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I. Introduction

New data on high energy hadronic scattering, which appeared
in the last years, intensified the interest in the properties of
the Pomeranchuk singularity. The position of this singularity on
the j-plane at t = 0 o&(0) is the most important one. In the case
when a Pomeron is a Regge pole, there are known two selfconsistent

/Y/

variants of the theory with asymptotically constant and growing

2/ total cross sections. It turns out, however, that one cannot
describe high energy data on the total cross section, the elastic
scattering cross section slope and particle diffraction production
together. It is not yet clear now if this is caused by the incor-
rect calculation of cut contribution or is due to the o(0) value.
In any case, the interpretation of the high energy data becomes

much simpler if one adopts xX(0) > 1, ref./l/

II. Modern Energies

Let us consider some consequences which follow for the ob-
servable quantities in the case of o{(0) > 1. All the resul{s
mentioned in this section are obtained under restriction by the
unenhanced graphs only. One believes that enhanced graphs are
small at modern energies due to the smallness of multipomeron
vertices. But as the energy increases,their contribution becomes
important and it will be brought inteo the plav below in connection
with the problem of unitarity.

It is worth noting first that the natural explanation is ob-
tained for the so-called "geometrical scaling” (GS) observed in
pp-scattering, ref./A/. This phenomenon resulting from the em-
pirical observation that the partial elastic scattering amplitude
f (b, s), where b is an impact parameter, at the bigh energy
depends on one variable hZ/B(s) onlv, where B(s) is the elastic
scattering slope. -

The Pomeron contribution to the e]ﬁstic scattering amplitude
in the impact parameter represenation has the following form:

ay g%
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Here 3«1(Kf)g};,(xf)=g“48ﬁf Qxp (" R}Kf) . is the
Pomeron residue in the d/i -scattering amplitude; 0(’ is a slope of
the Pomeron trajectory; y =bl (s/so); A- ©{(0) - 1. In the pole
approximation B(s) = 2(R§ +ot’y ), so one can easily see from (1)
that in the wide energy region, where
Z = ol{ eAy
Ro + oY : (2)
is approximately a constant, i.e.,
A= 2%~ 006
Bs) ! (3)

the GS will take place. As the energy increases, considerable de-

viation from GS will emerge.

On the other hand, in 'N'P and Kp scattering, where the value
of B(s) is smaller than in pp GS demands much higher energy. The
same conclusion can be made for the pp == pX reaction, where Rz
is about two times smaller than the elastic one.

2. As it follows from (1), the partial amplitude will exceed
the unity and violate the unitarity at sufficiently high energy.
But as interaction hecomes stronger, the rescattering corrections
grow. The mutual shadowing of elastic and inelastic channels will
decrease the amplitude value, so the unitarity can be restored.

This is easy to see from an example of unenhanced graphs, shown
in fig. 1.
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Fig. 1 :
This sum calculated in the eikonal aﬁproach gives in the b-
representation
- ﬁ,(l,y)

Pe=7-€ . @

It follows from (4) that P(b,s) asymptotically has the form

of a black disk with the radius ZJN’A - H /5/
P,) = Q(4«'A52-4%) (s)

.
3. The energy dependence of the total interaction 6‘&:(‘3)
and the total inelastic interaction Gzn(f/) cross sections, which

corresponds to (4) is given by the expressions:

G, (1) = & (R2 +ot'4) P(2) (6)
Ginl4) = 4T (RE +o’5 ) P(2Z ), (7)

where

Y@E)=C+lz-E-2. ()
Here Z is defined in (2); C = 0.577; Ei (=z) is the
integral exponent function. The variation of the diffraction slope

B (4 ) with energy is given by the expression

B)=2(('4+R3) ﬂx)"—,{é/f(z) (0)
It is clear from (6)-(9) that G“;!/B , 6.3{/6t.:t ,etc.
remain energy-dependent in the FNAL-ISR energy region, where (3)
takes place. These values will acquire energy dependence at higher
energies.
From (9) and (8) it follows that as 4 ——oco , BW&) 7
It is interesting to note that due to (9) and (5} GS asymptotical-
ly will be restored, what agrees with the common result of ref./()/

The ratio of the real part of the forward scattering amplit-

ude to the imaginary one for the eikonal graphs in fig. 1l is

given by , P o 1 “Z)
= Reé(.'r,o)_ F—{u( A - ’)(_e .
€= Imf@,0) ~ % R.z-ro(’_.‘/ + ~P(z)( RIru'y, (10)
At energies, where GS holds, £ is almost constant and

close to A9T/2 . In the asymptotic region it becémes & =T /4 .
4. It has been claimed in ref./7/ that the fast growth of

G’tot(ﬂ) , which follows from (6), contradicts experimental data
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from extensive air showers at energies up to § @ 10 GeV .

These data correspond to the absorption of protons by air nuclei
with the mean atomic number A = 14.4. The inelastic cross sec-
tion 6’;:4(3) has been. calculated in ref./6/ by using the Glauber
approximation. It is clear, however, that at such high energies
the interaction radius becomes very large and is comparable with

the radius of the air nucleus. So, the most of the nucleon parton



clouds in the nucleus cover each other in the impact parameter
plane and the multiple scattering model fails,ref, .

5. If the Pomeron gives a contribution to the spin-flip amp-
litude, it will be small amount of polarization in elastic scatter-
ing resulting from vacuum exchange. This polarization should be an
approximate constant in the region, where GS takes place. The spin
correlation effects in high energy total cross sections also should
be almgst energy independent in a wide energy region.

6. Let us consider particle production now. In the scheme
under discussion one immediately finds explanation for the Koba,

/o/.

Nielsen, Olesen (KNO)- scaling of topological cross sections

<n>% =V (<) (11)

here <n»> is the mean multiplicity of particles produced;

Gn is the n-particle production cross section;

Y({\V-V) is some function independent of energy. In order to prove
(11), it is sufficient to show the energy independence of the
moments (n"}/(n)K (K=1,2,3 ... ). The graphs which con-
tribute to Gn are obtained by cutting diagrams in fig. 1 in ac-

/lo,11/

cordance with Abramovski, Gribov, Kancheli rules By

. k . . : .
averaging n over this contributions one can find

6.n<nu)=je—ﬁ,(fl,l)(a5ﬁ#’:)K<eﬁ(l,!2])e-ﬁ(g,ﬂ)c/26; (12)

Here ﬁ(‘,!/) = 2Im °(‘,5)is the Green function of the cut
Pomerons; the operator (Cl.‘:lf:d /d Pc )k extracts the value of nk
for each graph; &4 is a number‘ of particles in one cut Pomeron;
the factor Qlf‘(—ﬁ,)takes into account the absorption corrections.

After the integration one obtains from (12)

L3 - <
G, <n*> = Y (RE+o'4) <aa)‘;2::1 ()

where Z is the variable (2). It follows from (13) and (7) that

(13)

L3 o K-C-T

-7
z_;:l—;i :[?(22)]'( ‘; ——(ZZ)K"' : (14)

Thus, in the energy region where 1Z is approximately const-

ant, i.e.,GS takes place, the KNO-~scaling also occurs. But at

-

higher energies ¥ varies and both types of scaling are violated.
It is interesting to note that unlike in GS, KNO is not restored
asymptotically.

7. The multiplicity distribution G, will oscillate’?/ at
high energy with the period aR =Q4 . But unlike in the case of
o((O) = 1, the maximum amplitude is attributed to a peak with the
number 22/?(22) . It is also seen from (13) and (5) that
the mean multiplicity increases with the energy as

(n> =C+ay-22/P22)

8. It is obvious that due to o{(0) > 1 the Feinman

scaling is also violated. The inclusive cross section in the

central region should grow with energy as

dG AY

- ‘ (15)

oy
/12/
It has been shown by M.S.Dubovikov and K.A.Ter-Martirosyan that

(15) holds after the enhanced graph inclusion. In the triple

: . R . 1!
Regge region the cross section also increases with eneray/ 3/

de e?? . (16)
dxdt GPPP(H d-x)*8-2%

III. The s-Channel Unitarity and Asymptotic Regimes

1. The problem of the s-channel unitarity is not exhausted,

of course, by the eikonal expansion. Generalization to a wider
/14/

class of enhanced graphs has been made by Cardyv . He has

shown that if the vertices Eun and g/‘

have unique analvtical expansion to the comp-

"of n Pomeron emission by
particles o and
lex n-plane, the disk (5) acquires the factor g,o g/w, so it can
be "grey". The inclusion of enhanced graphs makes the problem of
unitarity much more complicated. Following Cardy, it is convenient

to substitute the sum of graphs in fig. 1 by the graph shown in

fig., 2, Gaimeny Juo
fan w0 @ F
px! } =4.9|F
P P = m,)h,
? n,k g, E
gpn o eﬂp(nﬂt) éﬁo
Fig. 2 Fig. 3 b)



which has been called "Froissaron" by K.A.Ter-Martirosyan. From
Froissarons one can build more complicated graphs, for instance,
those shown in Fig. 3. The vertex o0 has been introduced by
Cardy., It is a result of analytical continuation of the gr“"— ver-
tex which couples m Pometons with the n ones.

Let us note that summing up in Fig. 3 begins fromm = n = 1,
The term %11 Y+Y’ in the Pomeron field Lagrangian has a form of
the mass term, so ‘g41 is included in the 2 value. If one wants
to develop a Froissaron calculus, one must redefine the value Z&

in the bare Pomeron substituting it by FAN o

N, = AN -_841 (17)
to avoid the double counting.

It is easy to see that some new Froissaron graphs violate the
unitarity. The singularity Q)—é in the {Y-plane (& = j-1) cor-
responds to the graph in Fig. 3a, for instance, at t = 0. So, its
contribution to cstot. grows as ,ﬂs. Cardy has noted/ld/
there is a considerable compensation between graphs in Fig. 3a
and b . He proposed such a procedure of summing up the Froissaron
graphs that for any graph, which violates the unitarity, there
exists another one, which compensates it. Nevertheless, these com-

pensation are not sufficient to guarantee the unitarity. Indeed,
if one takes into account the F Green function behaviour at dis-
tances b*mZI;TZZ, one can find that the compensation is not com-
plete and the sum of graphs in Fig., 3a, b grows as JET at

€= 2ILBH - JTB n Y

2. Another method for summing up the graphs is proposed here.
It is clear that the s-channel iteration of the graph in Fig.3a
carried out analogously to Fig 1 , leads to the unitarity result.
Let us denote the result of the s-channel interation of some graph

P (g,,ﬂ) by the symbol E[?(C,ﬁ)]. The function E(Fa ) in eikonal
approximation has the form of (4). Tt is clear that the operation
E(? ) can he applied to any graph or sum of graphs, which are ir-
reducible in the s-channel, i.e., they cannot be divided by a ver-
tical line without crossing Pomeron lines, So, after summing up
all the graphs the exact Green function T ( g'ﬂﬁ ), if any, can

be written as follows

TeH=E [;ﬁ(@,fl)l. (13)

/lz/that

the condition of the positivity of the sum in (13) can be satis-

It has been shown by M.S.Dubovikov and K.A.Ter-Martirosyan

fied if goo is small enough and T(ng) has the form of the

Froissaron
(b,y) = (4’ A,y - b) (19)

We give here their method of graphs classification and
show that some non-Froissaron-like solution can exist.

The sum { ?x can be divided into three groups

Zﬁ\:ﬁ +%(T)+C(T) (20)

Here f)(b,y) is given by (1), where A is substituted by
Zso from (17). The group D(T) contains graphs irreducible both in
t- and s-channels. It is clear that one can consider these graphs
as skeleton ones built from the exact Green function T. The group

¢(T) includes graphs shown in Fig. 4,

cm:}jn I {{_ Q)
T T P
4

Fig.
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In (&),ki )-representation it is' equal to

2 -4 -1
Cle k)= Tk~ [Twkd) +g,,] (21)

Now let us draw our attention to the fact that an addition of
enhanced graphs to the series in Fig. 1 causes the renormalization
of the A value in accordance with (17). That is,in some high
energy region a change of the asymptotic regime occurs. But the
possibility is not excluded that A< 841, so A < 0. This

danger follows from a simple estimation of by the graph,

11
shown in Fig. 5 which gives

o Gsmv 2 . \ _
8o = (5 (2 plugeR) + (2



Eere /{ is the pion mass; R2/2 characterizes the dependence
of 2: from the mass-square of the virtual piéh. If one takes
R2= 1 (Gev/c)z, one obtains
as A in (3).

Then, return to equations (1%),{(20) and consider the case of

g1 0.08, i.e., of the same order

Agsn. The asymptotic behaviour cannot saturate the Froissart-bound

in this case. If the total cross section rises as

Gl ~ 47 (23)
then T (m.kl:o)tv&)—?-i . It is seen from {(15) that in or-
der to avoid singularities in the positive &) -half plane

the following condition, at least, should be satisfied

B (24)

Tn this case the inclusive spectrum in the pionization

region is not flat:

dS 4 7(y-2.)¢

o 4, (25)
and the mean multipliicity rises as
+1
dnd ~ Y . (26)

As a possible realization in (y,b) space of such solution
with 7 = 1 one can consider a ring with constant thickness d
and the rising radius ~ a:y

Another value of A , for which non-Froissart-like behaviour
isknown to take place is a critical one A= Ac corresponding to
the strong coupling variant of the theory/z/. f A= llc , the
sum of graphs (20) has singularity at (J = 0 and should be clas-
sified as one of the cases discussed just above. So one can demand
that

Ac < %41 )
(27)
This inequality is in accordance with the estimations of

[Xc/z/ and gy, from (22).

It is worth noting that different types of asymptotic be-

haviour can have no effect in the gnergy region accessible now.

10

It is possible even that some Froissart-like behaviour can take .
place at s= 106- 101n GeV2 but a change of the regime may occur
at much larger energy values, where enhanced Froissaron graphs
causineg compensation reach asymptotics. It seems now that only new
experiments on the new generation of high energy accelerators and

possibly in cosmic ravs can give the answer to what kind of asymp~

totic energy behaviour for cross-sections takes place.

IV. Conclusion

The theorv of the Pomeron with of (0) = 1 has large amount of
attractive features and explains many general properties of hadron-
ic scattering at high energies. But a number of subtle effects, ex~-
perimentally observed recently, have shown the necessity of con-
sidering the case of oK(0) >1.

The main consequences for experimentalists discussed above
are the following:

1. Due to an "accidental" play of parameters the approximate
geometrical scaling takes place at modern energies. It can be
violated with increasing energy.

2. The total cross section and the diffraction slope varying
slow now, can grow faster and saturate the Froissar limit at
energies at 10o - 1010 GeV.

2. Fast increase of the cross section does not contradict ex-
perimental data from accelerators or cosmic rays.

4. The ratio of real-to-imaginary parts of thg forward scat-
tering amplitude can reach the value of about 7w/2+-A and very long
can remain approximatelv a constant.

5. Tf a Pomeron gives any contribution to the spin-flip amp-
litude, it will be a small energy-independent part of elastic
scattering polarization in the energy region of the GS validity.

6. The natural explanation is obtained for the KNO scaling
at modern energies, where 7 =constant . The mean multiplicity ac-
quires the suppleméntary factor 272/ (2 ) and has a small devi-
ation from an ordinarv &ﬂs/sﬁ-dependence at accelerator energies.

7. The Feinman scaling is violated in the central and triple
Regge regions both. The inclusive cross section rises as exf(lly).

The problems of unitarity arise at asymptotic energies. The
Froissaron calculus by Cardv-Gribov is a convenient tool for

studying this problem. A procedure is proposed for the summing up

1



of the Froissaron graphs which quarantees the s-thannel unitarity.
The existence of the Froissaron-type solution has been proved by
M.S,Dubovikov and K.A.Ter-Martirosvan. It is noted here that other

solutions can exist, if A < . One of such solutions is a

73/ 11
strong coupling variant ° , which takes place, when A = Lsc is

a critiecal value.
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