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1 Introduction ,r 

Investigation of the phase structure of quantum field, systems ~elates to several sig­
nificant points of quantum field theory (QFT). Th~se are the dynamical symmetry 
reconstruction and dynamical generation of fermion masses; ~orriposite fields~ and 
some others. Most of these problems can be reformulated as general. problem of 
description of actual ground state and calculating the physi~al spectrum of given 
theo~y. This means that starting with a given classicai Lagra;gian .we ha✓e to de­
termine, ,what particles are described _by this Lagrangian after quantization, and 
how they interact for different regimes over the coupling constants, the temperature 
and other possible parameters. However, the ultraviolet (UV) divergences_?_c~urring 
in most QFT models hamper simple realization of this program and make trou­
ble .for some powerful methods, e.g., the variational one. Investigation of simple 
superrenormalizable models (like the two-dimensional linear a-modei considered in 
present paper) can help.to develop an appropriate language and m_ethods for study­
ing the phase structure problem in QFT. 

There is also partic.ular reason. why investigation of the phase structure of the 
Yukawa-type theories in R1+1 is quite interesting. It gives a straightforward oppor­
tunity to clarify relationship between lattice (regularized) and continuous (renor­
malized) formulations of QFT. Lattice calculations indicate a. rich phase structure 
of the Yukawa-type theories [l]. ·1n particular, it has 'been shown: in paper [2] that 
in' tl::ie two-dimensional theories with tl::ie Yukawa interaction fermions get nonzero 
dynamically generated ,mass for' arbitrary weak. Yukawa coupling, This interesting 
result, 'obtained within 'the lattice formulation of QFT, cannot be extended directly 
to the ~ase of renormalized continuous theory: Some analytical methods ar~ need to 
test this prediction of lattice QFT. 

A popular approach to the problem of phase structure is provided by variational 
estimations of the effective po.tential [3, 4, 5]. Meanwhile, applicability of the varia­
tional method to QFT is restricted by some problems (see Feynman's paper in [6]). 
The· Hamiltonians of most QFT models are ill-defined operators in _the Hilbert space 
due to the higher order UV divergences. As a result, variational estimations with the 
help of trial wave functionals are not defined either [7]. This issue is in the cpJ-theory 
for d > 2. The same thirig is true for the two-dimensional linear ci~model as soon as 
the diagrams in Fig. 1 are divergent.' Another problem arises from impossibility to 
control an accur~cy of approximation within the variational calculations [8]. 

A way. to overcome these difficulties of the variational approach . was proposed 
in [9]-[11] where the phase· structure ~(various scalar field models at zero and finite 
temperature was considered .. The detailed description of the method we use can be 
found in Ref. [11]. Here, we will fo;~ulate main ideas of'the method. . 

It is based on a combination of the canonical transformation method and renor­
malization group. The idea of this ~ombination originates from the basic prop-



erties of the local QFT: existence of nonequivalent representations of canonical 
(anti)commutation relations (CR) and UV divergences (see, e.g., [12] and refen·nces 
therein). From a physical viewpoint, existence of nonequivalent representations 
means that field system may have a set of vacua. Internal dynamics of the system 
chooses among them ·a vacuum which is an actual ground state of the system for 
given values of parameters of the model. The nonequivalent representations give a 
tool for classification and description of different phases: Below we will identify a 
phase structure of given QFT model with a set of nonequivalent CR representations 
re.alize9- in this model for different values of dynamical and external parameters. 

We ca~ formulate the problen'i 'as f~llows: .. 
what representation of CR is suitable for different values of coupling canst ants 

and what physical picture corresponds to this representation? · 
Away to· recover the dynamicalreasons for a formation of phases is provided by 

"the fact that UV divergencies give a main contribution to the physicaEparam,~ters 
• like masses; effective coupling constant"s arid so on.· Renormalization removes't hese 
. divergencies and means actually takiriginto account the leading radiative corrections 
which have a·major influence on a formation of the phase_s: 

The scattering theory as. well as the canonical formalism of QFT indicate the 
following correct form of the totaLHamiltonian: 

H = Ho+ Hr+ Het + VE . (1.1) 

The standard free part H0 describes a ground state of field system. The interac':tjon 
Hamiltonian Hr _does not contain terms linear or quadrati~ in ·fields and ·describes 
smaU~orrections _to H0 if th~ ~oupli~g constant;· are ~mall. The: co_~nter~term op~r­
ator Bet removes all UV divergencies. The_ form· of Bet is determined by H0 , H1 and 
renormalization schem~. Th~ renormalization scheme should be fixed. The' comtant 
term E is th~ vacuum energy density, which,·c~incides with ,the free e~ergy density 
for zero temperature. 

The method we use is based on two ideas. First, the total Hamiltonian of field 
syste~ should be written in th~ co;rect for~ in some pa;ticular representation which 
seems to be suitable for specific values of the parameters (e.g., in th~ weak coupling 
regime at zer~ temperature). Second, the ca~onical transformatio'iis of the field 
variables and the. requirement that the Hamiltonian expressed in new variables has 
the correct form lead to equations defining unitary nonequivalent CR representations 
at any. values of parameters. Each representation is characterized by the effe~tive 
coupling constants and_ vacuum energy densify .. The system is coriside~ed. to be in 
a definite phase, if the effective coupling constants and free energy density in the 

. representatio~·-describing this -phase are the smallest ones. The effective coupling 
constants are used t'o control an accuracy of approximation. 

The results of present paper ca'n be summarized as follows. We find the boson 
and fermion ~asses, effective coupling constants, order pirameter and free t:ncrgy 
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density as functions of (G, Y) for different CR representations. Here, G and Y are 
boson self-interaction· and Yukawa coupling constants, correspondingly. The phase 
diagram in the (Y, G)-plane is constructed. There are two phases with broken chiral 
symmetry: tp

4-type phase conditioned by the self-interaction of boson fields and 
the Yukawa-type phase coursed by the Yukawa coupling. There is a critical point 
(Ye = .13 ... , Ge = .84 ... ) where the difference between these phases disappears. 
The tp4-type phase with violated symmetry is realized in the strong coupling regime 
G ~ Y. This agrees with the phase structure of the pure(~)~ theory [4, 9] and is 
not surprising. Instability of the symmetric phase at Y « 1 and G «. 1 seems to 
be actually unexpected and interesting. Arbitrary small Yukawa coupling leads to 
the symmetry breaking. As a result, the fermions get dynamically generated mass 
in the weak coupling regime, that agrees with the results of lattice calculation:, [2]. 
This agreement is only qualitative, since statement of the problem of phase structure 
of a field system and investigation techniques within the regularized (lattice) and 
renormalized (as in our case) formulations of quantum field theory are basically 
different (for details see [13]). · 

The symmetric phases are realized for the case (Y = 0, G < 1.317 ... ), for some 
intermediate coupling regime and for Y ~ G. The points (Y = 0, G = 1.317 ... ) and 
(Y = .08 ... , G = 1.13 .. ) turn out to be the triple points in whi~h the symmetric phase 
and two phases with broken symmetry (the tp4- and Yukawa~type on'es) coexist. 

The eff~c.ti'-'.e coupling constants are small in the ~ase;: G « 1 and Y <i 1, 
G ~ Y, Y ~ G. For other values of G and Y they are large enough, that indicates 
that our method gives quite accurate description of the ph~ses outside the critical 
regions, while the phase boundaries are defined rather approximately. More a.ccu­
rate description of the critical regions can be achieved by incorporating into below 
calculations not only all divergent diagrams but also some classes of the UV finite 
diagrams [14]. 

There is another important aspect of these results. According to Goldstone the­
orem, massless bosons should appear in the phases with broken chiral symmetry. 
Naively, pseudoscalar triplet should play the role of the .Goldstone bosons as is. re­
alized for spontaneous breaking of chiral symmetry, at classical level. Meanwhile, 
as our calculations show, dynamical violation of the symmetry can be realized with 
nonzero' mass of pseudoscalar fields, although the ratio of masses of the pseudoscalar 
and scalar particles tends to zero in the strong coupling limit (see also the paper 
[4] where the same result, was obtained for the O(N) invariant tp~ theory within 
the Gaussian approximation of the· effective potential). This situation is treated 
in [4] as approximate realization of the Goldstone.,theorem. Meanwhile, _the rea­
son may be deeper. As is pointed out in the original paper of.Goldstone, Salam 
and Weinberg [15], the massless bosons accompanying symmetry breaking an· the 
composite particles rather than the elementary ones. In other words, for complete 
solution of the problem of physical spectrum we have to incorporate into conside~~-
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ti6n the CR ~epresentations corresponding to composite fields. that is the problem 
for further investigations.· The underlining theoretical aim: of present paper is to 
de~onstrate. by ~xplicit calculations how the renormalization of UV divergmces 
affects the n~nequivalent representations of the canonical relations. 

2 The Symmetry of Classical Lagrangian 

In this section we recall the well-known properties of the classical Lagrangian of the 
linear a-model. The Lagrangian density has the form 

L = - . i 2 1 
1/Ji(x)i8i/Ji(x) + z'Pi(x)(□ - m )tpj{x) + 2a(x)(D - m 2 )a(x) 

- > g 2 

+yi/;(x)(a(x)+ i-rsT/Pi(x))ij,,(x) - 4(cpi(x) + a 2(x))2, . (2.2) 

where x = (x0 , x1) E R1+1. In the two-dimensional space-time the Dirac matrices 
can be represented as 

'Yo = T3, 11 =·zT2, ,s = Ti, 

with T/being the Pauli matrices. 
Lagrangian (2.2) describes interaction of the pseudoscalar fields cp; ( i = 1, '.~, :3), 

scalar. field a and isodoublet of the fermion fields '!Pj (j ·= 1, 2). This Lagrangi,u1 is 
invariant under the chiral SUL(2) x SUn(2) transformations: . 

1PL ...:.. 1Pi = 1PL + iaiTi1PL, 1PR --+ iJ,,k = 1PR + i/3iTi1PR, 
. i 

'-Pk --+ cp~ = 'Pk - 2E-ijk'f'j (/3; - a;) + a (f3k - ak), 

a--+ a'= a+ 'Pi (ai - /Ji). 

If the mass parameter m2 of boson fields is positive then the chiral symmetry is exact 
at the classical level. Intuitively, it seems natural to expect that this symmetry will 
be not violated·by quantum corrections if the dimensionless (perturbation) coupling 
constants 

G= g 
·2-rrm2' 

are small enough. 

y = y2 
2-rrm2 

(2.3) 

· Does this intuitive suggestion actually true and what particles are described by 
the field system under consideration in the strong coupling regime, where one or both 
coupling constants (2.3) are large? In order to clarify these points we will use a kind 
of the canonical transformation method shortly described in the introduction (see 
also [ll ]). First of all we have to construct the Fock representation of the canonical 
(anti-)commutation relations which plays the role of starting or normalization point 
for further consideration. 
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3 Quantization 
~-1 ! 

Canonically quantized Hamiltonian density corresponding to Lagrangian (2.2) has 
the form · 

H 

Ho 

Hr 

Hct 

Ho+ Hr + Hct (3.4) 

1 [ 2 ( )2 2 21 1 [ 2 (" )2 2 21 - . 8 2 :.-rr + 'v°,: +ma :t2 : -rri+ .v'P,~,_+mcpi :+:if,,z111if,,:, 

~: (a
2 + cp"J)2: -y: 1/J(a + i,51wi)1P: (3.5) 

·l 2,;2 ,,;,22 ··. 
2 : [om,t,'Pj + Om(Ta l : +oE. (3.6) 

The fields 'Pi, 'Trj, a, -rr, if,,; and if;[ satisfy the canonical relations 

[ipJ(xo, x1), -rrk(xo, x~)]- = iokio(x1..:.. x~) (k,j = 1, 2, 3), 

[a(xo,x1), 1r(xo, x~)l- = io(x1 - x~), (3.7) 

[iiJ,,t(xo,x1),iJ,,i(xo,x~)]+ = iOkjD(x1 - xD (k,j = 1,2). 

The rest of commutators and anti-commutators are equal to zero. According to 
division of the total Hamiltonian (3.4) into the fre~ H0 and interaction Hr Hamilto­
·nians, the fields are defined on the Fock space corresponding to massless fermions 
and scalar and pseudoscalar bosons with renormalized mass m. Vacuum vector I0} 
of this Fock space obeys usual conditions 

cpt\x)IO} = 0, aH(x)IO) = 0, 0t\x)IO} = 01 (Vx,j), (3.8) 

where cpt}, aH and iJ,,J-l are negative-frequency parts of fields. 
The model under consideration is superrenormalizable. Besides the lowest order 

bubble diagrams, t.here are few divergent diagrams shown in Fig. 1. Ultraviolet 
divergences corresponoing to bubble diagrams are removed in representation (3.4-
3.6) by Jorrrial ordering· of the Hamiltonian with respect to the vacuum I0}. The 
divergences related' to the :diagrams shown in Fig. la require mass renormalization 
of fields cp; ~u"d a, while vacuum diagrams given in Fig. lb contribute to vacuum 
energy renormalization. · 

From physical viewpoint, the following renormalization scheme is preferable: 

• mass renormalization: the co~nterterm~: Sm"' arid Omu ·are given by the dia­
grams in Fig. la with external momenta squared being equal to renormalized 
mass squared, that corresponds to, th~.on-shell renonnaliz~tion scheme; 

• vacuum energy renormalization: divergent vacuum diagrams in Fig. lb are 
subtracted completely. 
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These prescriptions and the form of H0 and H1 determine the counterterrr1 part J/,·t 
gi~eri by (3.6) with 

8m2 
'{) 

8m2 
(1 

= y2fI!:,g(m2l0), 

y2Il~eg(m2 IO), 

· •·· y2
• ·1"" ·. du [- s · - . ·. ) 

8E = -reg --2 II,eg(-u!O) + 3II~eg(-u!O) . 
167r u + m 

0 

,:3.9) 

The ps~udoscalar fI!'eg(m2jO) and scalar fI~eg(m2jO) polarization functions look as 

-s 2 
II,eg(m IO) J d2q {- _ } 

2ireg (
2

-rr)2 Tr S(q: pl0)S(ql0) , 

-p 2 
II,eg(m IO) . J d2q { _ _ } 

2ireg (
2

-rr)2 Tr i1sS(q - pj0)i1sS(ql0) , 

(:1.10) 

where 
- 1 
S(qlmF) = · . 
• . . ' ffiF, - q_- it: 

For the case of massless fermions (mF = 0) the counterterms for the pseudos_cal!lr 
and scalar fields coincide: 

-p :i . -s 2 1 A2 
rr,eg(m IO) = II,eg(m IO)= -ln-2, 

-rr m 
where A is a cutoff parameter. 

Now the S-matrix of the model 

S =}~~reg Texp {-i J d~x [H1 + Heil} 
is defined .. It means that we have definite rules for calculating the S-matrix elements, 
which are UV finite in each ord~r of perturbati9n expansion over the coupling.con­
stants G and Y. The calcul~tion_ prescriptions are appropriate unles~ G and Y are 
sm.all enough. _The next step consists in looking for other possible representations 
of the canonical relations (3. 7). · 

4 Canonical Transformation 

Let us transform the canonical variables· as follows 

{ i1/Jt, 1/;j} -+ {iw; exp ( -ii1s) , exp ( ii1s) Ill i} , 
{-rr;,cp;} - {IT;,cI>;} (i = 1,2,3), 

{-rr,o-}-+ {IT,E+a-o}, 
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(j = 1, 2) (11.11) 
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1 

r 

where E is a scalar field with a new mass Mf = s • m2, cl>; is a triplet of the 
pseudoscalar fields with a new mass MJ = t · m2 and Ill; are the fermion fields with 
a mass M} = f · m2. The constant o-0 has the sense of vacu~m condensate of scalar 
field., . . 

The fields are defined on the Fock space unitary nonequivalent to the original 
one. Vacuum vector in the new Fock space IO)) satisfies conditions 

<I>t)(x)IO)) = 0, w}->(x)IO)) = 0, EHjo)) = 0 (Vx,j). (4.12) 

The Hamiltonian density expressed in terms of new canonical variables take~ the 
form 

lI - H~ +Hf+ H;l + H, + E (•1.13) 

H~ - ~:[IT~+ (v'E)2 + MtE2] : +~;[IT/+ (v'cI>;)2 + }l-1JcI>;J; 

+; W(i1101 +.MF)W :, ('1.14) 

Hf - t : (E2 + 4>;)2 : +ga-oE<I>; + go-oE3 (•1.15) 

~y: Ill [E(cos(a) + hs sin(a)) - Tjcl>j(sin(a) - i1s cos(a))] \JI : . 

The total Hamiltonian is written in .normal form with respect to the new vacuum 
!O)). The counterterm operator H~t is determined by the new free Hamiltonian Hb, 
new interaction Hamiltonian Hf and renormalization scheme which is equivalent to 
the initial one. This means that mass renormalization satisfies the on-shell condition 
with the new masses M,:,, Mr. and "MF, and vacuum energy renormalization removes 
new vacuum diagrams completely: 

H;l = ~ :_ (8MJ<I>; + 8MlE2] : +8E', 

8MJ = y2
Il~e~(MJIMF), 8Mf = y2fl~~(Mf IMF), 

(•1.16) 

- PS 2 
IT,eg{M,:,IMF) J d

2
q { . _ . _ } 

2ireg (
2

-rr)2 Tr hsem-Y•S(q - plMF)i1sem-Y•S(qjMF) 

~ [1n ~: - Inf - F (f)], (·1.17) 

- SP 2 
IT,eg(Mr., MF) J d2q { . _ . _ } 

2ireg (
2

-rr)
2 

Tr e'c,-Y•S(q- pjMF)e'c,-Y•S(qlMF) 

~ [1n~:-lnf- (1 -4f) F (f)], (-l.18) 

8E' y2 100 

[fI~!;;(-ulMF) il!'e!(-u!Afr)] -reg du -"------=-+3-~------cc-- . 
16-rr ll + Mf u + MJ 

0 . 

(4.19) 
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Here, the function F(z) looks as 

1 

dx { 
F(z) = J x(l _ x) - z = 

0 

_I_ In (1+✓1-4z) 'f 1 ✓1;4• l-✓l-4z , I Z :S 4 
✓4,_ 1 arctgJ4z - ] , jf z > ! -4' 

(-L20) 

The vacuum energy density E(G, Y) in Eq.(4.13) is a c-number function and has 
the form 

where 

and 

E = 

Eo 

E1 

Ect 

Eo +Er+ Ect, 
m2a2 
--

0 + LB(s, t) + LF(f), 
2 

!j_ [ai - 6a~D(s) - 6a~D(t) + 3/J2(s) + 15D2(t) + 6D(s)D(t)] 
4 
-y cos oao( (0J\Jlll!J0) ), 

/ 1 22 3 2 ( 1 2 oE - oE + 2om,p0 - 2om'-PD t) - 2omaD(.s), 

L(s, t) = ~((OJ (IIi; + (VE)2 + M°f,E2 +IT}+ (V4>i)2 + M~!l>Jl JO)) 

1 ' 
-2(01 [1r2 + (Va)2 + m2a2 + 1r'J + ('v(f'j)2 +m2(f'J) JO) 

m2 . 
= -(3t - 3lnt + s - Ins - 4), 

81r . 
LF(f) = ((0J\Jl(i,181 + MF)ll!J0)) - (0JljJi,1811/.>I0), 

J d
2
q [ 1 1 ] 1 D(z) = -2 2. 2 2 - 2 2 = -lnz. 1r i m - q zm - q 41r 

( 4.21) 

The terms H~, Hf, If~t and E gives the total H,amiltonian in new representation writ­
ten in the correct form. Other terms appearing with the canonical transformhtion 
( 4.11) are absorbed into the term H1 which can be written as 

H1 = [m2 
- MJ + ga6 - gD(s) - 5gD(t) + om! - oMJ] : 4>} : 

+ [m2 
- Ml+ 3ga~ - 3gD(s) - 3gD(t) + om; - oMl] : E2

: 

+ [m2a0 + gag- 3ga0 D(s) - 3ga0 D(t) + om;a0 - ycosaTrS(OJMF)] E 

- [MF - yao cos a] : \JIil! : 
-ya0 sina: Wi,5'11:. ( 1L22) 
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In order to provide the correct form of the total Hamiltonian we should put ll1 = 
0. This constraining condition for canonical transform~ti6n (4.11) gives a set of 
equations defining dependence of para,meters ME, M~, MF, u0 and a on the coupling 
constants G and Y: 

ya0 sina = 0 · (4.23) 

MF -yaocosa = 0 

m 2 
- MJ + ga~ - gD(s) - 5gD(t} + om!- oMJ = 0 

m 2 
- Mf + 3ga~ - 3gD(s) - 3gD(t) + om; - oMl = 0 

m 2a0 + gag- 3ga0 D(s) '- 3ga0 D(t) + om;a0 -ycosaTrS(OJMF) = 0. 

Using the, dimensionless notation 

b2 = 21ra2 t - MJ o, --m2' 
s= Mi 

m2' 
. '. 

f 
M2 = ___f_ rn2 

t 

,and taking into account (3.9), (3.10), ( 4.16), ( 4.17) and ( 4.21) one can rewrite ( 4.23) . 
as 

bsin a= 0 (4.24) 

f = Yb2 cos2 a 

3Gb
2 

+ 1 ~ s + 2Y [Inf+ (1 - 4f)F (f )] -
3
i!n(st) = 0 

I , ,I; 

2 [ (I)] G 5G Gb + 1- t + 2Y lnf + F - - -Ins.--. lnt = 0 
t 2 .2 . , 

b [Gb2 + 1 + 2Ylnf -
3

G ln (st)] = 0. 
2 ,, ' 

Taking into account these equations we represei;it the energy density ( 4.21) in the 
form 

E =' m
2 

{2b2 + 4fln/ + 3t - 3lnt + s - Ins - 4 + G [b4 -c 3bdln(st)+ ~lnslnt 
81r 2 

3 15 ] · \ (s) , ' (t)} +4In2s + 4 In2,t - Y (ln2s + 3ln2t) + Y J 5 f. - Y JP f , (4.25) 

s 11 

dx(l - x
2

) [ x ] 
J (z)=4 x((l-x)2 +zx) x-llnx-:ln(l-:~) >0, 

0 ' . . 
1 ' ' 'I 

P J dx(l-'x2) [ x ] , :;' 
J (z)=12 x((l-x)2+zx) ln(l-x)-l+xlnx >.O. 

0 ' 

(4.26) 
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It should.be noted that J5 and JP enter into (4.25) with different signs -- scalar arid 
pseudoscalar fields contribute into the vacuum 'energy density with opposite signs. 

Diffe~ent solutions of ( 4.24) define nonequivalent representations of the canonical 
relations which are identified with possible phases of the system under considera­
tion. Each phase is characterized by the energy density ( 4.25) and effective coupling 
constants 

G 
Gp(G, Y) = t(G, Y)' 

. y 

Yp(G,Y) = t(G,Y)' 

G 
Gs(G, Y) = s(G, Y)' 

y 
Ys(G,Y) = s(G,Y)' 

and is described by the Hamiltonian given by Eqs .. (4.14), (4.15) and (4.16). 

5 Phase Structure 

It is convenient to formulate the follo~ing definitions. Let µs s~pp~se th~t Eqs.(;1.24) 
have N different solutions, which can be denoted as 

S;(Y, G) = { t;( G, Y), s;( G, Y), J;( G, Y), b;( G, Y), a;( G, Y)} (j = l, ... , N). 

The effective.coupling constants (4.27) and energy density (4.25) corresponding to 
the j-th solution are defined by 

y?>(a, Y) d t;(~.;), aW)(a, Y) = t;(g Y), 

U> - Y u> . - a· 
Ys (G, Y) - s;(G.Y)' Gs (G, Y) - s;(G, Y)' 

· Ej(G,'Y) = E (t;(G, Y);s;(G, Y), J;(G, Y), b;(G, Y), ai(G, Y), G, Y). 

We shall say that in the region rk CR!= {(Y,G): Y 2: 0,G 2: 0} the field sy:,tem 
(2.2) exists in the phas~ described by the solution Sk(Y, G) if for (Y, G) E rk 

minE;(Y, G) = Ek(Y, G) , 
i J . ' . . ' ' ' 

~inYJn>(Y,G) = YJt~>(Y,G), 

(5.27) 

~in G~(sJ (Y, G) = G~%) (Y, G) .. ( 5. 28) 

The regions rk cover all the space R!, i.e., Ul\ = R!- It is quite possible that some 
solutions are not realized as actual phases of the system, since they do not minimize 
the effective coupling constants and energy density for any Y and G. 

Usually, 'criterion (5.27) based ori comparison of the vacuum energy densities is 
used in the phase transition theory. At the same time, it is natural to suppose that 
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large coupling constants in H mean that representation determined by J/0 does not 
describe real states and can not be considered as ~ -~uitable representation for the 
total Hamiltonian H. Nevertheless, our calculations, show that both criteria giw 
similar results [9, 10, 11, 13]. 

Solving the equations ( 4.24) and comparing the energy densitie_s ,and .effective 
coupling constants we arrive at the phase diagram represented in Fig. 2. The phases 
with broken chiral symmetry ( denoted as Ill and V) are realized for sufficiently 
small coupling constants G and Y and for the strong coupling regime G ~ Y, that 
is in agreement with the lattice results (2]. The original symmetric representation 
(I) occurs for GE (0, 1\) at the G-axis and for some intermediate coupling regime, 
while for the strong Yukawa coupling we get the second symmetric phase (II). The 
points 'I'i and T2 are the triple points, in which the phases I, III and V arc in 
equilibri11ri1. ' 

It should be stressed that the method we use gives an approximate description of 
the phase picture .. Moreover, the effective coupling constants are sufficiently small 
out of the critical regions, that indicates that we have qua,litatively correct picture. 
At the same time, the phase boundaries in Fig. 2 are defined very approxirrnitely. 
since the effective coupling constants of aH solutions of ( 4.24) are of order of unity in 
the phase transition regions, and neither. s,olution gives appropriate representation 
of the canonical relations. · ' 

Now let us consider different phases in details. 

5.1 Pure Yukawa Interaction 

To begin with, considerthe case G = o; i.e., the model with pure Yukawa interaction. 
O~e gets from (4.24): · 

bsina~0 (:i.29) 

f = Yb2 cos2 a 

1 - s + 2Y [1nf + ( 1 - 4 f )F (f)] = 0 

l - t + 2Y [1nf + F ( f)] = 0 

b(I + 2Ylnf) = 0 . 

Free energy density (4.25) takes the form 

I~ == 
1n2 · 

S1r (3t - 3lnt + s- lns -1 

-Y (ln2
.5 + 3lrh) + Y J 8 (y) - yJI' (y)] 
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Equations ( 5.29) have two solutions for b: 
' )i:, • ' 

· b = 0 (symmetric) and b # 0 (broken symmetry). 

According to the solutions of the third and fourth equations (5.29) there arc t hrec 
possible phases - two symmetric phases and one with dynamically broken chiral 
symmetry. 

Symmetric solutions1correspond to b = 0, f = 0, s = t. 

I. ·s1 = t1 = 1, £ 1 = 0. This solution leads to the original representation (:U-
3.6) .. 

II. s2 (0, Y) = 12(0, Y) ¢ 1, E2(0, Y) ¢ 0. This is the second, nontrivial. :;ym­
metric representation.· In this phase, the mass of boson fields and free energy de11sity 
are functions 'of the coupling constant Y. The mass is defined by the equation: 

t2 - 1 
--·=2Y. 
lnt2 

Energy dcrtsity (4.25) can be written in the form 

m2 .. 
E2 = - { 4t2 - 4 ln t2 - 4 - 2( t 2 - 1) In t 2} . 

8,r 

(fi.30) 

(:i.31) 

In this representations neither energy density' nor h~son mass· depend on th1· pa­
rameter a . .There is a set of nonequivalent representations with degenerate energies 
and masses, and with different interaction Hamiltonians. For sin a # 0 parity viola­
tion takes place due to terms in the interaction Hamiltonian (4.15) responsible for 
interaction of the scalar (pseudoscalar) field with the pseudoscalar (scalar) fermion 
current. For definiteness we will consider below the case sin a= 0, i.e., the symmet-
ric representation. . 

Equations (5.30) and (5:31) show that in the strong coupling regime (Y ~~ L) 
the mass, effective coupling constant and free energy density behave as 

ti(0, Y) -> 2YlnY, 

Y.(2l(o Y) = y:<21 (0 Y)-> -
1

-
P ' 5 ' 2lnY 

m2 
E2(0, Y)-> --Yln2Y. 

2,r 

On the other hand, in the weak coupling limit (Y ~ 1) we get 

t2(0, Y) ~ exp {-
2
~} , 

12 

(5.32) 

\) 
I I J 
I 

q 
-~ , 

yJ2J(O,Y) ~ \-".J 2l(o, Y)-> Y exp { 
2
~} 

m 2
. 1 

E2 (0, Y) -> S1r y 

(5.33) 

For intermediate values of Y the boson mass and energy density E 2 (0, Y) are shown 
in Figs. 2, 3. Comparing the energy densities and effective coupling constants for 
the phases I and II (see Figs. 2, 3 and asymptotic relations (5'.32,5.33)) we see that 
a kind of phase transition from phase I to· the nontrivial symmetric phase II takes 
place at Y = 0.5. The symmetry of the system is not changed. 

Equations (5.29) have single solution corresponding to broken chiral symmetry. 

III. b3 = Jy exp { - 4~ } , h = exp {- 2~ } , sin a = 0, t3 =/: S3 f-. L The boson 
masses are defined by the equations • 

· . ·(· . 1).. (I). .< 
~3 - 2Y 1 - 4- F -. = 0, 

, S3 S3 

(l)•· . t3 - 2Y F - = .o .. ' 
, ' ' t3 ' 

(5.34) 

Free energy density looks in this case as 

£3 .= 
m2· .. · : 
- [3t3 - 3lnt3 + S3 - ln.s3 - 4 
8,r ' ' 

" s t ] 
-Y {ln2

s + 3ln2t) + Y J8( y} :-c Y JP( y} . ,, (5.35) 
,. 

Equations (5.34) .has not real solutions for 0.15 .. < Y < 2.58 .. , while for other values 
of Y there is unique real solution. l 

In the weak coupling regime Y -> 0 one can get ,. ' ' 

{ 
' 1 '} " t3(0, Y)-> 1 + 2exp ~ 2Y. ' , >;,' 

53(0, Y)-> 1 - 2exp {:-
2
~ }, 

yJ
3
l(o,Y) _. Y (1-2exp {-:-

2
~} ), 

y5(
3l(o, Y) _. y ( 1 + 2exp {-

2
~}); 

m
2 

{ 1 } £3(0, Y) -> ·-7 exp - 2Y . (5.36) 
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The dependence of the masses (h, s3, h), order parameter b3 and energy density 
E 3 on the coupling constant Y is nonanalytical at Y = 0. 

Free energy density (5.36) is negative for small Y. This is due to neg,ttivc 
contribution of the polarization effect of the pseudoscalar fields into the energy 
density of broken symmetry phase (the term JP in Eq.(5.35)). Comparing energy 
densities of all the pos~ible phases 1)1 and III for Y ---> 0 we conclude that phase 
transition accompani,ed by ~liirnl syminetry breaking occ~rs at the origin Y = 0. 
This phase.transit_ion is of the.se~ond ,order, because the order parameter 

· 1 { 1 } b3 = vfyexp - 4y 

is contin~ous in the transition point Y = 0. 
Numerical solution of Eqs. (5.34) and calculation of the energy density show 

(see Figs. 3,4) that the energy density in the phase III becomes positive in the 
point Y = .11..., so that we get the transition frolll the phase III to the symmetric 
phase I. Further increasing ofthe coupling constant Y leads to the above-mentioned 
transition between the symmetric phases I and IL. 

Now let us consider how the self-interaction ~f boson fields affects the ground 
·state of the system under consideration. 

5.2 Effect of the boson self-interaction 

When the self-interaction is switched on, i.e. G > 0, two solutions corresponding to 
broken chiral symmetry appear in addition to the.above-considered ones. So that, 
in general case, we get five different solutions of equations (4.24). 

I. b = 0, f1 = 0, t1 = s1 = 1, · E = 0. This pha~e is 'nothing more tha'n the 
original representation (3.4-3.6). · · 

II. b = 0, h = 0, s2 = t2 ,f 1. .This is the second symmetric phase. The boson 
masses S2 = t2 are defined by the equation 

t 2 
- l = 2Y - 3G. 

ln t2 

Energy density (4.21), with account of (5.37), can be written as 

' 2 m . 
E 2 ==-· -[4t2 - 41n t2 - 4 - 2(t2 - l)ln t2]. 

. 871' 

(5.37) 

(5.38) 

· One can see that (5.37) h~s unique real ~~lution if 2Y-:- 3G :=:: 0. Otherwise there 
are no real solutions. Moreover, i2 :=:: 1 and E2 ::=; 0 for 2Y - 3G :::: 1 that indicates 

'·· 14 

the curve 2Y - 3G = 1 in the (Y, G) plane (see Fig. 2) to be a boundary bdween 
the phases I and II. This is according to both criteria based on comparison of the 
free energy densities and effective coupling constants. In the strong coupling regime 
Y ~ G we get the asymptotic formulas which are precisely coincide with relations 
( 5.32). Equations ( 4.24) have not other symmetric solutions. 

Solutions III, IV and V with nonzero boson condensate: 
b;(G, Y) = Ji/Y,fi(G, Y), ti(G, Y) =f si(G, Y) (j = 3,4,5). 
The free energy density for this case is given by (4.25). For description of these 
solutions it is convenient to rewrite equations ( 4.24) for the boson and fermion 
masses in terms of variables f, r = J /t and q = f / s: 

f = 
2

yq(4q - l)F(q) 
(2iq - 1) 

(fi.39) 

rq = exp { -
3
~ ( ~ f + 1 + (2Y - 3G) Inf)} 

~ + 2G J + L - 2Y F(r) + 2Gln q + ;(2Y - :JG) In J = 0. 
3 3Y r 3 

The last equation (5.39) can be considered as an equation on variable q if the first 
and second equations are ta.ken into account. 

Numerical analysis shows that system (5.39) has one or three real solutions for 
different values of the coupling constants G and Y. Namely, outsidP the region D 
restricted by the dashed lines in Fig. 2 we have only one real solution which is a 
continuation of the solution III of the pure Yukawa model (see previous subsection) 
on the (Y, G) plane. Its presence is conditioned by the Yukawa coupling. Below we 
will refer to corresponding phase as the Yukawa-typc ph11;se III. Inside the region D 
two additional solutions IV and V occur, that is caused by the self-interactic,n of 
boson fields. They are a continuation of the sym_metry breaking solutions of 0(-!) 
invariant ( <f H theory [4, 9] on the (Y, G) plane and correspond to the i.p

4 
type 

phases. : . · 
On the lower dashed line in Fig. 2 solutions IV'and V terminate, while on the 

upper dashed line solutions III and IV disappear. All solutions arc equal to each 
other at the point C in Fig. 2 (Y,, = 0.13 ... , Ge·= 0:84 ... ) .. The point C is analogous 
to the critical point known in the classical thermodynamical systems like gas-liquid 
[16]. Different phases do not exist and the system is always homogeneous outside the 
region D in fig. 2. One can say that at the critical point C the difference between 
phases disappears. As soon as the critical point. exists, a continuous transition 
between the phases III and V is possible, in which the separation into. phases' d~cs 
not occur at any point. To do this, t.he change of coupling const~nt.s must take place 
along some curve in the (Y, G) plane nowhere cutting the lower dashed line in Fig. 2. 
This curve rnay pass through the critical point C. 
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Figure 3: Boson masses in different phases for G = 0. 
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Boson and fermion masses as functions of G for a fixed value of Y are shown in 
Figs. 5-7 for two different paths in the (Y, G) plane. The solid line represent. the 
case Y < Y,,: the path cuts the region D and we see the separation into phases III, 
IV and V. The dashed line corresponds to Y > Ye: the path does not cut the region 
D, the separation does not occur and a continuous ,transition from the Yukawa­
type phase III to the cp4-type phase V takes place. The diffe;ence bet~een these two 
phases is purely quantitative, they are characterized by the same symmetry. Strictly 
speaking, one can speak of two phases only in the case when they exist at the same 
time touching each other, i.e., for points situated inside the region D. , . . 

To find the phase boundaries in the (Y, G) plane we have to compare the free 
energy densities and effective coupling constants of all the phases of the system. 
The free energy densities and some of th~ effective c~upling con,stants for the phases 
with broken symmetry are shown in Figs. 8,9. In the strong coupling regime G ~ Y 
( G ~ 1) one can find the relations 

ts -t GlnlnG ~ 1, ss -t 6GlnG ~ 1, fs -t 3YlnG ~ 1, 
y y 

Yp -t G ln In G « l, Ys -t 6G ln G « l, 
. , 1 , 1 

Gp~ lnlnG « l, Gs -t 6lnG « l, 

m 2 3 , 
Es -t ---ln2 G < 0. 

8rr G 
(5.40) 

This asymptotic formulas show that in the strong coupling regime G ~ 1 the phase 
V with broken symmetry is realized. Numerical solution of equations (5.39) and 
comparison of the energy d~nsities leads to the phase picture represented in Fig. 2. 
The Yukawa phase III with broken chiral symmetry is realized for small enough 
coupling constants G and Y. The cp4-type phase V exists above the upper solid line 
in Fig. 2. The original symmetric representation I is realized for the points (0,T1) at 
the G-axis and for some intermediate coupling regime, while for the strong Yukawa 
coupling we get the second symmetric phase IL 

The points T 1 (Y = o; G = 1.317 ... ) and T 2 (Y = .08 ... , G = 1.13 ... ) are the 
triple points where the phases I, III and V are in equilibrium, their energies are 
equal to zero at these points. 

Besides that, the segment (0,T1) of the G-axis arid, in particular, the origin (0,0) 
corresponds to the second order phase transition between the phases I and 'rII, since 
the order parameter vanishes continuously at Y = 0 (see also previous section). 
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tructure of the Linear a-Model _in R 1.~ . 

. Phase structure of ihe two-dimensio~al"linear_ a-:ili.odef is investigated 
with.in the method based on the.canonical trarisforniations and re~ormalization · 
. group formalism; -The phase diagram in the( Y, G)-plane is constructed, where 
y arid _G. are the .Yukawa and boson. s~If-=interadion coupling. constants. The 

_:HamHtcinians d~scribing the system in each phase are obtained. It is shown that 
Jhe contribution ~f the pseudoscalar fields leads-:to ·describing of the vacuum 
energy density in :the phase with broken chiral symmetry i This results is rather 
complicated phase structure of the· lim;ar a-model. The most-.representative 

, featuresof the phase pict~re are the dynamical breaking ~f the ch{ral symmetry 
forarbitrary small Yukmya coupling and presence ofthe critical nad triple points 
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