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Introduction 

The Einsteinean theory of relativity was the first to re­
veal a symmetry in properties of space and time, the sub.:. 
sequent generalizations introducing a proper time for ·each 
particle [1] and for each space point x [2] equalized space 
and time in right still more. Though· these generalizations 
by himself did not discover any new physical . effects they 
improved essentially the theory and allowed, to formulate a 
condition of compatibility for motion equations forbiddin·g 
an exchange of faster-than-light signals a.nd to develop a 
simple renormalizatiom procedure. It is interesting to take ' 
a next step on this way and to ,consider a more consistent, 
from relativistic viewpoint theory with the equal number of 
space and time co-ordinates. 

The most general philosophical sense of the categories of 
space and time express, respectively, structural correlations 
of a heterogeneity, co-existence of material objects and a 
property of their changeability,-unsteadiness [3]. One can 
speak about time only in the case when some quantitative or 
qualitative changes occur. We grasp time not immediately 
but only by means of comparison of several "photographs" 
of the events happening around us. In an utterly immutable 
world there is no time and in this sense one can say that 
time is created by changes. 

Though physical theories prompt that at level of ultra­
small scales space, apparently, possesses supplementary di.:. 
mensions, experience convinces us that at macroscopic dis­
tances and in a region of up to now accessible microscopic 
lengths (~ 5.10-16 cm) it is three-dimensional. An assump­
tion of space extra-di~0-nsions-re~1;oirce in a violation 
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of the habitual for us matter and energy conservation laws 
because in this case a motion and an information trans­
fer along extra dimensions become possible what would be 
treated as a created "from nothing" or a disappearance 
"into nowhere". We and our physical devices do not fix 
such phenomena in Nature. And what is more, the simple. 
calculations convince that an e;xistance of a stable atomes 
becomes at all impossible in thise case. 

The experimental statp.s of the time dimensionality is not 
so evident. For the space of centuries a linear sequence of 
the following one after the other moments when the order 

. of priority of an.y event with respect to all others is deter­
mined by a parameter which we just name as time was con­
sidered as the only one property of the time. A ri1ore late 
theories introduced an idea about a space-time curvature 
and trained us to a thought about possible time discreted-

. ness at level of very small scales [3, 4]. Nevertheless, until 
recently, right up to an appearance of string and super­
symmetric generalizations, neither theory made seriously 
an encroachment upon the time one-dimensionality .. It is 
"fused" into the structure of our attitude. Some philoso-

. phers and physiologists incline even to suppose that the -
time, one~dimensionality has an effect on our brain str~c­
ture and therefore has to be considered as· a priory one. 

To what extent such an "evidence" does come true? The 
time multi-dimensionality is equivalent to a splitting of the 
one-dimensional events into seer~'sses of "more particular" 
events whose order of priority is characterized by supple- ._ 
m:entary parameters t2, t3 and so on. But why to put in· 
order any, even very complicated developments it is enough 
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always only one parameter? The space diversity of our 
world is multi-dimensional, but its time is for some reason 
one-dimensional. 

In order that we may size up the essence of time, it is 
necessary to investigate various generalizing models because 
only in that way one can clear up a "degree of stability" of 
its properties. 

Multi-dimensional vector of time 

Dorling in 1970 and Demers in 1975 were, probably, the 
first wl~o investigated' a possibility of introducing irito phys­
ical theory an _idea of multi-dimensional, in general case . 
even infinite-dimensional, time [5, 6]. Comparing the geo­
metrical properties of space- and time-like intervals in one­
and multi-dimensional spaces, both authors drew a conclu.::. 
sion that the introducion of multi-dimensional time violates 
the energy conservation law. Owing to that some· experi­
mentally non-observable decays of particles become possible 
and vacuum lose~ its stability with respect to a creation of 
unrestricted amount of matter.· These peculiarity of any 
multi-time approach seems· quite inadmissible, so the au­
thors content oneself only by short report about· results of 
their investigations without any attempts to sidestep the 
revealed difficulties. 

Irrespective of these results, a theory of multi-dimensional 
tirne wa~ investigated by N .Kalizin [7]. Formally, space and 
time components of a world vector xµ distinguish in his the­
ory; like the papers [5,.6], only by· the signs which they have 
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iri _the expression of a square "length" 

00 3 
d 2 _ µ _ ""' 2d 2 '°"" d 2 S - XµX - L.J Ci ti - L...J Xi. 

i=l i=l 

Besides, N.Kalizin supposed that each next coefficient Ci 

characteriz_ing the light velocity in the corresponding time 
dimension excels_ a previous one: Ci_> Ci-I· Beca~se the 
variable ti passes (ci/ci-1) times slower than ti-.:I, then if 

·- (ci/ci-I << 1) we pay no heel to the "time diversity". Un- _ 
fortunately, N .Kalizin had no time to analyze consequences 
of his: theory and the latter was left on a level of initial 
hypothesis which, however, stimulated. subsequent investi-

- gations in this field 1. 

In. the following th~ idea of multi-time worlds, in gen­
eral air, was popularized by A.D.Sacharov [8]. However, 
its concrete realizations were discussed, mainly, ,in connec­
tion with the attempts to avoid the ~ifficulties appearing in 
theor~es with faster-than-light particles by generalization of 
Loren~z transformations beyond the light cone boundaries 
where due to the unequal number of space and time dimen- · 
sions (3 + 1) the light wave frpm a point source loses its 
spherical shape and . the principle of relativity is _ violated 
[9 -,11]. For that purpose it was enough to consider a six-

- c!i:tnensional space-:-time with the some light velocity along 
all_ three time directions. 

__ In_several papers (see, for example, [12 - 15]) it ·was 
~1:1pposed ~hat an evolution of -events along each of three 
space axes Xi is determined by its proper time indepen~ent 

1 I am deeply indebted to late Nicola Kalizin for numerous discussions. of properties_- -
of muHi-time theo~ies during his visits to Dubna. · 
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of two others x-axis, i. e. the six-dimei.1sional world was 
considered as a simple product of three two-dimensional 
ones: 

{xµ,/l = 1, ... ,6}= (:r,tx)@(y,ty) C-) (z,i;:). 

In this case for each pair (xi, ti) one can use the usual 
Lorentz t~ausformatiou. However, such an approach is un­
satisfactory because, particularly, it doesn't confi.Iw Tomas 
precession and the transverse Doppler effect [16, 17]. 

One can find in literature also other, more refined multi­
time models. Paying homage to au resourcefulness of the 
authors we, nevertheless, will not discuss these models. Be 
founded on the famous Ockham principle we confiw~ oneself 
for the present to a minimal number of hypothesis and. 
·following the papers [18-21], shall consider space and time 
co-ordinates as utterly equal in right quite independent one 
from an other components of a six-dimensional vector 

( A) - ( ' tA)ll - ( t';\Tp X /l - -x, ' - X. I) • 

(Here and in what follows the superscript "T'' denotes th<' 
transpose, three-dimensional vectors in x- and t-snbspan's 
will be denoted, respectively, by bold symbols aud by a 
hat, six-dimensional vectors we shall denote by bold sym­
bols with a hat; the latin and greek indices take values 
k = 1, ... , 3, µ ·= 1, ... , 6). Several papers contain somc>­
what less convenient but _mathematically equiva:leut threc>- · 
dimensional complex vector expression X = x + ict is 
used [3, 13]. 

We shall consider the multi-time generalization by usiu~ 
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as an example the classical (non-quantum) electrodynamics. 
It will be shown that if we take into account the c•ausality 
principle, one can· avoid the mentioned above difficulties 
with vacuum instability. As in the usual one-time theory 
all created waves (particles in quantum case) have positive 

· energies. 

Generalization of Maxwell equations 

Let us consider a six...:dimensional vector-potential. 

(A)µ= (-A, A)r, (At .. _(A, A)Tµ 

and electromagnetic 6x6 tensor :Fµv = 8Aµ/8xv-fJAv/8xµ 
- The latter can be written in a matrix form 

. ( _fI E) , . F _:.. -~ET G ' 

where 

H=·V x A= ( ;3 
-H2 

-H3 H2 ) 
0 -H1 , 

H1 0 
(2a) 

G = -◊ X A= ( ~3 

· -G2 

-G3 G2 ) 
0 --G1 

G1 O 
(2b) 

- · are the magnetic and "time-~agnetic" 3 x 3 tensors, 
·; 

. 

E=A◊-VA (3) 

is th~. 9-component electric field 2• The del operators '<i µ = 
(-V,:V)µ and. vi= -8/8ti. 

2The physical meaning of the tensor E becomes more clear if we take into account 
that the tensor valu~ on a fixed time trajectory E = Ef- = -V <p - fJA/ of; where 
<p = Af:This is similar to Maxwell expression E = -V<p- fJA/fJt. 
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It is easy to prove that the tensor Ft = gµa :Fm,, where 

g = ( ~I ~) and I is the unity matrix, can be obtained 

from (1) by the replacements fI-+ (-H), E-+ (-E). _The 
contravariant tensor ;:µv = gvf3 Fap can be obtained from 
( 1), if E -+ ( - E) and ET ~ ( - ET). The magnetic field 
fI and the new field G are vectors, respectively, in x- a~d 
t-spaces. From this point of view the generalized electric 
field Eik takes ari intermediate place. Its indices i and k 
correspond to both subspaces : i to x- and k to t-spaces. 

From action principle dS = 0 where 

- 1 J A A 4 1 J µv 4 
S - c2 AJd x + lforc :Fµv:F d x, 

jµ _ (-J,cp), J = cp(x), p = p(x)f, v = (-v,cf)T, v 
is the three-dimensional velocity in x-subspace, f = di/ dt 
is the analogous velocity in t-subspace, t is a proper time 
along the considered time trajectory i and the integration is 
performed over all x-subspace along the traj~ctory i ( d4x = 
dV dt), one ,can get the equation 

A, A -1 A .,F = 41rc J, 

which can be split into two three-dimensional ones: 

('1 x H)i + VkEik = 41rc-:-1 p(x)vi 

(V x G)i + VkEki = 41rp(x)~i 

(4) 

(5) 

The two other generalized equations can be derived. if we 
multiply the equality (3) at first time by the operator V, at 
second time by the V, take into account the identities f/ x 
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fi A. --:-- "I x "ii/ A = 0 and replace in the obtained expressions 
the vector products." X A and V X A by the fields H and 
-G: ; 

fliHk - Ekmn .. '\/ mEni = 0 

\liGk + Ekmn '\/mEin = 0 

where Ekmn is the antisymmetrical unit tensor. 

(6) 

(7) 

One can get two additional equations by multiplying the. 
expressions H = 9 x A and G = - V x A, respectively, by 
the operators '1 and V: 

'VH=VG. (8) 

Be.sides, one has to add still the extended Lorentz condition 

VA.= f/A. - '\/A= 0. (9) 

Together with this condition the equations (4) - (8)·com­
pletely describe a behavior· of electromagnetic field and a 
charge particle in the six-dimensional world. The general­
izati9n over the case with ·several interacting particles will 
not be very difficult. 

By the transition to an one-time case when all world­
lines in t-subspace are parallel to a fixed direction f- the 
operator V -+ f-8/ot, the potential A. ----t <pf-, the "time­
inagnetic" field G -+ c-1cpf- x f- = 0, electric tensor Eik ~ 

. _· -Tk(Ai + o<p/oxi) = EiTk, where Ei is the one-time theory 
ele<::tric field. So, all generalized relations reduce to the 

'well_-known Maxwell equations, 
· The particular cases of multi-dimensional electrodynam­

. _ics were discussed by many ·authors ( see, for example, pa­
pers [22-'- 24]), however, in a complete fo~m the generaliz~d 
MaxvieU-equations were formulated by E.A.B.Cole [25-27]. 
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In the simplest case of a time-independent motionless 
point charge with a time trajectory f- we get a simple solu­
tion of these equations 

A.(x) = qf-/r 
3 • 

where r = Jxl . 
A generalization of the solution over the case of a mov­

ing charge has been done in paper [26). Like 'the one-tin:ie 
theory, the magnetic field H is perpendicular to the velocity 
vector v and to the radius-vector r, linking the space points, 
where the charge and the observer are located: H ~ v x r. 
The field G is perpendicular to the time trajectoriPs of the 
charge and the observer ( G ~ f- x f-') and is very small 
( ~ sin 0) -if the latter's are near one to an other. The elec­
tric field components reducing in the limit 0 -+ 0 to the 
ordinary three-dimensional field E are long-shaped, as it is 
in Maxwell theory, along .the. charge velocity v. The other 
components of E are proportional to sin 0 and turn into zero 
if 0-+ 0. 

When the charge passes by a ~b~erver, the fi~ld G and 
all multi-time corrections to the electric field increase up to 
some maximal value depending on a charge impac-t param­
eter and the angle 0, decreases thereupon up to zero and 
changes their sign (see Fig. 1). The presence of two forep 
pulses with opposite signs causes trouble by their registra­
tion because a possessing of some inertia detector practi­
caJly has no time to respond to them. 

3 0ne should note that in the multi-time world the field of a chargt' is visible only 
within a time interval At, the duration of which depends on an angle Oht't.wern tlw 
charge and the observer time trajectory. Now we shall not discuss this asp1',I of t.lw 
multi-time theory. 
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Figure 1: The solid curve shows a time dependence of the magnetic 
field H and all electric components reducing into the ordinary Maxwell 
field E. The da~hed curve represents a time behavior of the multi-time 
corrections. 

In the next paragraphs we consider another important , 
,-exampl~ - a motion of plane electromagnetic.waves in vac-

uum and its energy vector (28]. , 

Electromagnetic waves in multi-time space 

Introducing a potential A into the equation ( 4) with J = 
p = 0 we get: 

?2A- 'l(f/A) =0, 

or. 
f/2A · fJ2A-"\/2A = 0, (10) 

·it we take into account the extended Lorentz condition (9). 
Analogously, it follows from the equation (5): 

~A=O. (11) 

Because a rectilinear. world-line of the plane wave can 
be _defined by the vectorµ . (1, 0, 0, 1, 0, O)r, the equations 

, . . 
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(10), (11) and the extended Lorentz condition (9) can be 
written in the form 

a2 A; at2 
- c2a2 A; ax2 = o 

aA4 / at+ a A if ax . 0. 

(12) 

(13) 

Further, just as in the known one-time theory, the first term 
. in (13) is turned into zero by means of_a gauge and we get 

then from the equation (12): 

. aAif at= const, 

i.e. the component A1 bears no relation to a wave process 
and can be removed. It means out that the potentials A 
and A· are transverse vectors: A · ii = 0. 

Now the electric field tensor looks as 

( 

0 As AB·) 
E = c-1

. -~2 o o 
-A3 0 0 

(14) 

(The solution of a wave equation corresponding to a wave 
moving along the vector n satisfies the condition aAµ/ax = 

· -Aµ/c). Let us introduce the three-dimensional electric 
fields Ek = (Elk, E2k, E3k) and Ek = (Ekl, Ek2, Ek3). It is 
easy to prove that the fields Ek and Ek for k = 2, 3 are 
longitudinal vectors, but E 1• and E1 are transversal ones: 
E1 . n = E1 . n = 0. 

Fro~ the formal point of view the appearance of the 
longitudinal electric fi~ld is. stipulated by the impossibility 
to remove by ineans of the gauge transformation more than 
one co~ponent of the three-vector A. · 
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Using for Ei and Ei the expressions from (14), one can 
prove that magnetic and "time-magnetic" fields 

i a 
H = c- at n X A = n X E1 

A 1 a A A c = c- at n x A = n x E 1 

are also transverse ones: H • n = G • n = 0. The absolute 
values 

H= IEil = IELI G = IE1I = EL, 
where E = E2 + E3 is the summary electric vector of a 
longitudinal wave. 

As we see, in the multi-dimensional world the electro­
magnetic wave becomes apparent in two essence: in x­
subspace it looks as a superposition of _the transverse wave 
(E1, H) and the longitudinal wave EL, in t-subspace it is a 
sum of the transverse wave ( E1, G) and the longitudinal one 
with the vec~or EL. The structure of the plane wave in x­
and t-sl.lbspaces is completely symmetrical - that part of 
the wave which in x-subspace is transversal in t-subspace 
becomes longitudinal and conversely (see Fig.I). Accord­
ing to their signs, the longitudinal field strengths Ek and 
Ek(k = 2,3) can be· in parallels or antip~rallels to the di­
rection of the space and time vectors n and n. 

Momentum-energy of a plane wave 

The momentum-energy tensor of electromagnetic field 

Tµv = _!_ (;:v F6µ + ~gµv F ;:>.r) 
. 41r 6 4 >.r 
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Figure 2: The components of a plane wave in x- (left) and t- (right) 
subspaces. 

derived with the help of canonical rules distingui~hes from 
the respective tensor.of the one-time theory only by a mun­
ber of components. If the electromagnetic field tensor is 
presented in the form where H, G , E are 3 x 3 matrixes 
then Tµv can also be written in the similar matrix form: 

TJlV = !1 !2 
( 

A A ) µv 

T3 T4 
·, 

_!_ ( =-~H--AF:AE -=H~ - ~?)µv _!_ JW (H2 G2 _ :fu2) 
47r ETH+ GET ETE + GG + 81r 9 + ' 

. ) . 

where 
3 3 

E2 = I: Ef = I: Ef. 
i=l i=l 

· Taking into account the relations ( 2) and ( 14) we get the 
following expressions for the tensors 'I\: 

A 'k A A · I 2 A 2 A '} 

41rT1 = -EiEk - HiHk + 28ik(H .- G + E-) 
A ik l . 2 A 2 A 2 

41rT4 = EiEk + GiGk + 28ik(H - G - E ) 
41rT~k = 41r±;k = (Ek x H)i - (Ei x G)k 
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(For details see ref. (28]). 
Let us define a six-dimensional momentum-energy vector 

pµ = j yµvdsv, 

where dsv = nvdV an'd dV is an element of a three­
dimensional hypersurface. In a particular case of the plane 
wave, when the direction of its time-trajectory is taken as 
the ti-axis, 

pµ = jTµkTkdV = {I!ikdV µ = k < 3 
J TtdV, µ = 3 + k 

So, the field momentum-energy density 

p = (Wr + WL)n, 

where 
·2 ·2 2 2 2 

Wr = (A2 + A 3/7rc = (E1 + H )/87r 

and 
•2 •2 A2 A2 

WL = -(A5 + A 6)/87r = -(E1 + G )/87r 

(15) 

are the energies of the transverse and longitudinal fields. 
As we see the three-dimensional energy and momentum 

vectors of the plane wave are directed along its world-line x 
and their transverse components Pk, k =/=- 1, 4, always equal 
to zero. The momentum-energy of the transverse field com­
ponent (E1 , H) is positive, meanwhile not only the momen­
tum but also the energy of the longitudinal field EL are 
negative. 

It would seem strange, that a part of the wave energy is 
negative, however, an analogous situation takes place in the 

14 

Maxwell electrodynamics also whe.re a "scalar photon" en­
ergy is negative. Because the multi-component electromag­
netic wave is an unitary object, only its summary energy is 
physically significant and its negative part has been never 
observed. In the six-dimensio1:al theory the total wave en-, 
ergy (15) must be positive too, i. e. Wr > IWLI and the 
transverse component prevails always over the longitudinal 
one: IE1I > IE1I- In this case the plane·wave momentum i~ 
directed along the xi-axis and the wave is developing along 
t 1-axes from the past into the future. 

· The mathematically _acceptable solution with negative. 
energy Wr + WL < 0 corresponding to an incoming. wave. 
with a backward space and time directions must be rejected, 
if we take into account the causality principle. 

In. the boundary case of equal amplitudes EI = Er. = 
H2 · {;;2 the complete compensation of the transverse and 
longitudinal components occurs (similar to the compensa­
tion of the scalar and longitudinal components of the plane. 
wave in th(:! one-time theory) the momentumc.energy-(15) · 
vanishes and the wave disappears. 

:So, as in the usual Maxwell electrodynamics th~_energies· 
of all outgoing plane waves in the six-dimensional.world are· .. ,, ' , 

positive and these waves develop along the positive ~irec~ 
tions of all time axes ti. · 

The considered example of plane electromag:uetic waves 
promotes that the analogous situation. takes place in' the 
general cases: due to the causality principle all wave-solu­
tions describing the motion of particles correspond t9 the 
time trajectories with the positive projections ri > 0 and, 
respectively, to the energy vectors with the positive com-
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ponents. That forbids spontaneous creations of groups of 
particles from vacuum and exotic decays in which the mass 
of secondaries exceeds the decaying particle mass, fiince ev­
ery such an event is accompanied always by a time-reverse 
motion at least along one axis ti and by a violation of cau­
sation. 

It should be emphasized that the time reversibillty only 
is an approximate property of theories with the finjte num­
ber of particles and interconnection, meanwhile due to a 
non-exhaustive huge number of real interconnection in Na..: 
ture the time reversibility does not realize, strictly speaking, 
even in microscopic processes, since it would demand the 
time turning of all these innumerable interconnectjon [3]. 

From the cosmological point of view the condition ti > 0 
is equivalent to a supposition of the availability of a prefer­
able (relict) reference frame ( a "time arrow" in the one-time 
case) fixed by the events order which has become settled at 
the first moments of the existence of Universe. In spite 

. 9f this, an observer moving along a trajectory i can de.:. 
scribe what is going on by means of the measured along 
his own trajectory one-dimensional proper time t, Eince the 
latter can be always. used as a parameter .defining the tra­
jectory in the relict frame. The fact of his world time multi­
dimensionality he may ascertain meeting a body wjth some 
different time trajectory or discovering in an experiment a 
longitudinal electromagnetic wave. 

In order to describe the events under way, one can also 
use, of course, the co-ordinate frames turned with respect 
to th'e · relict one. It is equivalent to a formal rema~king 
of the time co-ordinates similar to a reverse time-reading 
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.used sometimes in our practice. In this respect J:- and t­
. subworlds differ essentially. In the six-clime11sional theor~' 
space and time, as before, are not equal in their rii~ht. 

We see that multi-tiu~e electrodynamics is a consistent 
theory with a plausible physical interpretation. !\·leanwhilc~ . 
o_ne has to answer now the ciuestion about provenance of 
bodies whose tiine trajectories are distinguish from the our 
one. 

In conclusion I wish to thank my colleagues B.F.Kostenko. 
A.B.Pestov and M.Z.Yur'ev for the fruitful discussions. 
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