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Symmetry groups and symmetry algebras are some of the firm pillars on which 
the whole edifice of the modern developments in theoretical physics rests. Math­
ematically, the q-deformed symmetry algebras ( compact matrix pseudo-groups or 
quantum groups [1,2]) are examples of the quasi-triangular Hopf algebras (3). These 
q-deformed groups and algebras have recently been the subject of considerable in­
t~~est in the hope of developing some more general symmetries that might h~ve 
profound implications in very sensitive physical theories (where q is very close to 
one) [4]. In spite of considerable progress in the mathematical direction, the key 
concepts ·of quantum groups have not penetrated into the realm of physical applica­
tions in an overwhelming and compelling manner. Some attempts have been made, 
however, to see the impact of these groups in the context of q-deformed ga~ge the­
ories [5] as well as in few well-known physical examples [6]. These groups are also 
conjectured to provide a fundamental length in the context of space-time quanti­
zation [7] with a non-commutative underlying geometry of the space-time manifold 
[8]. These objects have manifested themselves in statistical systems, conformal field 
theories, knot theory, nuclear physics, etc.[ see, e.g., Ref.9 and references therein]. 

Recently, a Lagrangian formulation has been developed to describe a q-deformed 
scalar as well as a spinning relativistic particle in a consistent and cogent way (10). 
In this approach, the Lorentz invariance is respected throughout the-discussion, 
which might turn out to be useful in the development of the Lorentz covariant q­

deformed field theories. The main objective of the present paper is to develop the 
BRST formalism for the q-deformed scalar particle of Ref. (10] on a GLq(2) in­
variant quantuqi world-line defined on a flat but q-deformed cotangent manifold to 
the Minkowski space-time (configuration) manifold. We derive q-(anti)commutation 
relations for this systel:!1 which are (graded)associative on the mass-shell and the on­
shell. One of the key features of our work is the GLq(2) invariance of the solutions 
for the equations of motion on the mass-shell at any arbitrary value of the evolu­
tion parameter. The BRST quantization has been carried out by exploiting the local 
gauge symmetry and the reparametrization invar!ance of the starting q-deformed La­
grangian. The equivalence of the BRST charges corresponding to these symmetries 
requires that the deformati_on parameter q must be ±1. This condition (q = ±1) also 
emerges from the conservation of the BRST charge on the unconstrained manifold 
and the requirement that the BRST algebra should be satisfied. We do not discuss 
here the q-deformed Hamiltonian formulation, q-deformed Dirac brackets, etc., for 
the above system. The q-deformed Hamiltonian formulation for a scalar as well as 
a spinning particle would be reported in a future publication (11]. 

We start-off with three equivalent Lagrangians for an undeformed (classical) free 
relativistic particle (12] moving on a world-line embedded in a D-dimensional flat 
Minkowski manifold. The mass-shell condition (p2 ~ m2 = 0) is a common feature of 
the first-order Lagrangian (LF = pµxµ - HP2 - m2)), the second-order Lagrangian 
(Ls = ½e-1x2 + ½em2) and the Lagrangian with a square-root (Lo = m(x2) 1l 2). 
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Except the mass ( cosmological constant) parameter (m ), the target space canonically 
conjugate c6ordinates (x") and momenta (Pi,) as well as the einbein field (e) are 
funct'ion~ of aii evolution parameter ( ~) characterizing the trajectory of the free 
in~tion of a relativi;tic particle and x" = dr. All the above dynamical variables are 
the 

0

ev~n elements of a Grassmann algebra. T The first- and se~ond-order Lagrangians 
a~e.endo~ed with first-class constraints II. ~ 0 and p2 - m 2 ~ 0, where II,"';~ 

· the conjugate momentum corresponding to the einbein field e. For the covariant 
canonical quantization of s~ch systems, the most suitable approach is the BRST 
fornialisin [13]. 'The BRST invariant Lagrangian (Lb~st) corresponding to the first­

orde~ ~agrap.gian (LF) is [14] 

. L • " e ( 2 . 2) b . b2 ,. . brat = Pi,X - 2 p - m + e + 2 + c c, (1) 

where the even element bis the Nakanishi-Lautrup auxiliary field and (anti)ghost 
fields (c)c are the odd elements of a Grassmann algebra (c2 = 0, c2 = 0). In the 
BRST quantization procedure, the first-class constraints II, = b ~ 0 as well as 
p2 - m2 ~ 0 turn up as constraints on the physical states when one requires that the 
conserved and nilpotent'BRST charge Qb,st = ¥(p2 - m2

) + bi: must annihilate the 
physical states in the quantum Hilbert space. The conservation of the BRST charge 
on any arbitrary unconstrained manifold is ensured by the equations of motion 
· 0 b. 1 ( 2 2 ) •. "" 0 b • 0 . Pi,= , = - 2 p - m , c =:= c = , + e = , xµ = epw 

To obtain the q-analogue of the above Lagrangian (Lb,st), we follow the the pre­
scription of Ref. [10] where the configuration space corresponding ~o the Minkowski 
space-time manifold is flat and undeformed (xµxv = XvXµ} but the cotangent mani­
fold (momentum phase space) is q-deformed (xi,Pv = q PvXµ, XµXv = XvXµ, p1,Pv = 
PvPi,) in such a way that the Lorentz invariance is preserved for any arbitrary or­
dering of µ and v. Here all the dynamical variables are taken as he1:mitian elements 
of·an algebra in involution (lql = 1) and q is a non-zero c-number. As a con­
sequence ofthe above deformation, the following on-shell and (graded}associative 

q-(anti)commutation relations emerge 1 

Xµ x,., = x,., Xµ, Xµ X,., = X,., Xµ, Xµ x,., = x,.,Xµ, Xµi:,., = ;i·,.,:t10 

.Pl' Pv = Pv Pi,, Xµ Pv = q Pv Xµ, Xµ Pv = q Pv Xµ, f' ,r1, =. q Xµe, 

e Pi,= q Pi, e, e Xµ = q x" e, e b = b e, e c = c e, e c = c e,. 

- l_ !. 1,. . _ l _ . . ,. . 1,. . 
CC= --Cc, 

q 
cc=--cc, 

q 
cc=--cc, cc=--cc, 

q q 

1These on-shell q-( anti)commutation relations emerge from the basic ( un )deformed relations on 
a·deformed cotangent manifold, the equations of motion obtained from.the (un)deformed DRST­
invariant Lagrangians (1) or (8) and by exploiting the m~ss-she/1 condition 112 - ;n2 = 0. For 
instance, it can be readily seen that if we take the on-shell conditions only, i.here is a contradiction 
between the relations i, p1; = q Pµ i, and Pµ Pv = Pv. Pµ with i, = -½(p2 - 'm2 ). Thus, in the 
computation of the q-(anti)commutation relation~ for.the BR.ST invariant Lagrangians, the mass-
shell as well as the on-shell conditions should be exploited together. · 

~·I. • + .2 

C Xµ = q Xµ c, 

b Xµ = q Xµ b, 

C Xµ = q Xµ c, C ]1µ = q Pi, c, 

b Pi, = q Pi, b, b C = C b , 

cp" = q p" c, 

be =cb, 

em = q m e, Xµ m = q m xµ, p" m =mp"' cc= -q cc, 

b m = q m b, cm = q m c, cm = q m c, c2 = 0, c2 = 0, (2) 

where the mass-shell condition p2 
- m2 = 0, emerging from the equations of motion 

b = -e = -½(p2 - m2 ) = 0 has been imposed. Mathematically, this restriction 
implies that the b field is r-independent' and the r-dependence of the einbein field 
is at most linear. Physically, it just means that' the mass-shell condition is strongly 
equal to zero on the quantum world-line even in the case of the q-deformed BRST 
formalism. It is straightforward to see that in the limit when the odd Grassmann 
variables (c,c) and the even variable (b) are set equal to zero, we obtain the q­

commutation relations for a q-deformed scalar free relativistic particle of Ref. [10] 
and in the limit q--> 1 the usual (anti)commutation relations among the dynamical 
variables of the Lagrangian· (1) emerge automatically. 

Before obtaining the q-deformed Lagrangian, it is essential to define a q-deformed 
world-line for the free motion of a scalar relativistic particle on the cotangent man­
ifold because the q-deformation is present in this manifold and the Lagrangian has 
to describe the motion on this specific quantum world-line. Such a GLq(2) invariant 
world-line, consistent with the q-(anti)commutation relations (2), can be defined in 
terms of the coordinate generator x" and the momentum generator Pi, as [10] 

xµ{r) p"(r) = q pµ{r) x"(r), (3) 

where repeated indices are summed over (i.e.,µ= 0, 1, 2 ........ IJ-1), and the world-
line is parameterized by a real commuting variable r. The f~llowing GLg(2) trans­
formations 

Xµ --> AXµ+ B Pi,, 

Pi, --> C Xµ + D Pi,, (4) 

are implied in the component pairs: (x0 ,p0 ), (x1,p1) ....... ,.(xv-1,PD-1) of the phase 
variables in equation (3) and its form-invariance can be readily checked if we assume 
the commutativity of the phase variables with elements A, B, C, and D of a 
2 x 2 GLq(2) matrix obeying the braiding relationship in rows and columns as: 

AB = qBA, 

BC = CB, 

AC= q CA, CD= q DC, ED= q DB, 

AD - DA= (q - q-1
) BC. 

It will be noticed that there is another candidate, namely; 

. 1 
c(r) c(r) = -- c(r) c(r), 

q 
c2(r)=0, 

3 

c2(r)=0, 

(5) 

(6) 



which also remains form-invariant under the following tra.nsforma.t.ions 

( ; ) - ( i: ~ ) ( ; ) , (7) 

if we assume the commutativity of the (anti)ghost fields (c)c with the elements 

A, B, C, and D of the GLg{2) matrix obeying relations (5). However, it ca~not 
be taken as the definition of the quantum world-line because these fields are totally 

decoupled from the rest of the theory and their on-shell conditions c = l§ = 0 do 
not lead to anything interesting and substantial. 

The BRST invariant first-order Lagrangian (L1) that describes the free motion 

(Pµ = 0) of~ free q-deformed relativistic particle is 

L1 = q112p :i;J.I - _e_(p2 - m 2
) +be+ ___!I:._+ cc. 

J.I 1 + q2 -1 + q2 ' 
(8) 

where the q112 factor appears in the first term due to the Legendre transformation 

with q-symplectic metrices (10) 

( 
0, -q-1/2 ) 

nAB(q) = ql/2, 0 and nAB(q) = ( 0, q-1/2 ) 
-ql/2, O • (9) 

In the third term of the Lagrangian (8), there is no q112 factor because the canonically 
conjugate variables e and b commute ( e b = b e, e b = b e ). Therefore, the standard 
canonical symplectic metrices (i.e., q = 1 in equation (9)) have to be exploited for 

the Legendre transformations for these fields. Here the q-BRST Hamiltonian for a. 

free relativistic particle has been taken to be: H = 
1

_;q2 (p2 
- m 2

) - 1!2
q 2 + cc. The 

equations of motion from the Lagrangian (8) on the mass-shell a.re 

xµ 
b 

q112 e p"' 'Pµ = 0, , c = 0, l§ = 0. 
4 

-~ (p2 - m 2
) = 0, e = - b, 

l+q 
(10) 

which satisfy the on-shell and the mass-shell q-(anti)commutation relations (2). In 

the derivation of the equations of motion from the Lagrangian (8), the GLq(2) in­
variant differential calculus has been exploited [15). For instance, for even dynamical 

variables 9beying xy = qyx, any monomial in the Lagrangian (8) is arranged in the 
form y' x•, and then we use 

8(yr x•) 

ax 
cJ(yr x•) 

By 

yr x•-1 qr (1 - q2•) 
(1 - q2) , 

yr-I x' (1 - q2r) 
(1 - q2) , 

(11) 

where r, s E Z are whole numbers (not fractions). For the differentiations with 
respect to the odd Grassmann variables c and c, these variables a.re first brought to 

4 

the left side in the corresponding expressions by using q-(anti)commuta.tion relations 

(2) and, only then, differentiation is carried out. 
It is rather cumbersome to obtain general solutions for the equations of motion 

(10) for any arbitrary dependence of the dynamical variables on the evolution pa­

rameter T. The mass-shell condition (p2 
- m 2 = 0), however, emerging from the 

restriction e = -b = 0 conies to our rescue. The GLq(2) invariant solutions for the 

equations of motion (10), under such restriction, a.re 

Xµ(T) 

e (T) 

C (T) 

c (T) 

b (T) 

1 
xµ(0) + q112e(0)p1,(0)T - 2 q

112 b(0) p1,(0) r 2
, 

e(0) - b(0) T, 

= c(O) +Jr, 
= c(0) +fr, 

b(0), 

Pi,(T) = p,,("0), (12) 

where f and f, present in the solutions for c( r) and c( r ). are r-ind<>pendent odd 

elements of a Gra.ssma.nn algebra. (12 = f2 = 0) and t.hey ob«'Y the following q­

a.nticommuta.tion relations with the rest of the odd dynamical variables 

- 1 - 1 
f 2 = .ri = o. ff = -- ff, f c = -- cf. 

q q 
- 1 -

cf = --f c, 
q 

C j = - j c, cf= -f c. ( 13) 

The q-commutation relations off and f with the rest of the ev<'n dynamical variables 

are the same a.s that of c and c in equation (2). 'v\lith equations (2). (13) and 

solutions (12), it is interesting to check that all th<'se relations a.ml the GLq(2) 
invariant quantum world-line (3) a.re invariant for any arbitrary value of th<' evolution 

para.meter T, ifwe assume the validity of these relations at. initial '"time'' r = 0: The 
second-order Lagrangian (L,), describing the motion of a. scalar rc>lat.i,·ist.ic particle 

on the tangent manifold (velocity phase space), can be obtained from t.he first-order 

Lagrangian (8) by exploiting equations (2) and (10) as given l)(')ow: 

C/2 
-1 . 2 e 2 • /,2 ,. • 

L,=--
2

e (:r 1,)+--
2
m+be+--2 +cc. (14) 

. l+q l+q l+q 

The consistent expression for the canonical momenta (111,) and th<' rest. oft.he rnnon­
ical momenta (TI's) for the first- and second-order Lagrangians (8) and (14) are 

pµ q_312 (fJL~1. ,•l) = q-1/2 f-1 ,i·,., fl, = 1,, 
8i·I' 

lib = 0, Ile = - q c, TI., = i·. ( 15) 

5 



Due to the GLq(2) invariant differential calculus developed in Ref. [1.':i], the differ­
entiation of the Lagrangian L, with respect to the einbein field t yields 

4 

b = _q_ [m2 - q-1 e-1 (:i: ) e-1 (:i-'')] 
1 + q2 µ , 

(16) 

which is consistent with the corresponding equation of motion deri\'ed from the first­
order Lagrangian (L1 ) and equation (15). In fact, the above second-order Lagrangian 
is equivalent to the first-order Lagrangian in all aspects. 

It has been demonstrated in Ref. [10] that the first-order Lagrangian for the 
q-deformed scalar particle (L:F = q1l2p,,:i:" - ~(p2 

- m 2
)) is endowed with the 

q-deformed gauge and reparametrization symmetries which are found to be on-shell 
equivalent only for q = ±1. For an arbitrary value of q, the above symmetries 
are not equivalent. Thus, both of these symmetries can he exploited for the BRST 
quantization. For instance, it can be seen that the Lagrangian (8) is invariant under 
the following nilpotent BRST transformations 

{jBx" = q112 'f/ C p", {jBc 0, {jBb = 0, 

{jBP" = 0, {jBi'; = q2 T/ b, {jBe = q217 C, (17) 

because the Lagrangian transforms as 

{j L - .:!_ [c (p2 + q2m2) 2 b ·] 
B f - T/ dr (1 + q2) + q c , (18) 

where 'I/ is a r-independent and a q-(anti)commutative odd element ('f/ 2 = 0) of a 
Grassmann algebra (i.e., 'I/ c = -q c T/, T/ c = -q c T/) and it commutes with all 
the even fields (x,,,p,,,e,b) of the theory (i.e., 'I/ x,, = x,, T/ etc.). It is the gauge 
symmetry of the first-order Lagrangian( L:F) that has been exploited for the BRST 
transformations (17). The reparametrization symmetry, corresponding to the one­
dimensional diffeomorphism (r -> T - c(r)), can also be exploited for the BRST 
quantization. Such a first-order Lagrangian is 

e . 8 2 .,_ d 
LB= q112pµx" - --2(p2 - m 2

) +Be+ --2 + ,\-d (,\ e), (19) 
l+q l+q T 

where B is the Nakanishi-Lautrup auxiliary field obeying the same q-commutation 
relations as bin (2) _and ,\(>.) are the (anti)ghost fields corresponding to the cliffeo­
morphism transformations. These (anti)ghost fields are odd elements of a Grass­
mann algebra (,\2 = >.2 = 0, ,\ ,\ = -,\ ,\) and they commute with all the even 
elements of a Grassmann algebra. It can be checked that under the following nilpo­
tent BRST transformations 

{jBx" 

{jB e 

T/ >. xµ, 
d 

= T/ dr(,\ e), 

{jBP" = ,,., ,\ p,,, 

{jB,\ =,,., B, 

6 

{jBB = 0, 

{jB>. = ,,.,.x~, (20) 

;} 

1) 

if 

:'' 

the Lagrangian (19) transforms as 

{jBLB = T/ dd [q1/2 >. p,,:i:" - ~ (p2 - m2) + Bdd (>. e)]. 
T 1 +q T 

(21) 

The equations of motion that emerge from (19) fore=/ 0 on the mass-shell are: 

:i:,, 1/2 d2 ( \ ) _ · _ \ _ q e p,,, dr2 11 ,e - 0, p,, - 0, 11 _ 0, 

l3 
q4 

- 1 + q2 (p2 - m2) = 0, e = - B. (22) 

The analogue of the Euler-Lagrange equations (10) and (22) can be obtained 
from the least action principle in the forin of the Hamilton equations. As a bonus, 
we can also derive the expressions for the conserved charges as illustrated below: 

{jS = 0 ='= j dr ( {i[q1l2p1-1:i:" + be+ cITc + t;rrc: 

• _ . .,_ dg(r)) 
H(x1-1,P1-1,e,b,c,c,c,c)J- -a,;- , (23) 

where S is the action corresponding to the Lagrangian (8), H is the most general 
expression for the BRST Hamiltonian function for a q-deformed free relativistic 
particle and the expressions for g( T) are: 

C (p2 + q2m2) 2 . 
1 2 +qbc,. 

+q 
g(r) 

· >.e d 
q1f2,\p :i:" - --(p2 - m2) + B-(>. e), 

" 1 + q2 dr 
g(r) (24) 

for the (gauge) BRST transformations ( 17) and the ( diffeomorphism) BRST symme­
try tran~formations (20), respectively. Now, using the q~(anti)c~mmutation relations 
c {ji; = -q {ji; c and {j:i:"p~ = q p"{j:i:", all the variations can be taken to the left in the 
corresponding terms of (23). For the validity of the following Ii'amilton equations 2 

:i:" 

C = 

q-1;2 8H 
. fJp"' 

fJH 
ac, 

.,, __ 112 8H . _ fJH 
p - q fJx1-1' e - f)b ' 

fJH .,_ -I f)H 
C = - {Ji'; , C = -q {Ji; , 

b= - f)H 
Be' 

~ = q-1 fJH 
fJc' 

we obtain the most general expression for the conserved charge (Q) as: 

Q = q-112{jx"p1-1 + b 6e + {ji'; c - q {ic c - g(r). 

(25) 

(26) 

21n the variation of 8( c Ile+ /:II,) which is equivalent to o(c c +cc) , we have taken oc c - q oc c 
from the first-term and the second-term is expressed as f,(oc c) - qoc c - q f,(oc i:) + q oc f 
to yield the equations of motion c = f = 0. In analogy with equations (23),(24) and (25), it is 
straightforward to derive the Hamilton equations corresponding to (22). 

7 



The Hamilton equations of motion (25) with the BRST Hamiltonian 

e ( 2 2) b2 ,_ . H = -- p - m - -- +cc, 
1 + q2- 1 + q2 

(27) 

turn out to be consistent with the Euler-Lagrange equations.(10) and the contravari­

ant metric (9). For the global version of the BRST symmetry transformations (17) 
and (20); equation (26) yields the following charges 

Q - q2 C (p2 - m2) 2 b. d Q. - ,\e (p2 - m2) a.:!:...(,\ ) 
B - . 1 + q2 + q c an r - 1 + q2 + dT e , (28) 

which are found to be equivalent under the identifications b = B and c = .\e only 

for q = ±1. In fact,· this req~irement (q = ±1) for the above equivalence is a 
.manifestation of the on-shell equivalence of the gauge and reparametrization sym­

metries in the case of the deformed Lagrangian ( L.r ). It is interesting to check that 

(i:, e) p,, = q p,, (i:, e), (10) and (22) lead to: 

2 • ( 2 2) d 2 2 
QB= q \p -

2 
m (1 - q2) and Q, = -d (,\ e) p -

11; (1 - q2). (29) 
+q T l+q 

To have an analogy with the undeformed cas~ (q = 1), where the BRST charge 

is conserved on any arbitrary (unconstrained) manifold, it is essential that the de­
formation parameter (q) must be ±1 for the conservation of the above q-deformed 

BRST charge (28). However, even for an arbitrary value of q, the BRST charge (28) 
is conserved on the constrained submanifold where p2 - m 2 = 0. 

To obtain the BRST · quantization scheme, the' dynamical variables are first 
changed to the hermitian operators and then we require that the physical Hilbert 

space must be annihilated by the BRST operator. This, in tui-n, implies that 

the constraint operators should annihilate the physical states. In the q-deformed 

BRST approach, it is essential to invoke various consistency conditions e.g. her­

mitian properties and the BRST algebra to obtain a precise expression for the q­

( anti)commutators. To illustrate this point, we first demonstiate the correctness of 

QB of (29) in terms of the q-analogue of the Heisenberg equations, namely; 

. i 
QB = -h [ QB,H ]q, (30) 

where first we define the q-commutators [A, B]q = A B - f(q)B A in terms of an 
arbitrary q-dependent function J(q) (f(q) -> 1 when q -> l or A = B) and do 

the ordering by exploiting q-(anti)commutation relations (2) to obtain the desired 
q-(anti)commutators. For instance, using equations (27) ancf (28), we obtain 

• 2 

Q. _ i q ( [ ( 2 2) ,_ . l [ . ( 2 2 l ) B - -,;, 
1 
+ q2 c p - m , cc q + b c, e p - m ) q • 

8 

(31) 

Now, using the above definition of the q-commutator and exploiting the relations 

i: (p,,,m) = q (p,,,m) i:, c (pµ,m) = q (p,,,m) c and cc= -¼ c i:, the first 
q-commutator in (31) can be converted into a q-anticommutator and the second 

commutator can be reordered using b (p,,, m) = q (p,,, m) b. c (p,,, m) = q (p,,, m) i:, 
and i: e = e i: to yield the right hand side of (31).as 

i q2 [{c,c}q [b 1]•(2 2) - h 1 + q2 _q_4_ +. 'e q c JJ - m , (32) 

where the q-(anti)commutators are 

g(q) 
[b, e]q =be - -

4 
e b. 

. q 
{c,c}q=C c+q3 f(q)ct, (33) 

Here arbitrary q-dependent functions g(q) and .f(q) reduce to one as q-> l. Com­
parison and consistency with_ {29) yields one of the solutions as: 

{c,c}q =in.q4, [b,e]q = -i h q2. 

The herrriiticity requirement on the above q-(anti)commutators leads to 

(1<tl 6 l.f(q)i6 - l) CC 

(lql8 
- lg(qlJ2) Cb 

i fi q*3 (q4 f*(q)- q·), 
· • 4 ( .G 2 *( l) inq q -q g q . 

(34) 

(35) 

as the general restriction on g(q) and .f(q) (see, e.g., Aref'eva and Volovich Hef.[6]). 

One of the trivial solutions (g(q) = q4, .f(q) = q-3, q2 = q•2, q4 = q* 1) implies that 

q2 and q4 are real parameters. Under such restrictions, the (anti)conmmtators (:34) 

{ c, c}q =cc+ cc= i 11 q4, [b,e]q = be- eb =:= -:-i f1 q2, (:36) 

reduce to the corresponding undeformed BRST (anti)conm1ntators for q = ±1. 

The nilpotency of the q-BRST charge Q1 ·= ½{QB,QB},1 = 0 is tri,·ially satisfied 

because of the absence of the canonically conjugate variables in the expression for 

QB- To complete the BRST algebra, we further require the ,:a.lidity of the relation 

(-HQc,QB]q = QB) where the ghost charge Qc = cc+ i' i:, emerging due to 
the global scale invariance, is conserved only for q = l (and [Q.-, Q.-],, = 0). This 
q-commutator is succinctly expressed as: 

• . 2 . 

i [ l 1 q [ '- 2 2 J I 2[- • '] --Ii Qc,QBq=--
1
. --

2 
cc,c(p -m ),,-,q cc,br·,

1
• 

I I I +q II 
(:17) 

In the computation of the first q-comnmtator in (:37), we choosp t lw arhit.rary func­
tion such tp.at we are consistent with the q-anticonunnt.at.or (:Hi). For instance, afl<>r 
reordering, this q-commutator becomes -¾ ~ c(c c + ~ c <" )(7l - m 2 ). Now, 

choosing F(q) = q4, we obtain this q-commutator as -f1-=-+'

2
, q4 c (1,2 -111 2 ). \Ve exploit 

q . 

9 



an analogous procedure for the computation of the second q-commutator which ul­
timately reduces to f q2 b {c,c}q c where {c,c}g =cc+ G(q)c c with an arbitrary 
function G(q). For the sum of these two q-commutators to yield QB, we require: 

{c,c}q = -iii, q4 = 1. (38) 

The hermiticity requirement on the above q-anticommutator implies G(q) = 1. A 
definite and sensible expression for QB, however, requires that q must be ±1. 

To compute the q-commutator between x,, and Pv, we first define a relationship 
between the basic q-commutator [x,,,pv]q and a q-Poisson bracket {x,.,pv}:B as 

[ x,,,Pv )q = i Ii M(q) {x,,,pv};B, (39) 

where {xµ.,Pv};B = q-1l 2 T/µ.v due to symplectic metric (9) and [x,,,pv)q = x,,, Pv -
N(q) Pv Xw Here q-dependent functions M(q) and N(q) go to one as q ->' 1. The 
hermitian condition on (39) yields one of the solutions as: 

IN(q)l 2 = 1, and M(q) q-1l 2 M*(q) .-1/2 
- q . 

N•(q) 
(40) 

With the basic definition (39), we obtain 

[x,,,p2)q = x,, p2 - N 2 (q) p2 x,, = i Ii M(q) {x,,,p2};B, ( 41) 

where {x,,,p2 };B = q-112 (1 + q2 ) p,, fixes N(q) to be q2 and, therefore, lql4 = 1. 
Now, we require th~ validity of equation (10) by exploiting (anti)commntators (36), 
(38) and (41) in the Heisenberg equations of motion. For instance, the "time" 
derivative of x,, can be expressed in terms of the q-BRST Hamiltonian H as: 

· __ _:[ HJ = 1/2 Xµ. - Ii x,,, q - q e Pw (42) 

In the computation of (x,,, e p2)q = x,, e p2 - h(q) e p2 x,,, we' do the reordering 
using ex,,= q x,, e and require the consistency with (41) which fixes h(q) = q3. 
Finally equality in (42) leads to M(q) = q2. This, in turn, yields q = ±1 due to the 
requirement (40) (for the real value of q). Similarly, rest of the equations of motion 
(10) can be checked to be satisfied only for q = ±1 if we use the q-(anti)commutators 

(36) and (38) in the Heisenberg equations of motion. 
The key ingredients in our quantization scheme are hermitian condition on q­

( anti)commutators, validity of the q-BRST algebra, conservation of the BRST charge 
on an unconstrained manifold and the requirement that the on-shell condition should 
remain intact under q-deformed Heisenberg equations of motion. In the limit when 
q --+ 1, Ii --+ 0, we obtain classical relations and in the limit q -> 1 the usual quan­
tum mechanical (anti)commutators emerge automatically. We hope the q-deformed 
Hamiltonian formulation for this system with q-deformed Dirac brackets, q-deformed 
constraint analysis, etc., would be able to shed more light on the quantization scheme 

for any arbitrary value of q (11). 
Fruitful conversations with A.Filippov and P.Pyatov are gratefully acknowledged. 

Thanks are also due to Ann for carefully reading the manuscript. 
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Ma.rrHK P.II. E2-95-96. 
· KBaHToBairne ·cBOOOAHOH pe.11.SITHBHCTCKoii 
~q-AecpopMHpoBaHHoii qacTH~hl · · 

B paMKax BPCT-cpopM~H3Ma paccMaTpHBaeTCSI • q-AecpopMHpoBaHHaSI 
CKaJISipHaSI pe.n:SITHBHCTcKaSI qacTm~a. IlpH BPCT-KBaHTOBaHHH s-roii cHCTeMhl 

. Ha GL/2)-HHBapHaHTHhIX TpaeKTOpHSIX Y1!HThl~aeTCSI -Q-:-Aeq>OpMHpOBaHHa.SI 
(JIOKaJibHaSI) KaJIH6poBoqHaSI. CHMMeTpHSI H. penapaMeTpH3a~HOHHaSI 
HHBapHaliTHOCTb Jiarpam1rnaHa iiepBoro nopMKa. 3KBHBa.rreHTH0CTb cooT:seT-. 
CTBYIO~HX BPCT::.aapMOB Ha MaCC0BOH IlOBepxHOCTH q>HKCHpyer. napaMeTp 
AecpopMa~HH q = ± 1. To )Ke yCJioBHe Ha napaMe-rp i(ecpopMa~mr HaKJiaAhIBa- · · 
ercSI Tpe6oBaHHSIMH coxpaHeHHSI BPCT-:iapMa BHe MaccoBou: noBepxHOCTH H · 
coxpaHeHHSI BPCT :-a.rrre6phl; PemeHHSI · ypaBHeHHH ABH)KeHJrn •' o6JiaAaIOT

0 

GL/2)-CHMMeTpHeH npH .ii:106~x 3HaqeHHSIX napaMeTpa SBOJIIO~HH. . . 
Pa6oTa BhIIlOJIHeHa B Jia6opaTOpHH TeOpeTHqecKOH q>H3HKH H~. H.H.Boro-. 

·JI1060Ba OH.sIH. · · · · · ·· · 

Ilpenp,mr Ofh.e,iwHeHHoro 'iiiicrnryra si,iepiI&rx HOCJie,iosaimw. ,ny6Ha, i 995 
¥ • • - • • • 

L 

MalikR.P. 
Quantization of a q::Deformed Free Relativistic Particle ' 

E2-95-96 

A q-deformed free scalar r~lativistic particle is discussed in the framework 
of the BRST formalism. The · q-deformed local gauge symmetry arid 
reparametrization invariance of the first-order"r.agrarigian have been explqited 
for the BRST qu~ntization of this system on .a GLq(2) invariant quantum 
world-line. The on-shell equivalence of-'these BRS.T charges requires the 
deformation parameter to be ± 1 under certain· identifications. The· same 
restriction (q ~ ± 1) emerges from the conservation of the q-deformed BRST 
charge on an arbitrary (un·constrained) manifold and the validity. of the BRST' 
algebra;. The solutions for the equations of motionrespect GLq(2) _ invariance on 
the mass-shell at any arbitrary value of the evolution parameter characterizing 
the quantum world-line. . . . 

. The. investigation . ha"s been performed at the Bogoliubov Laboratory of 
. Theoretical Physics, JINR. . . . . . •· 
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