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I. Method 

There are many problems of QCD requiring nonperturbative approaches. Here we use 
a method based on the ideas of the 5 expansion and variational perturbation theory. The 
method leads to the so-called "floating" series, the convergence properties of which can 
be controlled by special parameters. In the simplest cases, there is a rigorous proof of the 
convergence of such an expansion [l]. The generalization of the method to the QCD case 
has been suggested in Ref. [2]. 

Within this method, the quantity nnder consideration, for example, the Green function 
can be approximated by a series different from the perturbative expansion and which can 
be used to go beyond the weak-coupling regime and allows one to deal with considerably 
lower energies than in the case of perturbation theory. The connection between the 
expansion parameter a and the original coupling constant g is given by the following 
equation 

1 a2 

C (l -a)3 · (1) 

As follows from this equation, at any values of the coupling constant g, the new expansion 
parameter a obeys the inequality O '.S: a < 1. The parameter C is a positive constant 
which plays the role of a variational parameter. The original quantity approximated 
by this expansion does not depend on the auxiliary parameters C; however, any finite 
approximation depends on it on account of the truncation of the series. Here we fix this 
parameter using some further information which comes from the potential approach to 
meson spectroscopy. 

The renormalization ·group analysis leads to the momentum dependence of a which is 
given by the transcendental equation 

Q
2 

= Q~ exp{ 
2
~

0 
[f(a) - f(ao)]}, (2) 

where b0 is the first coefficient of the (J function, Q0 is a normalization po_int, and the 
function f(a) has the following form 
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ln(1+ 2a). (3) 

An important feature of this approach is the fact that for sufficiently small o:, it reproduces 
the standard perturbative expansion. Therefore, all the high-energy physics described by 
perturbation theory is maintained by this method. However, in going to lower energies 
where the standard perturbation theory ceases to be valid, o:,(Q2

) ~ 1, the expansion 
parameter a(Q 2

) remains small (moreover,'this parameter has no infrared singularity), 
and it is possible to deal with considerably lower energies than in the case of perturbation 
theory. 

There are several papers in which the method was described in detail, for example, 
Refs. [3-6]. Here, we will only consider its applications. We will consider the well-known 
ratio for electron-positron annihilation into hadrons 

Re+e- = Utot( e+e- -+ hadrons) 
( e+ e- -+ µ+ µ-) 

(4) 



and also an analogous ratio for the inclusive decay rate of the r lepton 

RT = r( T- -+ hadrons + V) 
r( r--+ e vv) 

II. Rr ratio 

(5) 

The hadronic r decay provides the possibility of determining the QCD coupling con­
stant at a very low energy. To extract the value of this constant, it is necessary to 
estimate all the theoretical uncertainties. The starting point of the theoretical analysis is 
the expression (see, for example, [7]) 

f M~ ds ( s ) 
2 

( 2s ') _ 
RT= 2 Jo M; 1 - M; 1 + M; R(s), (6) 

where MT= 1.777 GeV is the r-lepton mass and 

R(s) = ~ [II(s + ii) - II(s - ii)]. 
271"1 

(7) 

In the framework of standard perturbation theory, the integral (6) cannot be evaluated 
directly since the integration region in (6) includes small values of the momentum for 
which perturbation theory is invalid. Instead of Eq. (6), the expression for RT may be 
rewritten, using Cauchy's theorem, as a contour integral in the complex s-plane with the 
contour running clockwise around the circle Isl = M;. It seems that this trick allows 
one to avoid the problem of calculating the nonperturbative contribution which is needed 
if one uses Eq. (6). However, the application of Cauchy's theorem is based on specific 
analytic properties of II(s) or the Adler D function which is an analytic function in the 
complex q2-plane with a cut along the positive real axis. It is clear that the approximation 
of the fl-function by perturbation theory breaks these analytic properties. For example, 
the one-loop approximation for the QCD· running coupling constarit has a singularity 
at Q2 = A~cv, the existence of which prevents the application of Cauchy's theorem. 
Moreover, to define the running coupling constant in the timelike domain, one usually 
uses the dispersion relation for the D function derived on the basis of the above-mentioned 
analytic properties. In the framework of perturbation theory, this method gives the so­
called 1r2-term contribution. 

In Ref. [5) it has been demonstrated that in the framework of this approach there 
exists a well-defined procedure for defining the running coupling in the timelike domain 
which does not conflict with the dispersion relation. We will use the following definitions: 
,,\elf = aqcn/(41r) is the initial effective coupling constant in the t-channel ( spacelike 
region ) and ,,\:ff is the effective coupling constant in the s-channel ( timelike region ). 

We can rewrite Eq. (6) in the form · 

1
1 

2 - 2 RT = 2 
0 

dx ( 1 - x) ( 1 + 2 x) R( MT x) , (8) 

where R(M; x) can be expanded as the series 

R(M; x) = ro [ 1 + r1 ..\.(M; x) + r 2 ..\~(M; x) + • • •] = r0 [ 1 + r 1 ,,\:ff(M; x)]. (9) 
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The effective coupling constant in the s-channel can be written as [5] 

1 ' 
..\,(s) = 

2
71" bo Im <P(a+.) , ( 10) 

where 

72 1 318 
¢(a) = -4 In a - - -- + - In ( l 

11 1 - a 121 

256 9 
a) + 

363 
In ( 1 + 2 a) . (11) 

and the value of a+ obeys the following equation: 

2 b0 [ s . ] 
f(a+) = f(ao) + C !n Ql + 171" ( 12) 

where a0 is the value of the parameter a at some normalization point Q0 , 

In the calculation of the integral (8) the number of active quarks is different in various 
regions of the integration. In the method under consideration we can ensure that both 
..\,(s) and its derivative ..\:(s) are continuous at various threshold points s,. The set of 

corresponding equations for the parameters CU) and a~/) is as follows: 

1 U-1) - 1 U) ' 
bo(f- l) Imef,(a+ ) - bo(f) Imef,(a+ ) , (13) 

- 1 - Im [ (aU-1 >)
2 

(1 + 3 a(/-l))] = - 1
- Im [ (aU>)

2 
(1 + 3 a(/))] 

CU-1) + + CU) + + 

For the number of active flavours f = 3 we use the value C(3 l = 4.1 obtained from 
the phenomenology of meson spectroscopy [2]. Then for f # 3 we find the parameter 
cUl using Eqs. (13). 

In the alternative approach to the evaluation of R, using Cauchy's theorem oue pro­
ceeds first by an integration by parts to convert R into D, then represents the disrnntinuity 
as a contour integral and finally opens up the contour to the unit circle in the :: plane. In 
this way R, is expressed in terms of ,,\elf as 

1 i dz 3 2 R, = -2. - ( 1 - z) ( 1 + z) D( M,::) , 
71"1 l•l=l z 

where D(M;z) do [ 1 + d1 ,,\eff(M;z)] , and to order O(a3
) 

,,\e1r(Q2) = ba2(l + 3a), 

where a= a(Q2 ) is found from Eq. (2). 

(11) 

(15) 

To check· the consistency of our method we consider a fixed number of active quarks 
f = 3 and use RT = 3.56 as an input. In this case, using Eqs. (8)-( 12) we• can find 
the parameter ao and then verify that Eqs. (8) and (14) give the same r<'stilts for H,: 
RT = 3.560 as should be the case. 

To take into account the threshold effects, we have used Eqs. ( 13) to find the parameter 
cU> for f # 3 and the conditions that the CKM matrix elements Vud = 0 for s < 
(m., + md)2 and V.,, = 0 for s < (m., + m,)2. In this way, we obtain from Eq. (8) for 
RT the value 3.552 instead of 3.560. One can see that the threshold effects for HT are 
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about 0.2 '7c . .\"ow, taking the experimental value R, = :l.552 [8] as an input, we obtain 
a,(M;) = o.:n and o(.\1;) = 0.40. The values of the coupling constant in the s- and 
I-channels are clearly different from each other; the ratio is a,(M;)/a(M;) = 0.92. 

So, we have demonstrated that the initial expression for R, [Eq.(6)] can be calculated 
directly from QCD by using the VPT method. We have also demonstrated that the dis­
tinction between the functions a,(s) and o(Q2

) is not simply a matter of the standard 1r2 

terms, which may be important for understanding certain discrepancies (see, for example, 
[9]) arising in the determination of the QCD coupling constant from various experiments. 

III. Re+e- ratio 

.\"ow we consider the process of e+ e- annihilation into hadrons using the renormal­
ization scheme in which the quark masses are renormalized so that the value of mq is 
the position of the pole in the quark propagator Sq(p) (the corresponding consideration 
of this process in the MS-like renormalization scheme has been performed in Ref. [4]). 
In the framework of this scheme, the effective coupling constant depends on the quark 
masses, which provides a natural way to include the threshold effects without any addi­
tional matching procedure. We will consider the range of Q = vs from Oto 6 GeV (as in 
Ref. [10]) and compare with experiment by using the smearing method [ll]. The renor­
malization scale dependence of the running expansion parameter a = a(µ 2 ) is defined by 
the following equation 

µ2 2 [ ( µ2) . (µ 2)] C[U(a)-U(ao)]=ll1n 2 - 3 L I -
2 

-J-; , (16) 
µo l ml ml 

where µo is some normalization point, a0 = a(µ5), 1(µ2 /m2 ) is the we!J:known one-loop 
integral, and the function U(a) has the following form 

1 :l 3 45 
U(a) = - - - - 12 lna + - ln(l -a)+ - ln(l +3a). 

a 2 a 4 4 

According to the smearing method [11], we consider the following smeared quantity 

fl 100 

R(s) 
Rt,(Q) = ;- o ds (s - Q2)2 + fl2 ' . 

and also the smeared derivative 

W D. ( 5 ) = d Rt, ( s) 
ds 

where D(q2
) is the Adler function. 

_ _!_ [ D(s + ill) _ D(s - ill)] 
2 i s + ill s - ill ' 

(17) 

(18) 

(19) 

We find our parameters from the following considerations. We use the value C = 39 
which can be found as the corresponding constant in the MS-like scheme (see Ref. [2]) 
taking into account information coming from meson spectroscopy [2]. Further, by using 
the fact that for sufficiently large Q ~ 5 ..,.. 6 GeV the quantity Rt, must reproduce 
the experimental curve (see Fig. 1), we find the value of the parameter a0 • In Fig. 1, the 
smeared quantity (18) obtained in the first nontrivial order of our approximation is shown 
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Fig. 1. The function Rt, versus Q for fl= :l GeV2
• The solid curve is obtained from 

Eq. (18), the dashed one from the smeared experimental data (taken from Ref. 10) and the 
dot-dashed one from applying the optimization procedure to the third-order calculation 
of Re+e- [10]. 
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Fig. 2. The function Wt, versus Q = vs for fl= 2 GeV2. The solid curve is obtained 
from Eq. (19), the dashed one from the smeared experimental data (10] and the dot-dashed 
one from applying the optimization procedure to the third-order calculation [10]. 

5 



for~= 3GeV2 (solid line). The experimental curve is taken from Ref. [10] (dot-dashed 
line); we also report the theoretical results from that paper ( dashed line). In Fig. 2 we show 
the analogous result for the quantity (19) with ~ = 2 GeV2

• As can be seen, our results 
obtained in first-order reproduces the experimental curve quite well and are close to the 
relevant result of [10] obtained on the basis of optimization of the third-order of standard 
perturbation theory. Fig. 2 shows that the value of~ = 2 Ge V2 is not sufficiently large to 
smooth the region of charm resonances (see the corresponding estimations in Ref. [11]); 
on increasing the value of~ the experimental curve approaches the theoretical prediction 
shown in Fig. 2. 
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