loym
5 =P ) Bupmp, W
" is'to obtain 'a linear W3° a.lgebra by treating all the higher spin composxte generators
as mdependent generators For instance, the spin-4 generator A, = —& Z Y FR— -

* and all other higher spin J* (b > 5) generators emerging due to commutation
- relations of W's and/or L's with the higher spin composite generators are to be
treated as mdependent Unllke the nonlinear algebra (1), the ensuing algebra

W = {L,,,W,,,A,,,J,’;(h > 5)....}, | @)

is an infinite dimensional linear algebra [13, 8] where we can apply the whole arsenal
of the standard techniques of coset space construction (or group reallzatlons) on

‘ homogeneous spaces [10].
. The most important subalgebra of W3° for our purposes is the one in which
" the Laurent indices of the generators with spin h vary from —(h — 1) to oo. This
subalgebra. is special in some sense [13] because the explicit central charge term

; drops out from all the commutators. However, it is implicitly present in the com-.

mutators between the basic generators (W's, L’s) and the higher spin composite
generators. We shall concentrate on this truncated version of W§° (”contact” W5°)
for the nonlinear realization method. Another subalgebra of our interest is the
'wedge a.lgebra W3 consisting of the generators with spin A where the Laurent in-
- dices vary from —(h — 1) to +(kh —1). The higher spin composite generators form
a closed algebra in their own right. This can be readily checked by. taking a single
contract.lon in the OPEs. Thus, the higher spin composite generators form an ideal
in thls subalgebra and, therefore, the factor algebra generated by these ideals is the
si(3, R) = W3/ {A4, Jh(h > 5)...} = {Wia, Wir, Wo, Ly, Lo}

~Itisa rather difficult task to obtain all the possible subalgebras in this infinite

‘dlmens1ona.l lmear algebra W3°. However, the stability subalgebra H of our interests

that contams the ma.xlmum number of gererators is [§]

H={W., +2L_y, Wo, W1, Wa, L, Lo, An(n 2 =3), J3(h 2 5,n > —h+1)....}. (3)

~ With this stability subalgebra, the element g of the coset space can be parametrlzed

in terms ‘of 2D coordinates z , t and infinite set of 2D coset fields as

g= etW-2 ozLl-1 g¥als ( Hn24 e¥nln ofnWn ) et evWa, (4)

.

where an infinite tower of parameter fields (u, v, ¥3, Yty Yo ronsin ) are the embedding
fields in the infinite dimensional coset manifold. The commutativity of W_; and L_;
implies that the z and t directions are linearly independent and, therefore, a point on
the coset manifold can be parameterized by these coordinates. Furthermore, all the
2D fields (u, v, Y3, ¥4, P5.enee.. ) are any' arbitrary functions of these coordinates. At
this stage, there is no dynamics involved at the coset manifold and the coordinates
and the coset fields are treated on an equal footing. ’

The basic geometrical object in NLR method is the one-differential Cartan form .
Q = g'dg which can be decomposed. as a sum over all the spin-h generators of the
"contact” Wg° with indices varying from —(h — 1) to oo as given below

o0 [s o] H .
Q=gldg = E waLly + E 0, W, + higher spin contributions. (5)

n=—1 n=-2

By deﬁnition, this one-differential form satisfies the Maurer-Cartan equation
I+ AAQ=0. , 6)

As higher spin cornposite fields form an ideal, it is essential to know only some of the
lower order forms to obtain the dynamical equations on the coset manifold. However,
in order to derive the conserved qua.ntltles for the above dynamical equa.tlons we
require higher order forms as well. These forms are
w; = dz, wo =0, w =~3udr + 160vdt, wg = du - 41/)3(1:1: + 320£4dt

wy = dps+ (—u — 5pa)dz + (56065 — 240uv)dt,

wy = 1/) - 61/)5(112 + (89666 - 192!)1[)3 - 768“64)(&
dips + udipz + (—u - 5u1/)4 + 212 — 40v? — 71[)6)dz
(192v*v — 336u£5 — 7O4¢3£4 — 160v1p, + 1344¢5)dt,
dips + 2udipy + (8vaths — 12uths — 8¢7)dz ’
(19206 + 768u£6 + 768uf; — 6401/;454 — 16644as)dt,

wr = dipy + Budys — 40vdE, — adfs + —u2d¢3 + [280u§5 + 6uy}

&
I

-+

we

-+

— 12062 — 60uv® + 12455 — 2lus + -8-u + 511,4 - ?uz% - 91/;3] dz
133, :
+ 320 [—4—59 + Quéy— 5lepsés — 5thals — 103s + ulv + uthaly
10
— Sup - Suvpe+ o+ Tutke + Jome|
T et (1)

6, = dt, 6_,=0, Op=—6udt, 0,=—8sdt,



0 = —Svdo+ [120 — 10pJdt, 05 = dv — 6 badz + [usps = 1295] dt,
0, = déq+ (3uv —T¢5)dz + [20¢§ + 20uthg — 1deps — 8u® — smﬁ] dt,
05 = dés + vdu + (6uéy — dvihs — 86s)dz '
+ [56tsta + 32004 + 12ups — 12475 161,/)7] dt;
- 0 = d+3vdys+ (gu v — 15v¢py — 9¢7)dz
+ [72¢3¢5 + 168005 + 3092 — 3600%u — 18¢8] dt,
0; = df7+ Svdpq +u dfs + 26 dips + [ﬁu’& + 4935 — 10£4%4 — Buée

= 30uths — mga] dz + [56u¢3¢4 + 885106 + 80yaths + 44800€s + 6ulehs
0, -
= S¥3— 1800 — 4u’s — 3840uvEy — 32064ks ~ 16utpr — 20%] dt,

Bs = ds+ Tuvdips + Tv dés -+ 2u dfs + €5 dipa + Afadiby + [7uv—5¢4£5

+ 42541#5 + 8{6¢3 + 14v9p2 — 18ufs — 49viPs — 35uv1,b4 — 1165 — —g——qv3] dz

[144u1,b31,/15 + 104tpathr + 80t49)5 + 448006 + 6u’ehs + 60uy? + 13440,
+ 280€2 + 4297 — 56004, — 2352uvf; — 4928v1hsty — 36uzhs — 22¢10] dt,
......... R _ (8)

As a result of the inverse Higgs-covariant reduction constraints [11,12]; one obtains
a relationship between higher spin goldstone fields and essential coset (goldstone)
 fields together with the dynamical equations of motion. Basically, in this procedure,
all the components of the forms associated with the coset generators are set equal
‘to zero as they transform homogeneously under the left action of W° symmetry.
To make this statement more transparent, it can be seen that the following inverse
Higgs-covariant reduction constraints ’

wa=0Yn>2 6,=0Vn>3, 9)
lead to the kinematical inverse Higgs relations
’U, ’ 3 ’ 3 - ’
;4 = Ik s = —71+7UU, = '8i+ZU€4, £7=§9§,
1
b= -0[51—6u €+ vsts],
1 560
6 = l—[es— 5 4 b 8 ata+ 6006 + - 7],

fio = 1 [59 +3u® &+ 54 ety + 124367 + 12 %3 54 + 18u v 5 — 42 Es¢5],

........................ (10)

- U, - ' 3 B 'l/)’
Py = 1 ¢4=%+Eu2’ Ps ?41
b 2¢F w4002
11[)6 - 7 + 7 7 7 ]
T %/’é s ¥3 u?
o= Ltdad= [ + +40] .
1 9
b = §[¢;+§ ¢4 -u ¢4—120£4+12¢3¢5+180uv]

e
Yo = 1o[vhs U3 HBuT g~ 20 & b+ 1605 ],
1
bio = 13|+ 200sn + 20T + 384u €1 + 25267 — 3y
9 3
—1536¢4¢s — B0utbstps — 600u"v? — 216uvgs + Su’s — §u5],
rererereseentaensens , ‘ o (11)

when dz ;;rojections of the Cartan forms are set equal to zero. Here and in what
follows, primes stand for the derivatives w.r.t. the space coordinate z. On the other
hand, using the inverse Higgs relations, we obtain the following dynamlcal equations
when dt projections of w, and 8; are set equal to zero

6u__1606_v . 6_1) 1(?3u 24 du )
8t 3 8z’ at - 1061:3 5% -

With proper rescaling; the above equations can be readlly recognized as the Boussi-

" nesq equation since the coset fields u and v in (4) have the correct’ conformal prop-

erties of a spin-2 stress energy tensor and a spin-3 primary field [8,13]." It is well
known that these equations are comp]ete]y integrable i.e.: there exist mﬁmte number
of involuting conserved quantities for these equations. In Ref [8], the z zero curvature
representation, the existence of Drinfeld-Sokolov type of Lax-pairs on, the algebra
sl(3, R) and connection of these equations with the second Hamiltonian structure
of W, etc., have been established under NLR scheme. Here we go a step further to
derive commuting conserved quantities in the framework of NLR method.

To obtain commuting conserved quantities, we exploit i inverse Higgs- covariant
reduction constraints (9) and the Maurer-Cartan equations (6). The latter can be
expressed for the SL(3, R) generators Wy, Wﬂ, Wo,Lo,Lﬂ as

. ntl

Cdbat Y m‘—2k) o AWk Smpkn =0,
. m>2~-2
don+ Y (M= k) wm Awk bmpin
. m>-1,m<k . .
8 ' k ‘ ‘
~3 Y ,(m-k)(m2+k2eL"2-—4) Om A Ok bmyin =0. - (13)

.m2-2,m<k



By exploxtmg the covariant reduction constraints (9), it can 1 be readily seen that the
Maurer-Cartan equations for the coset space generators reduce to dwp, = 0 VYo >
2,d6, = 0 Vn > 3. Actually these equations lead to conservation laws beyond
Boussinesq equations (12) (which can be thought to be the conservation laws realized
on the essential coset fileds u and v). For instance, the following equations

dw, =0, db, =0, (14)

with the help of inverse Higgs-covariant reduction constraints (9), lead to the con-
servation laws when k = 5,7..-and n =4, 8... These are succinctly expressed as

40c¢

’ . H = %/dxu(z t), Hy=-— 5 d:w(:c 1), H4=c/d:c uv)(z,t),
(u’)2 4u 80v
,?Hs—_C/d[ 3]’
' u"u" 9u(u) ')? | 3u
Hr = _/‘h 3200 40 T 6 T 50 +4""]
n2
“Hy = —»c/d +80(:)v 3véu) —2uu"v+‘8uav],

...................................

.............................. | (15)

" Here the éubscripts of these conserved quantities stand for the naive conformal

- dimensions. For instance, has the dimension em™!

. The explicit form of the
some of the nontrivial conserved quantities, whose "time” derivative equals a total

- space derlvatlve for the Boussinesq equatlons (12), are

: ERREE EREN _ 3 [uu” 8ud - 800 ()’
o ) = 61[—_ 5 "3 20]
T ) 4ud 80Py @ rl6vu” 16w 2
~56t[ 5t 3‘]—61[ JE ~ g 12 "]’
. 6 u”u" 9 u (u/)z (vr)z
ot [3200 400 6 50 Cauv ] ,
0 pu u dudv o 12un'v 2u(u)’ 64udv 64003}
; arl 30 30 } 5 5 5 5 9 I’
O qu” 3w (v) 800 v? " 3
6t[ 2 + 5 —2uuv+8u v]
_ 6 ullllull _ umum _ 8‘0" " 3ull(ul)2 _’gu(u”)z _ 192“5 640 2 2
= 9z17300 ~ 600 9 20 50 25 v
80u"v?  320v"vu  160v'vu’  160v'v'u  4u'ud | 18(u')*u?
T3 3+3_3+5+'5]'(16)

‘A few remarks are in order. Firstof all, at a given conformal weight, it can be checked
- that only one of the forms (8's or w's) lead to the conservation law. Secondly, there
are no conservation laws for the conformal dimensions 3,6,9,12..(n = 0, mod 3).

Thirdly, the series of values k = 5,7,11,13,17,19... and n =4,8,10,14,16... in
equation (14), lead to the conserved quantities when the inverse Higgs-covariant
reduction constraints are appropriately chosen. Finally, the conservation laws for
H, and H, are the Boussinesq equations (12) modulo some constant scale factors.
To demonstrate the validity of the above statements, we elaborate on a few
derivations. The Maurer-Cartan equations dw; = 0,df; =6, A w;, emerging from .
the general equation (13), lead to the conserved quantities H; and H,. We have used
in the above equations the inverse Higgs-covariam; constraints w3 = 0,03 = 0, and
w; = O,ws = O,wy = 0,0, = 0, respectively. Furthermore, the explicit expressions
from (7) and (8) for the appropriate forms have also been used. It will be noticed
that the above conserved quantities also result in when the d¢ components of the
forms w,, 05 are set equal to zero due to covariant reduction procedure. Here too,
the appropriate expressions for the inverse Higgs relations are to be used. The.
counterpart of dw; = 0 is the equatibn dfy = 200 Aw, = 0; Awp — 40, Aw_; where
covariant reduction constraints wy = 0,ws; = 0 have been used. It does not lead to
any conservation law but 1mp11es the inverse Higgs relation 1, = —1+ Lul. The next’
equation dw; = 0 leads to ¥ = —80 ¢;. However, it is not a new conserved quantity
because the inverse Higgs relations for s and & are such that it reexpresses the
first conserved quantity H;. The forthcoming equations dfi3 = 0 and dw; = 0 do
not lead to any conservation law. It is straightforward to see that d f; = 0 implies
~66; = Z[24uth; — 12¢5] which is a modified version of the second conservation
law H; when we use the appropriate inverse Higgs constraints from (10) and (11).
At the same conformal weight, equation dws = 0 is such that either it leads to
Yy = —80¢5, which implies the first conservation law, or it can not be expressed as
a total space derivative of any quantity. Thus, for conformal dlmensmn 3 there is
no conservation law and Hj does not exist. ' ) ‘
The next nontrivial conserved qua.ntlty emerges from the equa.tlon d04 = 0 i.e. -

-%[lhw 765]= [201/J3+20u1,b4—141/)6—8u -80v] )

Due to the covariant reduction constraint, when dt projection of the form 05 is set
equal to zero, we obtain on Boussinesq equations :
%s
Bt

Using required inverse nggs relations from (10) and (11), it can be Vehecked>tha1‘;
the above equation is a total deriva.tive, i.e., e

._16¢1+12u2¢3—12u¢5—56¢3¢4 SR (18)'

@)

655 [24;6 + 20 = 2upy — —¢3] S ¢t
- . Ultimately equations (17) a.nd (19) lead to '
(uv)____ a_4,. 80,
—a— [2 ‘1/)4 U» ‘l,[) 3 v



as the next conservation law. The above equation has been expressed in equation

‘ (16) in a different form because we have exploited there the inverse Higgs relations.
It will be noticed that this conservation law can also be derived directly from (19)
if we use the relation &5 = -,(54 + 3uv). The equation dws = 0 does not lead to any

i conservation law. Thus, Hs only emerges from df; = 0. The next equation in this
sequence, i.e., dws = 0, leads to

80 4 _ 0 [320
[ W2+ 4 w4 07| = =[St — 160u% — 128yac

(21)
. as conservation law which determines the-form of Hjs in (15) if we use the inverse
Higgs relations. The argument for the nonexistence of Hg is the same as that for
the absence of Hs. The derivation of the higher order conserved quantities follows
the same logic as e_;.rgued in the earlier cases.

The commutativity of the conserved quantities in (15) (i.e., {H;, H;} = 0 for
‘i, j =1,2,4,...) can be established if we exploit the following second Hamiltonian
structure associated with u and v fields for the classical W5 Poisson brackets !

a0 Ouy’
W) = 2 [ o -2u) 2 - 3 de -,
{u(z,t),v(y, )} = —% [3 v(y)—aa—+g;i] 8(z —y), »
3 1 8 \5 415 0 Vi
N {v(z,t),v(y,t)} = W[ 48 ay ( )a 3 8 5;6_1/2
u Yu “Ou . :
o+ (%%—y;— u2)5y—+(ig?—12ua—y)]5(z_y)_ (22)

This commutativity can also be understood in terms of the generators of Wg°. For
instance, if we take the Laurent mode decompositions for the spin-2 fields u and
'spin-3 fields v and consider the holomorphic and antiholomorphic parts together,
the contour integrations in (15) will lead to the following set of generators modulo
some constant scale factors :

{L_l, W_z, ¢_4, S_5 ........... seserasenes } (23)

where & = 2(TW),S = J(W? — 22 T3 4 § (8T)?)..., etc. These generators form .

the Cartan subalgebra in W3° as they commute among themselves. For instance,

besides commutatwrty of L_; and W_,, it can be seen that L_;, W_g, ®_4 commute -

with each other in the following commutation relations
L

[Lu, @] = (4n —m) Oy + 4(n® = 1) Wopm,
(Wa, ®,] =4[(n+m+4)(n+m+5)(n+m+6)

1Note that there are some printing errors in Ref.[8] in these Poisson brackets.

—15(n + 1)(n + 2)(m — 3 +4)] Anm

+(2n —m) [31—2 TA)Q %(T(')’T) 8(W’)]"+m . |
_139(,;. —n)(n® ~Lppm - (@)

Similarly, S_s also commutes with all the other generators in the set. It will be

" noticed that these generators can be found at the Laurent modes —A& + 1 in the

special algebra under our consideration (where the indices vary from —h + 1 to oo).
However, these commuting generators will not exist when —h + 1 = 0 mod 3.
In the framework of NLR method, these generators correspond to the translation

generators. The space translation generator is'L_; which corresponds to the first

conserved quantity H;. Rest of the conserved quantities correspond to the evolution
directions on the coset space and-they. appear as "time” coordinates in the Boussi-
nesq equations and their higher order hierarchies. For mstance, equation (12) can
be derived if we use the Poisson brackets (22) in the Hamilton equations of mo-
tion with the Hamiltonian as the conserved quantity H,. For the derivations of the
higher order Boussinesq hierarchies, one has to exploit Hy, Hs....... in the Hamilton
equations of motion with the Poisson brackets (22). To establish the equivalence
between conserved quantities and translation generators, one can first derive

Ou 1P v v ou
at 333+8 6_+8 8z
oo (e 2, O
o T 320 \50z5 5 Oz
14 0u Bu | 1152, Bu v
- S mEmt v +2560va—z-)“' (25)

- from the Hamiltonian Hy = ¢ [ dz(u v) by using the second Hamiltonian structure

(22), and can check that u and v fields form a closed set among themselves. This can
be understood in the framework of NLR method even without quoting the appropri-
ate stability suba.lgebra The composite generators <I>_4,S_5.... could be taken into

in addition to z and t which are linked with L_;.and W-,, as follows 2
g1 = e e’ S"emL‘e'w“’e’L“e“"‘L’ (Hﬂ24e“’"L"e5"w“)e‘;L’ eW .. , (26)k
Now any point on the coset manifold will be parametrized by coordinates z,¢,t’, t"...

because the.commutativity of the generators L_;, W_;, ®_,, S_s... ensures the linear
mdependence of these dlrectlons 3 The dots at the rlght end in (26) stand for the

2Even in the derivation of KdV equation under NLR scheme, there are some extra coset fields
when composite generator A_3 is taken. into the coset space due to correct choice of stability
subalgebra. However, the extra essential field does not appear in the KdV equation [14].

3The factor 5— in the second exponential has been taken for the convenience in the algebraic
computahons of the Cartan forms



exponentials that contain extra coset fields associated with the composite generators.

As discussed earlier in detail, only a few Cartan forms would be required for the

derivation of equation (12) and (25) in the framework of NLR method. The analogue
_of (7) and (8), with the coset element (26) and commutators (24), are

w_y = dr+2vdt +...., wo=128dt' +...... s

------------------------------- ks

‘ 3
0, = dit— f—u dt’' + ..., 0., = ——1/)3dt' F oy

0y = —6udt+> [—u —z,l;4]dt Foy 0 = —8iydt + g[gu ¥s —,¢5]dt’+..,
0, = -5 vd:z: + (12u — 10%4)dt ’
z/)a = 6—2 W+ u¢4—25v]dt +.
0 = dv - 6 &4dz + (24u1/)3 - 121/)5)dt
[147 Yt + " 1/)5 1/17 - @ ulths — 84v£4] dt' + ...,

........................ (27)

It will be noticed that the composite generators in the exponentials at the right
" end of (26) do not contribute to the above Cartan forms. The covariant reduction
constraint on w, and 45 leads to :

du : ‘Ov

i — 320 &4, E=12¢5—24U¢31
% = —11266+ 168 u s + 56 ba,,
147 189
% = —-IT¢3¢4 —U s + —1/)7 + — ulihs + B4v,. (28)

Both these sets of dynamical equations can be recogmzed as the Boussinesq equa-
tion (12) and the first Boussinesq hierarchy equation (25) if we exploit the inverse
Higgs constraints appropriately from (10) and (11). This establishes the geometrical
interpretation of commuting conserved quantities as the translation generators.

It is well known that- the commuting conserved quantities for the Boussinesq
equations obey Lenard recursion relations. It will be an interesting problem to
provide a geometrical interpretation for these relations in the framework of NLR
method. The other open question to be answered is to obtain the correct form of
the stability subalgebras so that commuting composite generators could be taken
into the coset manifold. It is also essential to apply NLR technique to obtain con-
served quantities for the other well studied integrable equationssuch' as : the Liou-

-ville equation [12], the super Boussinesq equations [9], the Toda field equation [13],

10

etc., and to provide geometrical origin for them in the framework of coset space,
construction. These are the issues for future investigations [15]. '
Useful discussions with E.Ivanov and S. Krivonos are gratefully acknowledged
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