


1 Introductlon - . C i
Investlgatron of the phase structure of quantum ﬁeld systems relates to severa] sig-
nificant points.of quantum field theory (QFT). These are the dynamlcal symmetry
reconstruction and dynamical generation of fermion masses, composlte fields and
some others. Most of these problems can be. reformulated as general problem of
description of actual ground state and calculating the phys1cal spectrum of given
theory. This means that starting with a given classwal Lagrangian we have to de-
termine, what particles are described by this Lagranglan after quantlzatlon and
how they interact for different regimes over the coupling constants the temperature
and other possible parameters. However, the ultraviolet (UV) d1vergences occurring

-in most QFT models hamper simple realization of this program and make trou-
ble for some powerful methods, e.g., the variational one. Investlgatlon of sunple
superrenormalizable models (like the two-dimensional linear o- -model considered in
present paper) can help to develop an appropriate language and methods for study- -
ing the phase structure problem in QFT.

There is also particular reason why 1nvest1gat10n of the phase structure of the
Yukawa-type theories in R'*! is quite interesting. It gives a stralghtforward oppor-
tunity to clarify relationship between lattice (regularized) and continuous (renor-
malized). formulations of QFT. Lattice calculations indicate a rich phase structure
of the Yukawa-type theories [1]. ‘In particular, it has'been shown'in paper [2] that
in the two-dimensional thedries with the Yukawa interaction fermions get nonzero
dynamlcally generated Jmass for arbitrary weak: Yukawa couplmg This interesting
result, obtalned within the lattice formulation of QFT, cannot be extended directly
to the case of renormalized contlnuous theory. Some analytical methods are need to
test this prediction of lattice QFT.

A popular approach to the problem of phase structure is prov1ded by variational
estimations of the effective potentlal [3 4, 5]. Meanwhile, apphcablhty of the varia-
tional method to QFT is restricted by some problems (see Feynman’s paper in [6]).
The Hamiltonians of most QFT models are ill-defined operators in'the Hilbert space
due to the hlgher order UV d1vergences As a result, variational estimations with the
help of trial wave functionals are not defined either [7]. This i issue is in the @j-theory
for d > 2. The same thing is true for the two-dimensional linear ¢-model as soon as
‘the dlagrams in Fig. 1 are dlvergent ‘Anocther problem arises from impossibility to
control an accuracy of approximation within the variational ca.lculatlons [8].

A way to overcome these difficulties of the varla.tlona.l a.pproa.ch was proposed
in [9)-[11] where the phase structure of various scalar field models at zero and finite
temperature was considered. The detailed descrlptlon of the method we use can be
found in Ref. [11]. Here, we will formulateé main ideas of the method. »

It is based on a combination of the canonical transformatlon method and renor-
malization group. The idea of this combination originates from the basic prop-
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erties of the local QFT: existence of nonequivalent representations of canonical
(anti)commutation relations (CR) and UV divergences (see, e.g., [12] and references

therein). From a physical viewpoint, existence of nonequivalent . representat, ions .

means that ﬁeld system may have a set of vacua. Internal dynamics of the system
chooses among them ‘& vacuum which is an actual ground state of the system for
given values of parameters of the model. The nonequivalent representations give a
tool for classification and'description of different phases:  Below we will identify a
phase structure‘o'f given QFT model with a set of nonequivalent CR representations
reahzed in'this model for different values of dynamlcal and external parameters.

We can formulate the problem as follows:’ ' ’

what representation’ of CR is suitable for dn‘ferent values of couplmg constants
and what physrcal Ppicture corresponds to this representation? o -

‘A-way to recover the dynam1ca1 reasons for a formation of phases 1is provided by
“the fact that UV divergencies give a main contribution to'the physical ‘parameters
‘like masses, effective couphng constants and so on. Renormalization removes:these

‘.dlvergencles and means actually taking info'account the leadlng radlatlve corrections

which have a'major influence on a formation of the phases.. ¢
The scattering theory as.well as the canonical formalism of QFT 1nd1cat( the
' followmg correct form of the total Hamlltonlan ; S

e i [P H H0+HI+Hc£+VE . - 3 - Ill 1)

: The standard free part Ho descrlbes a ground state of ﬁeld system. The 1ntera( tion
Hamiltonian. Hr, does not contam terms hnear or quadratlc in fields and descnbes
~.small correctlons to Ho. if the couphng constants are small The counter term oper-
ator Hc; removes all UV d1vergenc1es The form of Hcg 1s determlned by Ho, H, and
renormalization scheme The renormalization scheme should be fixed. The’ con«tant

term E is the vacuum energy densrty, which coincides with the free energy density

"+ for zero temperature.

The method we use is based on two 1deas Flrst the total Hamiltonian of field
system should be written in the correct form in some partlcular representatlon which
seems to be surtable for specrﬁc values of the parameters (e.g., in the weak couphng
regime at Zero temperature) Second, the canomcal transformatrons ‘of the field
variables and the requlrement that the Hamlltonlan expressed in new variables has
the correct form lead to equa.tlons defining unltary nonequivalent CR representa1 ions

at any. values of parameters Each representation is characterized by the effective.~ '

coupling constants and vacuum energy density. The system is considered. to be in
a deﬁnlte phase if the effective couphng constants and free energy densrty in the
, .representatlon descrlbmg this phase are the smallest ones. The cffectrve coupling
" constants are used to control an accuracy of approxrmatron k ’ ’
The results of present paper can be summarized as follows. We find the boson
and fermion masses, effective coupling constants, order parameter and free encrgy
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density as functions of (G,Y’) for different CR representations. Here, G and Y are
boson self-interaction and Yukawa coupling constants, correspondingly. The phase
diagram in the (Y, G)-plane is constructed. There are two phases with broken chiral
symmetry: @*-type phase conditioned by the self-interaction of boson fields and
the Yukawa-type phase coursed by the Yukawa coupling. There is a critical point
(Y = 13..., Gc = .84...) where the difference between these phases disappears.

The * type phase with.violated symmetry is realized in the strong coupling regime
G > Y. This agrees with the phase structure of the pure (¢?)} theory [4, 9] and is
not surprising. Instability of the symmetric phase at ¥ < 1 and G <1 seems to
be actually unexpected and interesting. - Arbitrary small Yukawa coupling leads to
the symmetry breaking. As a result, the fermions get dynamically generated mass
in the weak coupling regime, that agrees with the results of lattice calculations [2].

This agreement is only qualitative, since statement of the problem of phase structure
of a field system and investigation techniques within the regularized (lattice) and
renormalized (as in our case) formulations of quantum field theory are basically
different (for details see [13]).

The symmetric phases are realized for the case (Y =0, G < 1.317...), for some
intermediate coupling regime and for ¥ >> G. The points (Y =0, G = 1.317.. .) and
(Y =.08..., G = 1.13..) turn out to be the trlple points in which the symmetric phase
and two phases with broken symmetry (the ¢*- and Yukawa—type ones) coexist..

The effective couphng constants are small in the cases: G € | and YV <« 1,
G>Y,Y > G. For other values of G and Y they are large enough, that indicates
that our method gives quite accurate description of the phases outside the critical
regions, while the phase boundaries are defined rather approximately. More accu-
rate description of the critical regions can be achieved by incorporating into below
calculations not only all divergent diagrams but also some classes of the UV finite
diagrams [14]. '

There is another important aspect of these results. According to Goldstone the-

‘orem, massless bosons should appear-in the phases with broken chiral symmetry.

Naively, pseudoscalar triplet should play the role of the Goldstone bosons as is. re-
alized for spontaneous breaking of chiral symmetry. at classical level. Meanwhile,
as our calculatlons show, dynamical violation of the symmetry can be realized with
nonzero mass of pseudoscalar fields, although the ratio of masses of the pseudoscalar
and scalar particles tends to zero in the strong coupling limit (sce also the paper
[4] where the same result: was obtained for the O(N) invariant 3 theory ‘within
the Gaussian approximation of the-effective potential). This situation is treated
in [4] as approximate realization of the Goldstone .theorem. Meanwhrle, the: rea-
son may be deeper. As is pointed out in the original paper of, Goldstone, Salam
and Weinberg [15], the massless bosons: accompanying symmetry breaking arc the
composite particles rather than the elementary ones.. In other words, for complete
solution of the problem of physical spectrum we have to incorporate into considera-



tion the CR lepresentations corresponding to composite fields, that is the problem
for further investigations. The underlining theoretical aim of present paper is to
démonstrate by explicit calculations how ‘the renormalization of UV dlverge nces
affects the nonequlvalent represcntatlons of the canonical relations. '

2 The Symmetry of Class1cal Lagranglan

ln this section we recall the’ well known propertles of the classical Lagrangian of the
linear o- model The Lagranglan density has the form

= BB + 52 - M) + o8 o)
HHaole) HimeEe - ) @) 22)

where z = (z9,1;) € Rt In the two- dlmensmnal space-time the Dirac matrices
can be represented as : .
: Yo =Ts, M =Ty, Y5 =T,

with 7; 'being the Pauli matrices.

Lagrangian (2.2) describes interaction of the pseudoscalar ficlds i (i =1,2,3),
scalar field o and isodoublet of the fermion fields ¥; (j = 1, 2). This Lagrangian is
1nvar1ant under the chiral SUL(Z) x SUH(Q) transformatmns ;

P = ¢L = 1/1L + lOtJTﬂ/fL, YR — Yp=1"%r+ lﬂmd)ﬂ,

Pk —’ (,Dk (Plc 2511k971 (ﬂt - ) + U(IH’C - Qk)

oo =0+g;(a;~B;).

If the mass parameter m? of boson fields is positive then the chiral symmetry is exact
atl the classical level. Intuitively, it seems natural to'expect that this symmetry will
be not violated-by quantum corrections if the dimensionless (perturbation) coupling
constants s - .
Eht=— i == o)
are small enough. :

‘ Does this intuitive suggestion actually true and what partlcles are described by
the field system under consideration in the strong coupling regime, where one or both
coupling constants (2.3) are large? In'order to clarify these points we will use a kind
of the canonical transformation method shortly described in the introduction (see
also {11])." First of all we have to construct the Fock representation of the canonical
(anti-)commutation relations which plays the role of starting or normalization point

for further consideration.

3 Quantization

Canomcally quantlzed Hamlltoman den51ty correspondmg to Lagrang1an (2. 2) has
the form '

H = Ho+H+H, 7 ., o (3.4)

1 ) —
Ho = 3 H[r + (Vlo')2 +m 02] + [+ (V%)2 +m*l] s+ Pimdiy -,
2 ‘ :
H = Z : (02 + 99§) -y: d’(” + 1’757'1971)1/’ (3'5)
] I ) : S -
Hy = 5" [6m¢(,oj + 6m 0% : +6E. ' ' (3.6)

The fields ¢;, m;, o, =, 1/). and Urs satlsfy the canonlcal relations
(ioo,an)ma(an, 2] = idigb(an ~24) (k5 =1,2,9)
[o(z0, 1), 7 (20, 2})]- = i6(z1 — z1), (3.7
lZl/’/f(Imxl)ﬂ/’j(zo,zl)h = ibjb(z1 — 21) (k,5 =1,2).

The rest of commutators and anti-commutators are equal to zero. According to
division of the total Hamiltonian (3.4) into the frec Ho and interaction A7 Hamilto-

‘nians, the fields are defined on the Fock space corresponding to 'massless fermions

and scalar and pseudoscalar bosons with renormalized mass m. Vacuum vector 0)
of this Fock space obeys usual conditions

K@) =0, o) =0, B @)0) =0, (¥.3) @)

where 4,9( }, o) and 1[J( ) are negative-frequency parts of fields.

The model under consideration is superrenormalizable. Besides the lowest order
bubble diagrams, there are few divergent diagrams shown in Fig. 1. Ultraviolet
dlvergences ‘corresponding to bubble diagrams are réemoved in representation (3.4-
3.6) by normal ordermg of the Hamiltonian with respect to the vacuum' {0). The

, divergences related to the dlagrams shown in Fig. 1a require mass renormalization

of fields ¢; and o, while vacuum diagrams given in Flg 1b contrlbute to vacuum
energy renormahzatlon
From physical viewpoint, the followmg renormallzatlon scheme is preferable:

» mass renormalization: the counterterms 6mw and 6m, are glven by the dia-
grams in Fig. la with external momenta squared being equal to renormalized
mass squared that corresponds to the.on- shell renormalization scheme;

® vacuum energy renormalzzatzon dlvergent vacuum dlagrams in Fig. 1b are
subtracted completely. A ,



These prescriptions and the form of Hy and HI determme the counterterm part H(l
given by (3.6) with : ' ‘

P ‘e
bmy = ZH,eg(mzlm, 59)
bmy = yIg(m’|0),
S 20 % .
_ Y oo du - A
R T / rm?[ reg( u|0)+3nreg( 7"0)]/'
0 N

The pseudoscalar H“g(mZIO) and scalar erg(mziﬂ) polarization functions look as

,2ireg/ (;;)zTr{g(q j:plQ)g(qIU)},

re,;(mzl())

P
I, (m?|0) .

il

2

vireg [ 5L {17350 ~ 00}
- S (3.10)

where :
1.

. i | F,' —_ q 26 - ‘

For. the case of rnassless ferrnlons (mp = 0) the counterterms for the pseudoscalar

‘and scalar fields coincide:: : i ... . C . L.

P (mi0) = I :210') lln:;

S(leF)

reg Teg

" where A is a cutoff parameter.
" Now the S-matrix of the model

S = lim reg Texp {-i/dzi [HI + Hct]};\,

is defined. It means that we have deﬁmte rules for calculating the S- matrix elemr*nts ¥
which are UV finite in each order of perturbatlon expansion over the coupling con- f
stants G and Y. The calculation prescriptions are appropriate unless G and Y are "
,srnall enough The next step consists in looking for other possible reprcsentai ions

of the canonical relations (3.7).

4 Canonical Transformation

Let us transform the’ canonlcal variables as follows

(07,5 = {iv oo (=35 sorp (i52) ) G=12) (1)
{0} = (I, &) (6=1,2,3), o :

{r,0} = {II, T + oo},

where ¥ is a scalar field with a new mass MZ = s - m? ®; is a triplet of the
pseudoscalar fields with a new mass M = ¢-m? and U, are the fermion fields with
amass ME = f-m?. The constant oo has the sense of vacuum condensate of scalar
field.. ‘ ‘

The fields are defined on the Fock space unitary nonequivalent to the original
one. Vacuum vector in the new Fock space |0)) satisfies conditions :

®(7()[0)) =0, ¥{(2)|0)) =0, £J0)) =0 (Va,j). (4.12)

The Hamrltoman dcnsxty expressed in terms of new canonical varxables takes the
form ‘ 8

H = Hy+Hi+H, +H +E (4.13)
H, = % T2 4+ (VE) + M257] - + (L2 + (V) + M2

+: V(im0 +.Mp)V¥ :, (4.14)
H = ‘4—’:(22+¢?)2:+gaom?+90023 '~ '(4.15)

—y : U [E(cos(a) + iys sin(a)) — 7;0;(sin() — iys cos(a))] ¥ : .

The total Hamiltonian is written in normal form with respect to the new vacuum
|0)). The counterterm operator H., is determined by the new free Hamiltonian H},
new interaction Hamiltonian H} and renormalization scheme which is equivalent to
the initial one. This means that mass renormalization satisfies the on-shell condition
with the new masses Mg, My and'MF, and vacuum energy renormalization removes
new vacuum diagrams completely:

1 ‘ ’
Hy = 5 [6MZ®! + 6MEX?] : +6E, (4.16)

EMg =y IES(M2|Mp), SME = y*IISE(M2|Mp),

reg Teg
PS - dzq . fays & . fovs & '
Hreg(M¢lMF) ‘= 2ireg WTT {l”xse S(g — plMF)ivse S(QIMF)}_ ;
L[ A2 N ‘.
- L (1) o)
d?q - ‘ iy
M5E(ME, Mp) = 2ireg / o Tr{ ™ 5(q __p|MF)e*°%'5(q(MF)}

= % rln% —lnf ~ (1 ~4§>F ({)} N (8 1)

2. x fIsP M PS¢ -
y reel—uMF) TIPS (—u| M)
S8 = € 3% .
. reg/du[ wt ME +3 ut M2 . (4.19)
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Here, the function F(z) looks as

F(2) / L {f:-ln(ij_:/i)’ W (1.20)
2) = — 4.2
l—z)—2z tgv/dz -1, if z>1.
J z( ) 4z_larcg >

The vacuum energy density E(C,Y)'in Eq.(4.13) i1s a c-number function and has
the form

E = Ey+E+ Eq,

Ey = m;ao + Lu(s,t) + Le(f),

B = Z [0d — 603D(s) — 603 D(t) + 3D*(s) + 15D2(t) + 6D(s) D(1)]
—y cos ago{ (0] I ¥|0)),

s~ -g-am';j,D(t) - %}smgn(s ),

1
Ee = 8E—8E'+ 5mlo

where
Lst) = 1<<0| [ +(vz) + MES? 4 T+ (V)7 + Ma ] 0))
0| [x? +(Va) +m2c72+7r +(th,) +-m2¢§]’[‘0) ‘
- ;”—;(3; — 3Int + s — Ins— 4), |
Le(f) = ((01¥(imd + Mp)¥(0)) — (Olbim|0),
and | ' ‘”
D@ = /;;Zz [mzl_qumzl_ p =4—17r-lnz. (4.21)

The terms H}, Hi, H), and E gives the total Hamiltonian in new representation writ-
ten in the correct form. Other terms appearing with the canonical transformation
(4.11) are absorbed into the term H, which can be written as

H = [m2 — M} + g0l — gD(s) — 5gD(t) + 6mz, R JHE @f :
+ [m? ~ ME + 30?2 — 3gD(s) — 3gD(t) + §m? — 6MZ] : £
+ [mzc}o + gos — Bg&OD(s) - 3gc70D(t) +:6m3c70 — ycos aTrS’(OlMp) b

~[Mp — yoocosa] : U :
—yopsina : Wiys¥ . ; (4.22)

In order to provide the correct form of the total Hamlltoman we should put H; =
0. This constraining condition for canonical transformatlon (4.11) gives a set of
equations defining dependence of parameters My, My, M F, 00 and o on the couplmg
constants G and Y:

s

yogsina =0~ ' o (4.29)
Mg —yopcosa =10 ‘ o
m? — Mg + goy — gD(s) — 5gD(t) + ém?, — Mz =0

m? — M + 3gog — 3gD(s) — 3gD(t) + 6m7 — 5M§

m2ao + god — 3gooD(s) = 3goeD(t) + §m?oy — y cos aTrS(0|Mp) = 0.

Using the dimensionless notation

2
Mg
.m?

M} M
B=2mof, b=, s= TR =
and taking into account (3.9), (3.10), (4.16), (4.17) aﬁd (4.21) one can rewrite (423) .

as

bsina =0 , ; ‘ o k *(4‘24)
f:széCsza' v R ' ‘
3G 4+ 15 +2Y [lnf'+‘ (1 —~4£)'F (I-)] ~ §g—ln( t)=0
s/ . \s/4: \2“%_»,
21— t49) IN] Z G- 5C s =
Gb* +1 t-vl—.QY[lrz‘f-f-F(t)] 2lns; ’ '2le'1t—;0\k

b [sz +1+42YInf— :—322[11 (st)] =0. .

Taking into account these equations we represent the energy density (4.21) in the
form '

E = ’g”— {21;2 +4flnf+3t~3lt+s—lns~4 +G [b“ ~ 381n(st)+ glns]nt
™
+31n s+ 15lnzt] Y (In’s + 3in%t) + YJ° (;) ~YJF (—)} , (4.25)

f
S/y / dz(1 — z%)
! fz),_“‘io/ 2((1-2)" + za)

:c \
[x— 1Imr:—ln(l -—:c)] > Q"

Pv = 1________dz(1 —77) ‘n‘l'_:c: — z nz ST z"
J (z)*”o/z((l-_w,)?+z;) [‘ ( ) T1z ]‘»‘?0-: (4.26)



It should be noted that JS and JP enter into (4 25) with different signs — scalar and
pseudosca.la.r fields contrlbute into the vacuum energy density with opposite signs.
Different solutions of (4.24) define nonequivalent representations of the canonical
relations which are identified with possible phases of the system under considera-
tion. Each phase is characterized by the energy density (4.25) and effective coupling
- constants

G G

Gp(G =gy O (G,Y) = (G ol
Y+(G,Y) = @Y—Y-) Ys(G,Y) = —(—Gy—ﬂ

and is described by the Hamiltonian given by Egs..(4.14),(4.15) and-(4.16).

5 Phase Structure

It is convement to formulate the followmg definitions. Let us suppose that I',qs (. 24)
have N different solutions, which can be denoted as

Si(Y,G) = {t;(G,Y),s;(G,Y), fi{{G,Y), b(G, Y),Qj(é,Y)} (G=1..,N)

The effectivecou;:)ling constants (4.27) and energy density (4.25) corresponding to
the j-th solution are defined by -

ey Y gy . G
YP (G,Y) - t_.,'(G.Y)’ GP (G1 Y) - tj(G, Y)’
() __Y o vy — "
YS (GvY)“‘ Sj(G.Y), GS (G’Y) - Sj(G,Y),

CEi(G,Y) = E(t(G,Y);5;(G,Y), fi(G,Y), b;(G,Y),e;(G,Y),G.Y) . .

We shall say that in the region Iy C RL = {(Y,G) : Y > 0,G > 0} the ﬁeld‘sys‘tem
(2.2) exists in the phase described by the solution Si(Y,G) if for (Y,G) € T

mmE i(Y,G) = Ek(Y G), A - (5.27)

mmyp(s)(y G) Y,,‘fs)(y G), min GPJ(S)(Y G) G{,’?S)(Y G). (5.28)

The regions I‘k cover all the spaCe R%,ie.,Ul'y = R2. 1t is quite possible that some
solutions are not realized as actual phases of the system, since they do not minimize
the effective coupling constants and energy-density for any Y and G.

Usually, criterion (5.27) based on comparlson of the vacuum energy densities is
used in the phase transition theory. At the same time, it is natural to suppose that

10

large coupling constants in /{ mean that representation determined by Hy does not
describe real states and can not be considered as a suitable representation for the
total Hamiltonian H. Nevertheless, our calculations show that both criteria give
similar results [9, 10, 11, 13].

Solving the equations (4.24) and comparing the energy densities and effective
coupling constants we arrive at the phase diagram represented in F)g 2. The phases
with broken chiral symmetry (denoted as IlI and V) are realized for sufficient]y
small coupling constants (7 and Y and-for the strong coupling regime G > Y, that
is in agreement with the lattice results [2]. The original symmetric representation
(1) occurs for G & (0,T,) at the G-axis and for some intermediate coupling regime,
while for the strong Yukawa coupling we get the second symmetric phase (I). The
points Ty and T, are the triple points, in which the pha.ses I, IIT and V are in
equilibrinm.: :

It shiould be stressed that the method we use gives an appr0x1mdte deqcnptmn of
the phase picture; Morcover, the effective coupling constants are sufficiently small
out of the critical regions, that indicates that we have qualltatlvelv correct picture.
At the same time, the phase boundaries in Fig. 2 are defined very approximately.
since the effective coupling constants of all solutions of (4.24) are of order of unity in
the phase transition regions, and nelther solutlon gnm approprlato repr( s(‘ntahon
of the canonical relations.

Now let us consider different phases in details.

5.1 Pure Yukawa Interaction

To begm with, con51der the case G = 0 i.e.; the model W1th pure Yukawa mtera( tion.
One gets from (4 24) ‘ .

bsina =0 L C (529)

f=Ybcos*a
1—.5+2Y[lnf+ 1—4£)I’ (é) =

) —-t+2)’[]nf+]' ({)} 0
b(1+2YIluf)=0.

I'ree energy density (4.25) takes the form

) .
B = {3t — 3Int +s —Ins — 14
8m . :

_ 2?'12.v,sf_v__‘/l‘£
Y(ln.—!—?lr‘i)—}-)J (f) ’)J (f)] .

11



Equa{t'ions‘ (529) .have'two ’solutions‘ for b:
“b=0 (symmetric) and b# 0 (broken symmetry).

According to the solutions of the third and fourth equations (5.29) there are three
possible ‘phases’ - Lwo symmetric phases and. one with dynamically broken chiral
symmetry. o ©on

* Symmetric so]uhons%orrespond tob=0, f = 0 s=1t.

Lisy =t/=1, £, =0 Fhls solution leads to t.hc original representation (3.1-

3.6).”

IL 55(0,Y) = 12(0.Y) £ 1, E5(0,Y) £ 0. This is the second, nontrivial. :;_yni»
metric representation. In this phase; the mass of boson fields and free energy density
‘are functions 'of the coupling constant Y. The mass is defined by the equation:

2oy, : | (5.30)

feye o ‘ 1nt2

iﬂnergy dcrisity (4.25) can be written in the form
‘E2=g;{4t2—*4l[1t2—4~2(t2—l)lntz}. (531)

In this representations neither energy density nor boson mass depend on the pa-
rameter a. ‘There is a sct of nonequivalent representations with degenerate encrgies
and masses, and with different interaction Hamiltonians. For sin a # 0 parity viola-
tion takes place due to terms in the interaction Hamiltonian (4.15) responsible for
interaction of the scalar (pseudoscalar) field with the pseudoscalar (scalar) ferinion
current. For definiteness we will consider below the case sin o = 0, i.e., the symmet-
ric representation.

Equations (5.30) and (5 :31) show that in the strong coupling regime (Y >» 1)
the mass, effective coupling constant and free energy density behave as

£3(0,Y) — 2YnY,
1

) _ v vy £ e
520,Y) = ¥2(0,Y) - 5 (5.32)
m?_ -,
By(0,Y) — = Z-¥In?Y,

On the other hand, in the weak coupling limit (Y < 1) we get

£(0, y)—.exp{ 2;}

12

. ) 1 R :
YISZ)(O,“Y):Y‘,,-U)(O,Y)-—»Yexp{ﬁ}A o (8.33)

om2
Ez(O, Y) i g—?

For intermediate values of ¥ the boson mass and energy density Eg(O Y) are shown
in Figs. 2, 3. Comparing the energy densities and effective ‘coupling constants for
the phases I and 1I (see Figs. 2, 3 and asymptotlc relatlons (5 32,5.33)) we see that
a kind of phase transition from phase I to the nontrivial symmetric phase II takes
place at Y = 0.5. The symmetry of the system is not changed.

Equations (5.29) have single solution corresponding to broken chiral symmetry.

IIL by = #exp {—31,7} , fJa =exp {——2—1}7} wsina =0, t3 # s3 # 1. The boson
masses arc defined by the equations oo DOt , )
f)F(f) 0,

| 53 - 2Y ( — 4=
. | -2¥F ( ) R X
Free energy density looks in this case as | o JESRRE
E; = — [3t3 - 3]nt3 + 83 — lns;; —4 ' ‘
Y (ln s+ 3ln2t) + YJS( ) YJ”( )] . . (5 35)

1t

Equations (5.34) has not real solutions for 0.15.. <Y < 2. 58 whxle for other values
of Y there is unique real solution. ‘ }
In the weak coupling regime Y — 0 one can get

t3(0,Y) -1+ 2exp{ 2—)7}, i
s3(0, Y)->1~—2exp{ -IT;

Y9(0,Y) - Y ( - 2exp{ 517}) |
5
0)%

Y&0,Y) - Y. (1 +2exp {

oom? 1 .
E3(0, Y) H.“Té*p {—--2—)7} (()f36)
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The dependence of the masses (fs, s3; t3), order parameter bz and energy density
E; on the coupling constant Y is nonanalytical at ¥ = 0.

Free energy density (5.36) is negative for small Y. This is due to negative
contribution of the polarization effect of the pseudoscalar fields into the energy
density of broken.symmetry phase (the term J¥ in Eq.(5.35)). Comparing energy
densities of all the possible phases I, II and III for Y — 0 we conclude that phase
transition accompanied byllc)hir‘alksym"metry breaking occurs at the origin ¥ = 0.
This phase transition is ofkthe‘,se(.:ond ,Qr({er, because the order parameter

: b, 1 1Y
& 3—\/—-)_/_6)(}){—2?}
is continuous in the transition point Y. =0. - . ‘ .

Numerical solution of Egs. (5.34) and calculation: of the energy.density show
(see Figs. 3,4) that the energy density in the phase III becomes positive in the
point Y = .11..., so that we get the transition'from the phase III to the symmetric
phase I. Further increasing of the coupling constant Y leads to the above-mentioned
transition between the symmetric phases I and II..

Now let us consider how the self-interaction of boson fields affects the ground
‘state of the system under consideration.

5.2 Effect of thé bosqn selfjinteractioﬁv

When the self—interacfcion is switched on, ie. G> 0, two solutions corresponding to
broken chiral symmetry appear in addition to the.above-considered ones. So that,
in general case, we get five different solutions of equations (4.24).

I b= 0, fl =0, t, = 5,.= 1, 'E=0. This“pha‘se is ‘n(.)thing more than the
original representation (3.4-3.6). .- . ‘ ' '

IL =0, f2=0, s =tz #1. {This is the second symmetric phase. The boson
masses 3 = t; are defined by the equation - .7
-

-1
_— — . r
=2V - 3G, 31

Energy density (4.21), with account of (5.37), can be written as
. . 2 -

Eq ;.%-[m ~4lnty —4 — 2t — 1)Inty]. (5.38)

"One can see that (5.37) haJs unique real éi)lution if 2Y — 3G > 0. Otherwise there
are no real solutions. Moreover, t; > 1 and E; < 0 for 2Y — 3G > 1 that indicates

the curve 2Y — 3G = 1 in the (Y, G) plane (sce Fig. 2) to be a boundary between
the phases I and 11. This is according to both criteria based on comparison of .thc
frec cnergy densities and effective coupling constants. In the strong coupling regime
Y > G we get the asymptotic formulas which are precisely coincide with relations
(5.32). Equations (4.24) have not other symmetric solutions.

Solutions II1, IV and V with nonzero boson condensate:

B(G,Y) = [;/Y, [{(G,Y), L(G.Y) #5/(GY) (1 =3,4.5) .

The free energy density for this case is given by (4.25). For description of these
solutions it is convenient to rewrite equations (4.24) for the boson and ferinion
masses in terms of variables f, r = f/t and ¢ = f/s:

s=2v e (5.39)
rq:exp{—%(g—f+l+(2Y—3G)lnf>}
2 /

2G . 2 ]
e ey = —2YF 2GIng + =(2Y —3G)In f =0.
b T2 F() 426 g + 5(2Y —3G)In g

The last equation (5.39) can be considered as an equation on variable ¢ if the first
and second equations are taken into account.

Numerical analysis shows that system (5.39) has one or three real solutions for
different values of the coupling constants G and Y. Namely, outside the region D
restricted by the dashed lines in Fig. 2 we have only one real solution which is a
continuation of the solution Il of the pure Yukawa model (see previous subsection)
on the (Y, G) plane. Its presence is conditioned by tbe Yukawa coupling. Below we
will refer to corresponding phase as the Yukawa-type phase IIL Inside the region D
two additional solutions IV and V occur, that'jsﬂ(causéd by the sell-interaction of
boson fields. They are a continuation of the symmetry breaking solutions of O(4)
invariant (¢%)2 theory [4, 9] on the (Y,G) plane and. correspond to the o type
phases. ‘ o
On the lower dashed line in Fig. 2 solutions IV 'and V terminate, while on the
upper dashed line solutions I1I and IV disappear. All solutions are equal to cach
other at the point Cin Fig. 2 (Yc = 0.13..., G. =0.84..:); The point C is analogous
to the critical point known in the classical thermodynamical systems like gas-liquid
[16]. Different phases do not exist and the system is always homogeneous outside the
region D in Fig. 2. One can say that at the critical point C the difference between
phases - disappears.- . As soon: as the critical point exists, a. continuous l.ran§itjorl
between the phases 111 and V is possible, in which the separation into phases. docs
not occur at any point. To do this, the change of coupling constants must take place
along some curve in the (Y, G) planc nowhere cutting the lower dashed line in Fig. 2.
This curve may pass through the critical point C.
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" Boson masses
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'Figure 4: Energy density in different phases for G = 0.
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Boson and fermion masses as functions of G for a fixed value of Y .are shown in
Figs. 5-7 for two different paths in the (Y, G) plane. The solid line represent the
case Y < Y;: the path cuts the region D and we see the separation into phases III,
IV and V. The dashed line corresponds to Y > Y.: the path does not cut the region
D, the separation does not occur and a continuous.transition from the Yukawa-
type plase I1I to the *-type phase V takes place. The difference between these two
phases is purely quantitative, they are characterized by the same symmetry. Strictly
speaking, one can speak of two phases only in the case when they ex1st at the same
time touching each other, i.e., for points situated inside the region D.

To find the phase boundarles in the (Y,G) plane we have to compare the free
energy densities and effective couphng constants of all the phases of the system.
The free energy densities and some of the effective couphng constants for the phases
with broken symmetry are shown in Figs. 8,9. In the strong couplmg regime G > Y
(G > 1) one can find the relations - ’ i :

t5 - GlnlnG>1, s5— 6GlnG>>1 fs = 3¥InG>1,

Y
Yo ohme <Y 57 ene €
G";'ETIIIE<<1,’ Gs_’6110<<1
2
Es— _g‘?%nggo. - (540
This asymptotic formulas show that in the strong coupling regime G' > 1 the phase
V with broken symmetry is realized. Numerical solution of equations (5.39) and
comparison of the energy densities leads to the phase plcture represented in Fig. 2.
The Yukawa phase III with broken chiral symmetry is. reallzed for- small enough
coupling constants G and Y. The @*-type phase V exists ‘above the upper solid line
in Fig. 2. The original symmetric representation I is realized for the points (0,T,) at
the G-axis and for some intermediate coupling regime, while for the strong Yukawa
coupling we get the second symmetric phase II. ; : o V
The points T, (Y = 0,:G =1.317...) and T, (Y = . 08, G = 1.13...) are the
triple points where the phases [; III and V are in equlhbrlum,' their energies are”
equal to zero at these points.
Besides that, the segment (0, Tx) of the G-axis and in partlcular the origin (0 0)
corresponds to the second order phase transition between the phases I and III, since
the order parameter. vanishes continuously at ¥ = 0 (see also previous section). ;
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,nOMombIo METO/O0B Kaﬂormqecxnx npeo6paaoaamm | penopwrpynnbr Mocrpo-- |-

; eHa d)aaoaasr J:marpaMMa B-1ockoctd (Y, G), e Ypr G —\Koncramm CBSI3M*

'IOKaBbIPI camonencrmm 6oaonoa Honyqenbr ramnnbromranbr onncmsaronme
'cncreMy B. xaxnon 13 a3, Hoxaaano, YTO: Bmaz( nceanocxansrpnmx nonen
rymenbmaer TUIOTHOCTD cno6ozmopr :)nepmpr d)aabr c Hapymennopr xnpanbnon
'CHMMETDHEIL. Dro. BCI(CT K. J:(OBOJIbHO COXKHOM (paaonon crpyKType JINHEHHO -
40’—MOIlCJIPI Han6onee penpeaemamnnmmn ‘{CpTaMH xoropon ;nsnsnorcsr

AMHAMHYECKOE 'HAPYLICHHE KMPAJILHOMN. CHMMMETDUHU npn CKOJIb. ymuno ‘MaJio- |

:jKOHCTaHTC CBHBPI IOKthI a T&K)Ke HEUIPILIPIC B CHCTCME KpHTPI‘{CCKOPI TO‘{KH et

: ~Abramova S V., Ehmov G V Nedelko S N
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: Phase Structure of the L1near o—Model in R

_\w1th1'n the nlethod based on the canonlcal transformatlons and renorrnahzatlon
kgroup formahsm The phasc dragram in the (Y, G) plane is constructed where
?Hamxltonlans descnblng the system in each phase are obtamed Ttis shown that
;the contribution of the pseudoscalar fields leads to descr1b1ng of the vacuum
?'energy densrty in‘the phase w1th broken chlral symmetry. This results is rather
o comphcated phase structure of the: lmear o—model The most representatlve
- |:features of the phase picture are the dynamlcal breakmg of the ch1ra1 symmetry -
“for arbltrary small Yukawa couphng and prcsence  of the crltlcal nad trlple pomts
at’ the phase dlagram : ; :
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