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In paper’l/ a new relativistic relative coordinate
introduced in’2’ has been used to describe the particle
spatial distribution. An expansion over the unitary irre-
ducible representations of the Lorentz groupf“"/ is used
instead of the Fourier transform in passing to a new con-
figurational representation. For the proton form factor
F(t) this transformation due to its spherical symmetry

has the form /1.2/ (in (1) we put h-c-1)
F(t)-4n[ -S0IMYy  peoy2g .
(v ™/ r M sinhy (r)r=dr 1)

Here M is the proton mass and the hyperbolic angle

2
2M° —t . 1. .
= Arcosh( &gy ==) is the rapidity corresponding to the
y T piaity p g
2

momentum transfer t =(p—k)~ .

The new coordinate has the important property that
its modulus r is the relativistic invariant, as it para-
metrizes eigenvalues of the invariant operator, the Casi-

mir operator of the Lorentz group C = - %-M“V MW = ltlz -
R 2
-M2 - —T‘ -+ 2. Therefore the- spatial
M2c2

distribution function F (r) like F(t) is also the relati-
vistic invariant and describes the particle distribution
in an arbitrary reference frame (and not in the Breit
frame only in contrast with the usual Fourier transform).
In terms of F(r) one has the following expression of the
invariant mean square radius (m.s.r.)/1/
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Consequently, when <r?> is positive * Dboththenew coor-

dinate r and F(r) describe not the total distribution of a
particle but only the region at distances larger than its
Compton wave length. From (2) it follows that to the

central sphere with < r2 . -1-— N (N there cor-
0" Mm? M* ¢ 2

responds the spatial distribution F(r) = 8(r), 47t 2

According to (1) this provides the following contribution

to the form factor from the central region
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So, in the case of < r? ~ positive the standard form factor
F(t) may be represented in the form
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where the ’external’”’” form factor ®(y) corresponds to
the proton distribution outside the sphere with r, =h /Mc .
It should be noted that the factor y/sinhy _ thus separated

and the corresponding region with o= /Mc  have no

nonrelativistic analogs since e
C

C-» o0 Cro0

Now let us analyze in terms of the new co-
ordinate which regionof a protonis described by the vector

* <r?> js positive if F(r) is of constant sign.

—0 and y/Sinhy—-*l.

mesoln .contribution. The image of a meson propagator

2_, in a new r -space depends essentially onthe

1
relation between the mass of a particle itself M and that
of a meson p/2/:

1 cosh (rMa)

2 < 4M2
A7t sinh (tM7) : ,
ay= arccos (£ ? —2M )
F(r) = 2M2
2 (52)
1 cos (rMay) pe>4M
4771' sinh(rMn) a_ = Ar COSh( #2 —2M2)
2 2M2
(5b)
According to formulae (2) and (5) we have
2 2 -
F(r)d 2 2
<r2>s<r3>— h” _ JrF(odr  em? -, (6)

MZcZ [ F(r)drf = 2M2

Since the masses of all presently discovered p , o ,
¢ and p” (1550) vector mesons satisfy the inequality
w2 ,, < 4M the function F (1), which

V=p,0,%.p
describes their contribution to the proton structure, has
the form (5a), i.e., it is of constant sign, and <r2> (6)
is positive. Consequently, these vector mesons g1ve the
proton structure at distances larger than its Compton
wave length, and contribute to the external form factor
@(y)*-

For pion, to the same vector mesons there corresgond
the oscillating functions F -(r) (5b) and negative <r
because p%, > 4MZ .  This makes the value of the p176n
m.s.r. smaller than its Compton wave length, that is in
agreement with experimental data.



Therefore, to represent the total proton structure in
the momentum space, allowing for the contribution of
vector mesons with p2 < 4M2 by the VDM, one should
add the contribution from the central part. As a result,
the proton electromagnetic form factor takes the form

a
F ()<t . ¥ —v_ . (1)
1 sinh y \/:,p,o),q’)’p”ﬂ‘i/— 1
From (3) it is easy to see that formula (7) gives the

correct "’almost dipole’’ asymptotic behaviour of the pro-
ton form factor at large ~t

fn l]\;Jz"
F (1) » . (8)
T M3, t?
At small transfer momenta 0. — 1t 1 (GeV/c)z the
factor —-Y-— - 1 that makes the pure VDM be valid,

sinh y

and at large —t it provides an additional decrease as

_______ An idea of the modification of the VDM
through introducing an additional factor was suggested by
other authors as well. However, their choice of a
propagator as such a factor was rather random considering
the propagator to be the simplest and thé most popularly
used function (see also ref. > ). We emphasize that the

_ y corresponding to the cent-
stnh y

ral part contribution is due to the formalism itself, i.e.,

the expansion (1).

From the view point of quark models the obtained pic-
ture may be interpreted as follows. According to estimate
by these models ' , the relative motion of three quarks
constituting a proton is within the region of order of the
proton Compton wave length. Consequently, they produce

form of the factor

6

N

the contribution of the central part of the proton (3). The
quark-antiquark pairs excited by scattering of electrons
on the proton compose the vector mesons, responsible,as it
follows from (2) and (6), for the distribution at distances
larger than the proton Compton wave length if u3 <4M2,
We have compared the experimental data on the proton
magnetic form factor with predictions following from (7).
We have also used another VDM parametrization of the
form factor which corresponds to a possible contribution
from a ’’kern’’. (In our approach the role of the ’kern’’

h

plays the central part with r - ﬂ—c-)
a
y . . v
F (t)-- _—_ (1 =X Y —
! oy I vav) 3 1-¢/,ﬂ‘ (9)

The results are presented in the table, where we give the

values of y? per one degree of freedom: xf = x? /deg fr

found both by formulae (7) and (9), and compare them with
the results of pure VDM.
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Comparison between our model A) and_the usual VDM B).
The data points are taken from vef. '’ and normalized
to the dipole fit.
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part contribution
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Table
values obtained by fitting of the

in our approach and the usual vector meson pole

models
with the central
contribution
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0.67
0.81
0.76
0.69
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Model

4—rpole (p, w,d.p " (1550))
VDM with kem(p .o . p

VDM with kem (p.or,hop’)

4— pole (p ,(u,(b,p ’
VEM (p,w,db,p " p”
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4.
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Thus, we see that the consideration of the contribu-
1.2

;1 2C2— modifying
the VDM at distances of order of the Compton wave length
results in a rather good description of the data allowing
for the experimentally found vector mesons p ,© , ¢
and p~° (1550) only (in contrast with’” ). Besides, our
approach contains the;‘zprediction (see formula (8)) that
at asymptotical —t >> 'p the decrease of the form fac-
tor, which is presently observed to be more rapid than
the dipole t=2 , should be more slow, as (8). Hence, the
curve defined by our model should intercept the straight

‘l) ])
line Gy /upG dip = 1 at large —t .

tion from the central part with < r?):» =
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